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Abstract—For the power and space sensitive systems such as
automotive/avionic computers, an important trend is isolating
and integrating multiple Operating Systems (OSs) in one physical
platform, which is named as hybrid multi-OS system. Generally,
in a commonly used hybrid dual-OS system, a RTOS (real-
time operating system) and a GPOS (general-purpose operating
system) are integrated. Cooperation (among the OSs) is a vital
feature of a hybrid system to obtain the necessary capabilities,
and inter-OS communication is the key. However, it is difficult
to satisfy the real-time metrics of inter-OS communication
required by the RTOS, due to the uncertainty in communication
maintenance and the time-sharing policy of the GPOS. This paper
aims to build a time predictable and secure RPC mechanism (i.e.,
the primary and critical communication unit in a hybrid multi-
OS system). Afterwards, a real-time RPC scheme (termed RTRG-
RPC) is proposed, which is applied to a ready-built TrustZone-
based hybrid dual-OS system (i.e., TZDKS). RTRG-RPC achieves
accurate time control through three mechanisms: SGI message
transforming, interrupt handler RPC servicing, and priority-
swapping. Evaluations show that RTRG-RPC can achieve real-
time predictability and can also reduce priority inversion.

I. INTRODUCTION

A major trend in automotive/avionic system is the consol-

idation of multiple domains on single powerful SoCs [1], in

order to optimize cost, space, weight, heat generation, and

power consumption. The up-to-date ARINC 653 [9] specifica-

tion requires integrating flight control systems, environment

control systems, and amusement systems into a virtualized

platform on modern aircraft. Meanwhile, AUTOSAR 4.0+ [1]

proposes ECUs (Electronic Control Units) consolidation in a

car based on virtualization. Even more, the consolidation of

ECUs, ADAS (Advanced Driver-Assistance System) and IVIS

(In-Vehicle Information System) subsystems will be the final

target [1]. Therefore, the final platform is a hybrid system

with different characteristics, and is termed as hybrid multi-

OS system in some research [11]. A popular candidate for

consolidation is isolating the sub-system into the different

run-time environments (e.g., virtualization [6] – running each

sub-system in independent virtual machines). However, this

method significantly conflicts with the requirements on re-

source efficiency and predictability, due to the introduction of

complicated resource management and complex access paths

[5], [7]. The other method is building the sub-systems in the

isolated environment provided as the extension by the SoC

hardware, such as ARM TrustZone. For example, TZDKS

[2] and LTZVisor [8] proposed multi-OS architectures upon

TrustZone, which achieve better system performance.

The simplest form of a hybrid multi-OS system is the

composition of a real-time OS (RTOS) and a general-purpose

OS (GPOS), i.e., a hybrid dual-OS system. However, the con-

solidation is not merely a simple composition of OSs. Because

both OSs will benefit from the inter-operations in terms of

functions and performance, we can get a new system with the

result one plus one is greater than two. Take the automotive

as an example, with the assistance of inter-operation, the ECU

cluster in the RTOS can acquire abundant functionalities (such

as fault logs, cloud-side AI decision, etc.) from the IVIS in

the GPOS [10]. In a hybrid multi-OS system, communication

is the foundation of inter-operation, and RPC has become a

fundamental mechanism [10]. Security and efficiency are the

two most important metrics for communication [2]. We note

that the time predictability for communication is necessary, be-

cause the scheduler should be able to predict the duration time

of the communication on the RTOS part. As far as we know,

there is very few literature addressing such problems,which

may be a significant obstacle to promote the development of

the hybrid multi-OS system.

The contributions of this paper are summarized as:

• A RPC model for the time and security analysis in the

hybrid multi-OS system.

• A Real-Time RTOS-GPOS RPC protocol (i.e., RTRG-

RPC) on TZDKS [2], with three main mechanisms: SGI

(Software Generate Interrupt) messages transforming, in-

terrupt handler RPC serving, and priority-swapping.

• Performance evaluation, showing real-time predictability

and reduced priority inversion by RTRG-RPC.

II. RELATED WORK

A. Inter-OS Communication

Current inter-OS communication mechanisms are mostly

designed for virtualization systems. The default method is

to route messages via the standard network interface. This

offers the highest amount of isolation, yet provides the lowest

performance. Many improvements simplify the under protocol

stack, and use shared-memory to increase the performance [4].

Examples include XenLoop, MemPipe [13], etc. Another

effort is to design straightforward RPC with direct hardware

assistants. XENRPC [3] is a product of such an idea. In

some dual-OS systems, the characteristics of a special platform

are leveraged to build efficient communication. As shown in

the design of SafeG [10], efficient dual-OS communication



protocols are proposed by using SGI as the event path and

using shared memory as the data path. All the above efforts

are focused on optimization for high performance, and have

no consideration for the predictability.

B. Review of TZDKS

TZDKS [2] is the product of the idea that combines strong

points of dual-kernel [2] and virtualization by utilizing Trust-

Zone technology [12]. Firstly, TZDKS adopts a dual-kernel

structure to support applications of different time-sensitivities.

All tasks in RTOS can be controlled in a time-deterministic

way, because (i) the RTOS kernel is independently driven

by a high-resolution timer, (ii)RTOS supports pre-empted fix-

priority scheduling and (iii) GPOS executes integrally as a

scheduling unit in RTOS. Meanwhile, idle time in RTOS

will be fully utilized by GPOS to execute non-real-time

applications, and the throughput or interactive strategies still

work in GPOS. Secondly, TZDKS utilizes TrustZone to get

performance trade-off. TrustZone extension provides isolation

while ensuring efficient access to resources. As shown in Fig

1, two software stacks locate in the two worlds of TrustZone-

enabled environment. The secure world stack is composed

by the monitor module and RTOS, providing a real-time

environment for the development of real-time applications.

Meantime, the normal world stack running GPOS provides

sufficient resources for execution of user interfaces, internet-

based applications and services.
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Fig. 1. TZDKS Architecture

III. PROBLEM STATEMENT

There are two different types of RPC, which is classified

by the direction of communication. We only discuss the RPC

from the RTOS task to an entity in GPOS, and name it RG-

RPC, because in most of the cases the RG-RPC requires higher

demand for time predictability [2].

An abstracted process of RG-RPC is shown in Fig 2. When

a task τi triggers a RPC request, it will sleep until the RPC

answer received, or timeout. The RG-RPG process constitutes

five essential parts (sequence may be different), which are:

1) Issuing RPC request. τi triggers a RG-RPC, then sleeps.

2) Scheduling&switching of RTOS. Before GPOS executes.

3) GPOS executing. The RPC service will run in this period.

4) Another round of scheduling&switching by RTOS kernel.

τi should be awoken and fed into the ready queue.

5) Return of RPC. τi is switched on with the RPC return.
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Fig. 2. Basic Process of RG-RPC on Uni-processor

We define them as TI , TSS1, TG, TSS2, TR respectively in

a sequence block as shown in the right of Fig 2.

As communication break the isolation, two aspects should

be taken into account in its design: efficiency and security.

A. Efficiency. The communication has to meet the time

requirement so a request can be served and returned in time.

Therefore, we add some real-time constraints for requesting

messages (from RTOS) and its feedback. It is difficult to

satisfy the real-time constraints for communication (between

RTOS and GPOS). Firstly, GPOS runs with a lower priority

in a consolidation system, and it gets the CPU resources

relying on RTOS (decided by TSS1). Secondly, in GPOS,

the RPC service time is not deterministic (TG part ). Thirdly,

without preemption mechanisms, a higher priority RPC may

be blocked by a lower priority one (probably in TSS1 or TSS2).

B. Security. In practice, this property contains both safety

and security. For safety, each communication must not lead to

or propagate hazards and faults. For security, a malicious task

can not threat other OSs or get private information through

a deliberate message. In the TZDKS, the communication

may break such protection and provide a window to GPOS,

by which some male-wares can even intrude RTOS. Some

examples [12]show how to leverage the communication and

vulnerabilities to attack the TrustZone protection. Besides,

over-much communication requests may trigger DoS (Denial

of Service) of related OSs.

IV. DESIGN OF RTRG-RPC

A. Design Philosophy

The problem to minimize the TRG−RPC can be transferred

to the minimizing of preemptions owned by lower priority

tasks (including preemptions in GPOS), although the task with

higher priority is still permitted to preempt. Therefore, a new

scheduling policy is required to switch GPOS on/off in time

other than the idle-scheduling strategy, and three problems

should be considered. 1) GPOS (normally is Linux which has

no real-time scheduler) should switch on the RPC service code

in the first time; 2) GPOS should efficiently inform RTOS

to switch on when finishing the RPC service; 3) server side

in GPOS should also support RPC priority. Moreover, as all

know, page fault can affect time predictability seriously, so it

should be avoided in the RPC service running.



B. Efficiency Design of RTRG-RPC

In this sub-section, specific TrustZone mechanisms are

leveraged in the design of RTRG-RPC in TZDKS. However,

the basic principle can be used in other consolidation systems.
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Fig. 3. Main Mechanisms for RTRG-RPC

1) Enhanced Idle-Scheduling Policy: We design an en-

hanced idle-scheduling mechanism for TZDKS, termed as

Priority Swapping. It contains:

• Idle-scheduling plus τG. We hence add another real-time

task τG also serving as a container of GPOS, but with

a variable priority. τG owns a very low original priority,

which will be changed temporarily when RG-RPC occurs.

• Priority-Swapping. When a regular task τi has triggered

a RG-RPC call, it turns to sleep and exchange its priority

with τG. Then τG is scheduled with the priority originally

belong to τi. Until RPC has been served by GPOS, RTOS

resets both priorities to original values, and awakes τi.

• Timeout-exit strategy for τG. A timeout value can be

setup for τi initially. If there is no RPC response yet after

a specific duration, τG will be suspended for timeout.

Meanwhile, the priorities of τG and τi will be restored.

This mechanism is proposed for the cause of the relatively

lower reliability of GPOS.

2) RTRG-RPC Event Path: The latency is influenced by

event path methods, especially in the GPOS part of the RPC

link. The most efficient event approach is interrupt. Consider-

ing RPC call being sent to another OS but maybe on the same

processor, software interrupt is chosen as the event method

— currently supported by almost all hardware systems. Thus

when τG switches the GPOS on, the SGI interrupt handler will

be invoked immediately. We envelop the RG-RPC service in

the SGI handler function. So the time that RPC service waits

to run can be minimized. At the end of RG-RPC service, a

SMC call will be triggered by the service in GPOS.

3) RTRG-RPC Data Path: RTRG-RPC uses the shared

memory as the data channel, realized as a request pool and

an answer pool. The pool-head is used for maintenance. The

index of the head member links to the slot number in the

pool, and the value of a head member remarks the priority of

the RPC trigger task. We design a simple method to set up

the priority of RT-RPC. The consumer just finds the minimum

prio[i] (the highest priority), and fetches related message in the

slot. Thus, the producer has nothing to do about the priority.

4) RTRG-RPC Service implementation in GPOS: We em-

ploy the interrupt handler in the GPOS kernel to serve RG-

RPC. That will avoid most indeterminate factors such as page

fault and scheduling delay. Considering the system efficiency

affected by long hardirq critical region, we can place the RPC

service into a high priority softirq (with the hypothesis that

there is a limit number of hardirq per time unit). Although

GPOS is a non-real-time system designed for the maximum

throughput, we are still able to make the service time deter-

minable by increasing the priority of the interrupt related to

RG-RPC, and by simplifying the procedure of RPC service

into a kernel module. GICv3 hardware guarantees that the

unmasked interrupt with the highest priority will be firstly

sent to the CPU core in bounded time. Therefore, the GPOS

service part can obtain time determinacy through the elaborate

setting of interrupt priority.

C. Security Design of RTRG-RPC

Basically, three types of threat are considered. The first is

the safety threat. The communication should have no side-

effect of running, switch and restoring of any OS. Because

RTRG-RPC only provides a transport layer for communi-

cations, the design should cope with three cases: RPC no-

return, RPC wrong return, and wrong order of multiple RPCs.

Our enhanced idle-scheduling policy includes the time-out exit

mechanism, which will cope with no-return problem. The RPC

wrong return can not be detected by this layer, so we leave

it to be solved by the protocols or ways on the upper soft

layer. The task ID attached in each RPC can help to solve

wrong order problem, and we limit that a task can not issue

the next RPC request before the finish of the current one. The

second is the malicious code threat in the message, our design

should prevent the executing of code in the buffer memory

used by the communication. Our design only considers the

data path for RTRG-RPC, because the event path can not carry

any executed code. We leverage the DEP (Data Execution

Protect) mechanism provided by hardware to forbid the code

executing. DEP prevents code execution from data pages in

the default heap, memory stacks, and memory pools. The third

is the DoS attack threat. Any participant should not damage

the availability of the other side OS. We set up a counter

in the RPC service handler of RTOS to test the frequency

of calling from GPOS. If the calling frequency exceeds a

predefined threshold, RTOS will deprive some execution ticks

from GPOS, so that the DoS threat can be eliminated.

V. EVALUATION

We implemented TZDKS with RTRG-RPC supporting on

an ARMv8 Foundation Fast-Model Platform.

A. Latency Predictability and Distribution

Two experiments are designed to verify the predictability of

RTRG-RPC latency. There are three periodic tasks τ, τ1, τ2 in

RTOS and only τ requires RPC (Note that if there are more

RPC caller tasks in the RTOS, the requests will be scheduled

by the RTOS kernel, and we only want to demonstrate that the



predictability of RPC is almost unaffected by the low priority

tasks). The total load of RTOS is less than 69%, so that RTOS

is schedulable under FPS policy. In the first experiment, we

give the highest priority to τ ,so no preemption takes place in

the process of RPC. We repeat RPC triggered by τ for 450

thousand times, meantime we use UnixBench as a payload in

GPOS to get 100% CPU usage rate, and record the latency.

Figure 4 summarizes the results.
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Fig. 4. Latency Distribution of RTRG-RPC

Because the data concentrates extremely (more than 99.3%

calls complete in 2500 cycles), we use the logarithms of

occurrence times as the Y-axis scale. As shown in Fig4, all

RPCs complete in 8000 cycles, and only 3 calls exceed 6000

cycles. This result shows the predictability of RTRG-RPC.

In the second experiment, we consider the preemption by

tasks with higher priority in RTOS. We assign the lowest

priority to τ , and test the latency of RPC calls triggered by

τ , — this is the only difference from the first experiment. In

table I, we give the comparison of maximum (Max) latency,

minimum (Min) latency, average latency, and the mean-square

error (MSE) of latency for RTRG-RPC in two cases. We

can see that the maximum latency is significantly increased,

which shows that RTRG-RPC scheme does not violate priority

scheduling and is still predicable in a lower priority.

TABLE I
RTRG-RPC LATENCY IN DIFFERENT PRIORITIES (UNIT: CYCLES)

Max Min Average MSE

Highest Priority 8987 2037 2079.3 176.1

Lower Priority 179463 2036 2114.8 1267.2

B. Latency Comparison

In order to show the efficiency and the predictability of

RTRG-RPC, we implement another two RPC policies in

TZDKS. The first one is the traditional RPC method without

any real-time consideration, and is labeled as TRG-RPC. TRG-

RPC depends on the service process in GPOS, which runs

under the standard idle-scheduling policy. The second policy is

named ITRG-RPC, and is the enhanced version of TRG-RPC,

which uses the interrupt handler as the RPC service in GPOS.

In fact, we combine the event path model and GPOS service

model of RTRG-RPC into a bundled implementation, called

Rapid Service. Therefore, the ITRG-RPC is the enhanced

version of TRG-RPC with the Rapid Service in GPOS. We

measured the response time of RG-RPC under such three

policies to evaluate the real-time performance of RTRG-RPC.

TABLE II
LATENCY COMPARISON FOR THREE RG-RPCS (UNIT: CYCLES)

Max Min Average MSE

RTRG-RPC 6867 2043 2078.4.3 95.8

ITRG-RPC 372330 2298 64485.4 108405

TRG-RPC 50497874 49798712 49911274 125573.5

The results under these policies are listed in Table II. It

can be learned that RTRG-RPC owns much higher efficiency

and better predictability comparing to TRG-RPC and ITRG-

RPC. We can also see that Rapid Service in GPOS do more

significant help to the efficiency than Priority − Swapping

because ITRG-RPC owns comparative minimum latency than

that of RTRG-RPC. We note that the link in the GPOS is the

most crucial link for the time efficiency of RTRG-RPC.

VI. FUTURE WORK

While this paper verifies the feasibility of obtaining a real-

time service from a GPOS, a number of issues of details (such

as cache miss and lock waiting, etc. ) within the GPOS have

been ignored. Our next plan is to address these issues and to

extend the system model to a distributed multi-core platform.
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