
This is a repository copy of A Real-Time CAN-CAN Gateway with Tight Latency Analysis
and Targeted Priority Assignment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/167754/

Version: Accepted Version

Proceedings Paper:
Xie, Guoqi, Gong, Haijie, Han, Yunbo et al. (2 more authors) (Accepted: 2020) A Real-
Time CAN-CAN Gateway with Tight Latency Analysis and Targeted Priority Assignment. In:
IEEE Real-Time Systems Symposium (RTSS). . (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Real-Time CAN-CAN Gateway with Tight
Latency Analysis and Targeted Priority Assignment

Guoqi Xie1,2, Haijie Gong1,2, Yunbo Han3, Samarjit Chakraborty4, Wanli Chang5,∗
1College of Computer Science and Electronic Engineering, Hunan University, China
2Key Laboratory for Embedded and Network Computing of Hunan Province, China

3Future Network Lab, CSIG, Tencent, China
4Department of Computer Science, University of North Carolina at Chapel Hill, USA

5Department of Computer Science, University of York, UK
{xgqman@hnu.edu.cn, haijie@hnu.edu.cn, yunbohan@tencent.com, samarjit@cs.unc.edu, wanli.chang@york.ac.uk}

Abstract—There is a demand in the automotive industry to
connect two CAN-based subsystems. The commercial CAN-CAN
gateway supports basic message forwarding with no real-time
behavior. To address this issue, a new gateway architecture
is described, on which we present a novel worst-case latency
analysis. Specifically, we bound the arrival of the messages at
the gateway, which is then used by the Pointer Reachability
Exploration (PRE) to derive the interfering message jobs. Our
analysis computes a safe gateway latency tighter than the
conventional one applied in CAN. Furthermore, we propose a
Targeted Priority Assignment (TPA) algorithm that targets at
the priorities assigned at the CAN bus and runs a reordering
at the gateway to enhance the schedulability. TPA performs
better than DMPO (Deadline Monotonic Priority Ordering),
while OPA (Audsley’s Optimal Priority Assignment) cannot be
applied in this context. Evaluation over real-life and scalable CAN
message sets is conducted. The reported analysis and priority
assignment algorithm are developed for dynamic use to improve
the acceptance ratio and can also be deployed statically to provide
timing guarantees. This work can be easily extended to support
multiple CAN subsystems.

I. INTRODUCTION

The Controller Area Network (CAN) is the most widely
used communication protocol in automobiles due to its simple,
efficient, and stable broadcast communication mechanism [1].
There has been a practical demand to connect two CAN-based
subsystems via a gateway [2]–[4]. For example, through data
exchange at the gateway, the engine control module in the
powertrain CAN subsystem obtains the input signal from the
instrument unit in the body CAN subsystem, which displays
the information from the powertrain CAN subsystem [5].

In the commercial CAN-CAN gateways being used (e.g.,
CG-ARM7 [6] and J1939 [7]), each CAN transceiver is
equipped with a receiving queue (also called input queue or
Rx-Buffer) and a transmission queue (also called output queue
or Tx-Buffer), implemented with fixed priority [8], first-in
first-out (FIFO) [9], or a mixture of both [10], [11]. The
receiving queue temporarily stores the messages sent from
the source-end CAN subsystem to the gateway, while the
transmission queue temporarily stores the messages sent from
the gateway to the destination-end CAN subsystem. At present,

∗The corresponding author is Wanli Chang.

these gateways only support basic message forwarding, where
the worst-case latency analysis is difficult. There are two main
reasons for this. First, messages may be dropped due to the
limited queue length. Second, the message transmission in one
CAN subsystem is affected by the other one.

Main contributions: In order to address this problem, we
describe a new gateway architecture, which trades hardware
resources for isolation and predictability, facilitating the worst-
case latency analysis. We present a novel worst-case latency
analysis for the gateway. Specifically, the arrival of the mes-
sages at the gateway (including how the jobs of one message
arrive and how the earliest jobs of all messages arrive) is
bounded and used by the Pointer Reachability Exploration
(PRE) to derive the interfering message jobs. Our analysis
is proven to be safe and is able to achieve a tighter bound
than the conventional non-preemptive analysis applied in CAN
(hereafter named Davis’ timing analysis) [8]. Furthermore, we
propose a Targeted Priority Assignment (TPA) algorithm that
targets at the priorities assigned at the CAN bus and runs a
reordering at the gateway to enhance the schedulability. TPA
tries to make unschedulable messages schedulable with limited
priority reordering, and gives up (assigning the lowest priority)
if a message inevitably compromises the schedulability of the
entire system. TPA performs better than DMPO (Deadline
Monotonic Priority Ordering) [12], while OPA (Audsley’s Op-
timal Priority Assignment) [13] cannot be used in this context,
as it is terminated when facing unschedulability. Evaluation
over real-life and scalable CAN message sets is conducted.
The reported analysis and priority assignment algorithm are
developed for dynamic use to improve the acceptance ratio
(i.e., the number of messages meeting deadlines divided by the
total number of messages) and can also be deployed statically
to provide timing guarantees. This work can be easily extended
to support multiple CAN subsystems if needed.

II. RELATED WORK

Sommer et al. [3] studied the optimization of the gateway
processing time, receiving queue size, and transmission queue
size of the CAN-CAN gateway by proposing the round robin
scheduler. Lee et al. [14] investigated the traffic-balancing

algorithm for the CAN-CAN gateway to predict the traffic
of each CAN subsystem, thereby increasing the network
capacity of the CAN subsystems and reducing end-to-end
response time. Sojka et al. [4] studied the reasonable gateway
configurations for the CAN-CAN gateway by automating the
measurements and comparing various results. However, the
results obtained from measurement can only represent partial
cases and cannot reflect all the cases of the queue. The
methods proposed by the above works (i.e., [3], [4], [14])
can not generate a safe bound, thereby lacking the ability of
timing prediction.

Based on the Davis’ timing analysis [8], Davis et al [10]
continued to study the response time analysis for messages
in a CAN bus connecting the gateway, which is configured
with FIFO queues and priority queues together. Azketa et al.
[5] studied the end-to-end response time analysis for a multi-
packet CAN message (i.e., a message consists of multiple
packets) in two CAN buses interconnected by the CAN-
CAN gateway; the method is implemented by considering
the pipelining of the packets in the gateway. Xie et al.
[15] proposed the end-to-end response time analysis through
examining the different actual arrival orders in detail, thereby
obtaining a safe and tight bound; however, this work ignores
the message-processing latency in the gateway and assumes it
to be zero.

III. GATEWAY ARCHITECTURE AND MODELS

A. Gateway Architecture

As emphasised in Section I, current commercial CAN-
CAN gateways only support basic message forwarding and
ignore the worst-case latency analysis due to the limited queue
length and the mutual influence between two subsystems.
To facilitate worst-case latency analysis, we present a new
gateway architecture different from the existing commercial
gateways.

The presented CAN-CAN gateway architecture has two
CAN subsystems (i.e., CAN1 and CAN2) with the same
bandwidth of 500 KBit/s, as shown in Fig. 1. Each subsystem
consists of two buses named e2e&e2g and g2e buses. The
e2e&e2g bus is responsible for transmitting messages released
from one Electronic Control Unit (ECU) to other ECUs (or
the gateway) in the same subsystem, whereas the g2e bus is
responsible for receiving the messages sent from the gateway
and transmitted to ECUs. Although adopting the above dual
CAN bus solution could increase the hardware cost, it has
the advantage of reducing the mutual influence of messages
between two subsystems, thereby reducing the complexity of
worst-case latency analysis; in other words, we trade hardware
resources for isolation and predictability, facilitating worst-
case latency analysis. As far as we know, some dual CAN bus
solutions have been used in some studies to address individual
particular requirements [16]–[18].

There are two message awaiting priority queues (i.e.,
awaiting_queue_12 and awaiting_queue_21) in the pre-
sented gateway, where awaiting_queue_12 temporarily stores
messages from CAN1 to CAN2, and awaiting_queue_21

ECU11

ECU12

CAN1

{m2,m4}

ECU21

{m1,m3}

ECU22

{m5,m7,m9}

CAN2

{m2,m4,m6,m8,m10}

{m6,m8,m10}

awaiting_queue_12
awaiting_queue_21

e2e&e2g

g2e

g2e

e2e&e2g

CAN2

Gateway

Fig. 1: CAN-CAN gateway and in-vehicle networks.

temporarily stores messages from CAN2 to CAN1. Note the
awaiting priority queues are buffers created in memory and
can be dynamically adjusted in size. The queue creation cost
is negligible, especially considering that the CAN message size
is small. Conventionally, the fixed-size pre-fabricated buffers
in CAN controllers are used for message queuing.

In Fig. 1, there are two ECUs mounted on each bus, and
each ECU lists the messages that need to be sent. For example,
ECU11 in CAN1 bus can send two messages (i.e., m2 and
m4). This study assumes that each message in each ECU is
stored in a priority queue; from a safe and conservative timing
analysis, each message that needs to be sent has no released
jitter and offset, so that the messages in the same ECU can be
queued simultaneously.

In summarization, the presented gateway architecture has
the following changes compared with current commercial
gateways: 1) we adopt the dual CAN bus solution (i.e., each
subsystem has two CAN buses) to isolate the mutual influence
between two subsystem, thereby reducing the complexity of
worst-case latency analysis; 2) we create two awaiting priority
queues in memory of the gateway to store the messages that
need to be forwarded, and each CAN transceiver no longer
has receiving and transmission queues. Through the above
changes, the gateway architecture trades hardware resources
for isolation and predictability, facilitating the worst-case
latency analysis. When more CAN subsystems are connected
to the gateway, each CAN subsystem still adopts the dual
CAN bus solution and the latency analysis still holds, so that
the gateway is scalable; note that the number of queues will
increase and the contention needs to be resolved on the g2e
bus, which is supported by the conventional CAN analysis.

B. Message Model and Classification

Let M = {m1,m2, ...,m|M |} represent a message set,
where |M | is the message set size. Let mi=(Pi, CAN source

i ,
CAN dest

i , Ci, Ti, Di) represent the ith periodic message in
the message set and i is the unique identifier of a message; Pi

means the priority of message mi; the smaller the i, the higher
the priority. CAN source

i and CAN dest
i represent the source-

end and destination-end subsystems of mi, respectively. Ci

represents the Worst-case Transmission Time (WCTT) of mi;
Ti represents the period (all messages are released strictly in
individual ECUs according to the given period) of mi; and Di

represents the end-to-end deadline of mi.

Definition 1: Non-gateway message: A non-gateway
message is the message whose source-end subsystem and
destination-end subsystem are the same).

Definition 2: Gateway message: A gateway message is the
message that is transmitted from one source-end subsystem to
another destination-end subsystem.

Table I shows a motivating example (i.e., the message set
has 10 messages) used in this study. In this example, m1, m3,
m5, m7, and m9 are non-gateway messages, while m2, m4,
m6, m8, and m10 are gateway messages.

TABLE I: Motivating example (i.e., the message set has 10 messages) in this study.

mi Pi CAN source
i CAN dest

i Ci Ti Di Rsource
i Rdest

i DGW
i

m1 1 CAN2 CAN2 230 µs 1200 µs 1200 µs 500 µs - -
m2 2 CAN1 CAN2 210 µs 1000 µs 1000 µs 480 µs 210 µs 310 µs

m3 3 CAN2 CAN2 270 µs 1600 µs 1600 µs 770 µs - -
m4 4 CAN1 CAN2 170 µs 1800 µs 1800 µs 650 µs 170 µs 980 µs

m5 5 CAN2 CAN2 190 µs 1700 µs 1700 µs 900 µs - -
m6 6 CAN1 CAN2 210 µs 1700 µs 1700 µs 860 µs 210 µs 630 µs

m7 7 CAN2 CAN2 150 µs 2000 µs 2000 µs 1050 µs - -
m8 8 CAN1 CAN2 270 µs 3000 µs 3000 µs 1130 µs 270 µs 1600 µs

m9 9 CAN2 CAN2 210 µs 3000 µs 3000 µs 1260 µs - -
m10 10 CAN1 CAN2 210 µs 3000 µs 3000 µs 1490 µs 210 µs 1300 µs

C. WCRTs of Non-Gateway Messages

(1) For a non-gateway message mi, its end-to-end Worst-
Case Response Time (WCRT) is its source-end WCRT,
namely,

Re2e
i = Rsource

i .

The details of obtaining Rsource
i can refer to the Davis’ timing

analysis [8] and are as follows.
Let hpsource(mi) represent the source-end high-priority mes-

sages of mi. According to the Davis’ timing analysis in [8], if
mi is simultaneously released with its high-priority messages
in hpsource(mi), then the maximum interfering latency wsource

i

is

wsource
i (n+ 1) = Bi +

∑

∀mj∈hpsource(mi)

⌈

wsource
i (n) + τdata

Tj

⌉

Cj .

(1)
τdata is the time to transmit one bit (i.e., bit time); for a CAN
bus with the bandwidth of 500 Kbits/s, its bit time is 2 µs. Bi

is the blocking time and is calculated by

Bi = max(
max (Ck)
∀mk∈lpsource(mi)

, Ci), (2)

where lpsource(mi) represents the source-end low-priority mes-
sages of mi.

In Eq. (1), iteration starts with a suitable initial value like
wsource

i (0) = Ci. The iteration process continues until one of
the following two situations occurs [8].
(1) wsource

i (n+ 1) + Ci > Di , where mi is unschedulable.
(2) wsource

i (n+1) = wsource
i (n) and wsource

i (n+1)+Ci 6 Di,
where mi is schedulable.

In the end, Rsource
i of mi is calculated by

Rsource
i = wsource

i (n+ 1) + Ci. (3)

Table I has listed the Rsource
i values of non-gateway messages

(i.e., m1, m3, m5, m7, and m9) through the Davis’ timing

analysis [8]. From Table I, we can see that five non-gateway
messages (i.e., m1, m3, m5, m7, and m9) meet individual
deadlines, because the WCRTs of these messages are less than
individual deadlines, that is,

Rsource
i 6 Di.

D. In-Gateway Worst-Case Latency

Definition 3: In-Gateway worst-case latency: The in-
gateway worst-case latency of gateway message mi is defined
as the maximum awaiting time of mi among its all possible
awaiting times in the gateway.

For a gateway message mi, its end-to-end WCRT is the sum
of its source-end WCRT, in-gateway worst-case latency, and
destination-end WCRT, namely,

Re2e
i = Rsource

i + LGW
i +Rdest

i .

Note that there is a fact that the message copy speed inside the
gateway is much faster than the message transmission speed
in CAN bus. In our gateway prototype platform, the Cortex-
M4 processor is used and its clock frequency is 168 MHz,
such that the message copy time needs merely dozens of µs;
however, the message transmission time for the CAN bus with
the bandwidth of 500 KBit/s is approximately 250 µs [5].
Therefore, the copy time of the message in the gateway is
ignored and the waiting time is considered in this paper.

(1) When mi is transmitted in its source-end, the calculation
of Rsource

i has been explained in Section III.C. The Rsource
i

values of five gateway messages are shown in Table I.
(2) When mi is transmitted in its destination-end, the value

of Rdest
i is its WCET Ci. The reason is that mi occupies

the g2e bus without interference from the destination-end
messages. That is,

Rdest
i = Ci.

The Rdest
i values of five gateway messages have been obtained,

as shown in Table I.
Considering that Rsource

i and Rdest
i are easy to obtain, the

main concern is to obtain the in-gateway worst-case latency
(i.e., LGW

i). LGW
i is actually the maximum awaiting time in

the specified awaiting priority queue inside the gateway.

E. In-Gateway Deadline

For the five gateway messages (i.e., m2, m4, m6, m8, and
m10), we are not sure yet whether they have met the end-
to-end deadline, because we have not determined yet the in-
gateway worst-case latencies of these messages.

Definition 4: In-Gateway Deadline: The gateway message
mi can only meet its end-to-end deadline if the following
condition is met

Re2e
i = Rsource

i + LGW
i +Rdest

i 6 Di.

Therefore, mi can meet its end-to-end deadline when LGW
i

meets the following condition:

LGW
i 6 De2e

i −Rsource
i −Rdest

i . (4)

The right part of Eq. (4) is defined as the in-gateway deadline
of message mi (i.e., DGW

i), namely,

DGW
i = De2e

i −Rsource
i −Rdest

i . (5)

To locate the presented gateway in this paper, we focus on
the in-gateway worst-case latency through modular separation,
thereby transferring the end-to-end deadline to the in-gateway
deadline. Through Eq. (5), the DGW

i values of five gateway
messages (i.e., m2, m4, m6, m8, and m10) have been obtained,
as shown in Table I.

IV. BOUNDING ARRIVAL OF MESSAGES

To obtain safe and tight worst-case latency analysis for the
CAN-CAN gateway, we should understand the transmission
details inside the gateway from a realistic perspective as much
as possible. In this section, the arrival of the messages at
the gateway (including how the jobs of one message arrive
and how the earliest jobs of all messages arrive) is bounded
through Definitions 7 and 9.

A. Minimum In-Gateway Inter-Arrival Time

The gateway messages in the same awaiting priority queue
are arranged in descending order of priority (i.e., the higher
the priority of the message, the sooner the message is out of
the awaiting priority queue). In the motivating example, m2,
m4, m6, m8, and m10 are in the same awaiting priority queue
awaiting_queue_12. When analyzing the in-gateway worst-
case latency of a gateway message, source-end high-priority
gateway messages can interfere with the current analyzed
message mi (in this paper, mi is called the current analyze
message, and mj is a high-priority gateway message relative
to mi). For instance, when we analyze the in-gateway worst-
case latency of m10, it will be interfered by m2, m4, m6, m8,
which are from CAN1 subsystem.

Let mj,1, mj,2, and mj,3 represent the 1st, 2nd, and 3rd
message jobs (a job is an instance of a message) of gateway
message mj , respectively.

Definition 5: In-gateway interval time: The in-gateway
interval time means the interval time between the two adjacent
in-gateway arrival jobs mj,x and mj,x+1, and it is denoted by
Ij,x,x+1.

Definition 6: Minimum in-gateway inter-arrival time:

The minimum in-gateway inter-arrival time of gateway mes-
sage mj means the minimum in-gateway interval between any
two adjacent in-gateway arrival jobs of mj , and it is denoted
by Tmin

j .
Lemma 1: If mj,1 experiences source-end WCRT of Rsource

j

in its source-end subsystem, and mj,2 experiences WCET of
Cj in its source-end subsystem, then Tmin

j is equal to Ij,1,2
[15]:

Tmin
j = Ij,1,2 = Tj −Rsource

j + Cj . (6)

For example, we know that the source-end WCRT of m8

(m8 is a high-priority message relative to m10) is 1130 µs (i.e.,
Rsource

8 = 1130 µs) from Table I, then the minimum in-gateway
inter-arrival time Tmin

8 is

Tmin
8 = I8,1,2 = 3000− 1130 + 270 = 2140 µs. (7)

m8,1

source

8 1130 sR !

8 3000 sT !

m8,2

m8,1 is

released in

the gateway

m8,1 is

released in

its ECU

m8,2 is

released in

its ECU

m8,2 is

released in

the gateway

min

8 2140 sT !

0 1130 3000 3270

Fig. 2: Minimum in-gateway inter-arrival time of m8 and in-gateway interval time
between m8,1 and m8,2 in the gateway.

Fig. 2 shows the schematic diagram of obtaining the mini-
mum in-gateway inter-arrival time of m8: 1) at instant of 0 µs,
m8,1 is released in its ECU; 2) at instant of 1,130 µs, m8,1

arrives at the gateway (i.e., m8,1 is transmission finished with
its WCRT in its source-end CAN subsystem); 3) at instant of
3,000 µs, m8,2 is released in its ECU; and 4) at instant of
3,270 µs (3,000 + 270 = 3,270), m8,2 arrives at the gateway
(i.e., m8,2 is transmission finished with its WCTT in its source-
end CAN subsystem). Finally, the minimum in-gateway inter-
arrival time of m8 is Tmin

8 = 2140 µs, as shown in Fig. 2.

B. Pessimistic Worst-Case Latency Analysis

Referring to the Davis’ timing analysis [8] in Section III.C,
we can calculate the in-gateway worst-case latency for each
gateway message based on the minimum in-gateway inter-
arrival time obtained by Eq. (6). The details are below.

Let hpsource-GW(mi) represent the source-end high-priority
gateway messages of mi. According to the Davis’ timing
analysis in [8], if mi simultaneously arrives at the gateway
with messages in hpsource-GW(mi), then its in-gateway worst-
case latency LGW

i is

L
GW
i (n + 1) = Bi

GW
+

∑

∀mj∈hpsource-GW(mi)

⌈

LGW
i (n) + τdata

Tmin
j

⌉

Cj , (8)

where the period of the each source-end high-priority gateway
message is denoted by the minimum in-gateway inter-arrival
time. BGW

i is the in-gateway blocking time, which occurs when
a gateway message just starts transmitting in the g2e bus of
the destination-end CAN system; therefore, BGW

i is calculated
by

Bi
GW = max

h∈psource-GW(i)
Ch, (9)

where psource(mi) represents the source-end all gateway mes-
sages of mi.

It can be seen from Eqs. (8) and (9) that mi’s worst-
case latency depends on the occupancy of the g2e bus of the
destination-end CAN subsystem. In other words, if we take
the gateway and g2e bus as a whole, then the overall WCRT
is

RGW-dest
i = LGW

i +Rdest
i = LGW

i + Ci.

However, we focus on the in-gateway worst-case latency
through modular separation as pointed earlier.

The worst-case latency obtained by the Davis’ timing analy-
sis is a safe bound. However, there is a practical consideration:

although the released time of each message is periodic at the
ECU, but its actual start time is not periodic at the source-end
CAN subsystem, where interface and blocking exist; therefore,
the actual finish time of each message is not periodic at the
source-end CAN subsystem, such that the in-gateway arrival
time of each message is not periodic.

In summarization, if the minimum in-gateway inter-arrival
time Tmin

j is considered as the in-gateway period, then the
worst-case latency obtained by Eq. (8) is safe but quite
pessimistic.

C. Tightest Message Arrival Pattern

Theorem 1: If the in-gateway interval time between mj,1

and mj,2 is the minimum in-gateway inter-arrival time of mj ,
namely,

Ij,1,2 = Tmin
j ,

then the minimum in-gateway interval time between subse-
quent two adjacent jobs is Tj , namely,

Imin
j,x,x+1 = Tj (x > 2).

Proof. According to the content described for the establish-
ment of Eq. (6), the minimum in-gateway inter-arrival time
of mj appears on the premises that: 1) mj,1 experiences
source-end WCRT (Rsource

j) in its source-end subsystem; 2)
mj,2 experiences WCET (Cj) in its source-end subsystem.
(i.e., mj,2 begins its transmission in the e2e&e2g bus without
any interference and blocking). In other words, once mj,2 is
released in its ECU, it will immediately start to be transmitted
in the e2e&e2g bus (i.e., the released time of mj,2 in its ECU
is equal to its actual start transmission time on e2e&e2g bus).
To minimize the in-gateway interval time between mj,2 and
mj,3, mj,3 must also be in a state of being transmitted once
released (i.e., the minimum in-gateway interval time between
mj,2 and mj,3 is their period of Tj); otherwise, any possible
interference and blocking to mj,3 will cause its actual start
transmission time to be delayed. By analogy, all subsequent
jobs (mj,4, mj,5 mj,5,...) must also be the same state of being
transmitted once released as mj,3. Therefore, the minimum in-
gateway interval time between subsequent two adjacent jobs
is Tj . �

Fig. 3 shows the schematic diagram of obtaining the min-
imum in-gateway interval time between m8,2 and m8,3: 1)
at instant of 1,130 µs, m8,1 arrives at the gateway; 2) at
instant of 3,270 µs (3,000 + 270 = 3,270), m8,2 arrives at
the gateway; and 3) at instant of 6,270 µs (3,270 + 3,000 =
6,270), m8,3 arrives at the gateway. Finally, the minimum in-
gateway interval time between m8,2 and m8,3 is 3000 µs, as
shown in Fig. 3.

Definition 7: Tightest message arrival pattern: If the in-
gateway interval time between mj,1 and mj,2 is Tmin

j and the
in-gateway interval time between subsequent two adjacent jobs
is Tj , then such message arrival pattern is called the tightest
message arrival pattern, which is denoted by

Pattern
tight
j = (0, Tmin

j , Tmin
j + Tj , Tmin

j + 2 × Tj). (10)

m8,1

source

8
1130 sR !

8 3000 sT !

m8,2 m8,3

m8,1 is

released in

the gateway

m8,1 is

released in

its ECU

m8,2 is

released in

its ECU

m8,2 is

released in

the gateway

m8,3 is

released in

its ECU

m8,3 is

released in

the gateway

min

8 2140 sT !
8 3000 sT !

0 1130 3000 3270 6000 6270

Fig. 3: Minimum in-gateway interval time between m8,2 and m8,3 in the gateway.

Definition 7 bounds how the jobs of one message arrive.
Note that due to the bus competition among multiple messages,
the tightest message arrival patterns of some messages are
not necessarily actual existing patterns, but may be virtual
patterns; therefore, the tightest message arrival pattern is still
conservative.

Theorem 2: The tightest message arrival pattern
Pattern

tight
j = (0, Tmin

j , Tmin
j + Tj , Tmin

j + 2 × Tj , ...)
can ensure that the number of in-gateway arrival jobs of
message mj in any time interval is the maximum.

Proof. The in-gateway interval time between mj,1 and mj,2

under the tightest message arrival pattern Pattern
tight
j is Tmin

j ,
whereas that under other actual existing patterns is larger than
Tmin
j . Assume that the given time interval is T interval, and it

has the following multiple cases.
Case 1. T interval < Tmin

j . First, there is only one in-gateway
arrival job of mj in time interval T interval under the tightest
message arrival pattern. Second, since T interval is less than
Tmin
j , there is at most one in-gateway arrival job of mj in

T interval under other actual existing patterns. Therefore, under
the tightest message arrival pattern, mj has the maximum
number of in-gateway arrival jobs.

Case 2. Tmin
j 666T interval < Tmin

j +Tj . First, there are two in-
gateway arrival jobs of mj in time interval T interval under the
tightest message arrival pattern Pattern

tight
j . Second, we use

the counter-evidence method and assume that there are three
in-gateway arrival jobs of message mj in T interval in another
actual existing pattern. As the in-gateway interval time be-
tween mj,x and mj,x+1 in other actual existing pattern is larger
than Tmin

j , two in-gateway jobs can arrival in interval Ij,x,x+1;
however, the in-gateway interval time between mj,x+1 and
mj,x+2 must be less than Tj because mj,x+1 is not in the
state of being transmitted once released, such that no job can
arrival in interval Ij,x+1,x+2. Therefore, under other actual
existing patterns, mj has at most two in-gateway arrival jobs.

Case 3. Tmin
j +Tj 666T interval < Tmin

j + 2×Tj . First, there are
three in-gateway arrival jobs of message mj in time interval
T interval under the tightest message arrival pattern Pattern

tight
j .

Second, we use the counter-evidence method and assume that
there are four in-gateway arrival jobs of message mj in T interval

in another actual existing pattern. Similar to the proof in Case
2, mj has at most three in-gateway arrival jobs under other
actual existing patterns.

Default. The other cases can use the same proof as Cases
2 and 3. �

Note that Theorem 1 corresponds to the tightest message
arrival pattern, as explained in Theorem 2.

Theorem 3: If high-priority gateway messages arrive at
the gateway under the individual tightest message arrival
patterns, and the first in-gateway jobs of all the high-priority
gateway messages simultaneously arrival at the gateway, then
the worst-case latency for the low-priority analysed message
is generated.

Proof. According to Theorem 2, the tightest message arrival
pattern of each high-priority gateway message can ensure
that the number of in-gateway arrival jobs of each message
in any time interval is the maximum compared with other
actual existing patterns of this message. Then, according to
the principle of accumulation, the tightest message arrival
patterns of all high-priority gateway messages can ensure that
the number of in-gateway arrival jobs of all these messages
in any time interval is the maximum compared with other
actual existing patterns of these messages. Therefore, the
worst-case latency of the low-priority analyzed message is the
time interval, in which high-priority messages cause successive
interference to the analyzed message. �

D. Motivating Example

Based on the already obtained source-end WCRTs (i.e.,
Rsource

i) of gateway messages in Table I, we can easily obtain
their minimum in-gateway inter-arrival time (i.e., Tmin

j) values
of five gateway messages, namely, Tmin

2 = 730 µs, Tmin
4 = 1320

µs, Tmin
6 = 1050 µs, Tmin

8 = 2140 µs, and Tmin
10 = 1720 µs.

Then, according to Eq. (10), we can obtain the tightest
message arrival patterns of four messages as follows (for
simplicity, we only list the first 4 in-gateway arrival instants
for each message).























Pattern
tight
2 = {0 µs, 730 µs, 1730 µs, 2730 µs}

Pattern
tight
4 = {0 µs, 1320 µs, 3120 µs, 4920 µs}

Pattern
tight
6 = {0 µs, 1050 µs, 2750 µs, 4450 µs}

Pattern
tight
8 = {0 µs, 2140 µs, 5140 µs, 8140 µs}.

According to Theorem 3, when m10 and m2, m4, m6,
m8 simultaneously arrive at the gateway, m10 will generate
the in-gateway worst-case latency. However, the in-gateway
worst-case latency occurring in the above scenario is safe but
pessimistic. The reason is that it is impossible for m10 to
simultaneously arrive at the gateway as any message in m2,
m4, m6, and m8 due to the serial transmission in the e2e&e2g
CAN bus of the source-end subsystem.

Fortunately, since m2, m4, m6, m8 and m10 can be simulta-
neously released in individual source-end ECUs, we can obtain
individual source-end WCRTs of the above messages. That
is, mi,1 (including m2,1, m4,1, m6,1, and m8,1) experiences
source-end WCRT (Rsource

i) in its source-end subsystem, such
that mi,2 (including m2,2, m4,2, m6,2, and m8,2) would
experience WCET (i.e., Ci) in its source-end subsystem.

E. Earliest In-Gateway Arrival Sequence

Definition 8: Earliest in-gateway arrival instant: The
earliest in-gateway arrival instant of high-priority job mj,1

is the instant relative to the in-gateway arrival instant of the
analyzed message mi, and is calculated by

RIij(1) = Ci +
∑

mk∈hpsource-GW(mj)

Ck, (11)

where hpsource-GW(mi) represents the source-end high-priority
gateway messages of mi.

Definition 8 indicates that the earliest in-gateway arrival
instant is relative to the in-gateway arrival instant of the
analyzed message. In the motivating example, we can get
the earliest in-gateway arrival instant of mj,1 (including m2,1,
m4,1, m6,1, and m8,1) through Eq. (11). For instance, when
m10 (the analyzed message) arrives at the gateway at instant
of 0, the earliest in-gateway arrival instants of the first jobs
m2,1, m4,1, m6,1, and m8,1 are 210 µs, 420 µs, 590 µs, and
800 µs, respectively, as shown in Fig. 4.

m2,1m4,1m6,1m8,1

210 s 170 s 210 s

m10

m10 is

released in

the gateway

m2,1 is

released in

the gateway

m4,1 is

released in

the gateway

m6,1 is

released in

the gateway

m8,1 is

released in

the gateway

270 s 210 s

Fig. 4: Earliest in-gateway arrival instants of high-priority gateway messages when m10

arrivals at the gateway at instant of 0.

Note that due to the bus competition among multiple mes-
sages, the earliest in-gateway arrival instants of some messages
do not necessarily actually exist. For instance, m2,2 may be
transmitted earlier than m4,1 (i.e., m4,1 may be continuously
interfered by m2,1 and m2,2); therefore, the earliest in-gateway
arrival instant is conservative.

Combining Eqs. (10) and (11), we can obtain the earliest
in-gateway arrival instants of mj’s multiple jobs shown in Eq.
(12) (for simplicity, we only list first 4 arrival instants of each
message).

RI
i
j =







































































RI
i
j(1) = Ci +

∑

mk∈hpsource-GW(mj)

Ck ,

RI
i
j(2) = Ci +

∑

mk∈hpsource-GW(mj)

Ck + T
min
j ,

RI
i
j(3) = Ci +

∑

mk∈hpsource-GW(mj)

Ck + T
min
j + Tj ,

RI
i
j(4) = Ci +

∑

mk∈hpsource-GW(mj)

Ck + T
min
j + 2× Tj .







































































(12)

On the basis of Eq. (12), when m10 arrives at the gateway at
instant 0, the earliest in-gateway arrival instants of messages
m2,1, m4,1, m6,1, and m8,1 are listed in Eq. (13).



















RI10
2 = {210 µs, 940 µs, 1940 µs, 2940 µs}

RI10
4 = {420 µs, 1740 µs, 3540 µs, 5340 µs}

RI10
6 = {590 µs, 1640 µs, 3340 µs, 5040 µs}

RI10
8 = {800 µs, 2940 µs, 5940 µs, 8940 µs}.

(13)

Definition 9: Earliest in-gateway arrival sequence: The
earliest in-gateway arrival sequence for the analyzed messages

consists of earliest in-gateway arrival instant of the 1st job of
each high-priority message according to the ascending order
of priority value.

Definition 9 bounds how the earliest jobs of all messages
arrive. Similar to the earliest in-gateway arrival instant, the
earliest in-gateway arrival sequence may not be real but
conservative. Based on the fact that m2, m4, m6, and m8 are
released simultaneously in the ECU of the source-end CAN
subsystem, the earliest in-gateway arrival sequence for m10 is
(m2,1, m4,1, m6,1, m8,1), as shown in Fig. 4.

Theorem 4: If high-priority gateway messages arrive at the
gateway with the individual tightest message arrival patterns
and the earliest in-gateway arrival sequence, then the worst-
case latency for the low-priority analyzed message is gener-
ated.

Proof. First, according to Eq. (9), the blocking to mi is
Bi

GW = max
h∈psource-GW(i)

Ch , which is larger than or equal to any

WCTT of high-priority messages; therefore, all the jobs in the
earliest in-gateway arrival sequence can cause inference to mi.
For instance, sequence (m2,1, m4,1, m6,1, m8,1) can cause
successive inference to m10. Second, according to Theorem
2, the tightest message arrival pattern of each message can
ensure that the number of in-gateway arrival jobs of message in
any time interval is the maximum compared with other actual
existing patterns of this message. Therefore, the individual
tightest message arrival patterns and the earliest in-gateway
arrival sequence can generate worst-case latency for the low-
priority analyzed message, and this worst-case latency is larger
than or equal to awaiting times of all other actual existing
patterns. �

Note that the worst-case latency obtained through Theorem
4 is not necessarily a real worst-case latency, only if both
individual tightest message arrival patterns and the earliest in-
gateway arrival sequence are real. Regardless of whether the
obtained worst-case latency actually exists, it is greater than
or equal to all actual awaiting times.

V. POINTER REACHABILITY EXPLORATION

After the arrival of the messages at the gateway having been
bounded in the previous section, it is used by PRE to derive the
interfering message jobs and corresponding worst-case latency
to the analyzed message in this section.

A. The PRE Algorithm

We propose a new method called PRE to calculate the
in-gateway worst-case latency for a gateway message. The
algorithm description is shown in Algorithm 1.

For the current analyzed message, each high-priority mes-
sage has an exploratory pointer to its first job. The idea of
PRE is to iteratively move all pointers forward to individual
next jobs until the interference from all high-priority messages
to the analyzed message is unreachable. We explain the PRE
algorithm with an example.

(1) Lines 1–4 aim at initializing the job pointer (i.e.,
pointerj) and interference flag (i.e., if lagj) for each
source-end high-priority gateway message mj (mj ∈

Algorithm 1 The PRE Algorithm

1: for (mj ∈ hpsource-GW(mi)) do

2: pointerj ← 1;
3: iflagj ← false;
4: end for

5: BGW
i ← max

h∈psource-GW(i)
Ch;

6: LGW
i ← BGW

i ;
7: while (true) do

8: for (mj ∈ hpsource-GW(mi)) do

9: if (RIi
j(pointerj) 6 LGW

i) then

10: LGW
i ← LGW

i + Cj ;
11: pointerj++;
12: iflagj ← true;
13: else

14: iflagj ← false;
15: end if

16: end for

17: iflag_count ← 0;
18: for (mj ∈ hpsource-GW(mi)) do

19: if (iflagj == true) then

20: iflag_false_count++;
21: end if

22: end for

23: if (iflag_false_count == 0) then

24: return LGW
i ;

25: end if

26: end while

hpsource-GW(mi)). pointerj always points to the latest in-
gateway arrival job of mj that has caused inference with mi,
whereas if lagj continuously determines whether the jobs in
mj can still interfere with mi. For instance, when analyzing
m10, we have pointer2 = 1, pointer4 = 1, pointer6 = 1, and
pointer8 = 1; if lag2 = false, if lag4 = false, if lag6 = false,
and if lag8 = false.

(2) In Line 5, we obtain the in-gateway blocking time of
mi. When the analyzed message mi arrives at the gateway at
instant of 0, the g2e bus of the destination-end subsystem is
just occupied and transmitted by another message mh (mh ∈
spsource-GW(mi)), which is any message from the same source-
end subsystem as mi. Therefore, the in-gateway blocking time
of mi is

BGW
i = max

mh∈spsource-GW(mi)
Ch.

Line 6 sets the initial awaiting time (i.e., LGW
i) of mi as

BGW
i . For instance, the in-gateway blocking time and the initial

awaiting time of m10 is 270 µs.
(3) Lines 7 - 26 are the core of the algorithm. In the while

loop, we have two for loops in series.
Step 1: In the 1st for loop (Lines 8 - 16), each

source-end high-priority gateway message mj (mj ∈
hpsource-GW(mi)) is judged whether its pointerj th arrival in-
stant (i.e., RIij(pointerj)) pointed by pointerj is within
current interfering latency (i.e., LGW

i). If the result is true,
it indicates that the job pointed by pointerj can cause in-
terference to mi, thereby increasing the wsource

i value by Cj ;
and pointerj points to the next job (i.e., pointerj ++), and
the interference flag (i.e., if lagj) is set to true; otherwise, we
merely set if lagj to false.

Step 2: The 2nd for loop (Lines 18 - 22) counts the
number of source-end high-priority messages that interfere
with mi in the 1st for loop, and the number is recorded by
if lag_false_count.

Step 3: In Lines 23 - 25, if if lag_false_count is equal to
0 (i.e., all source-end high-priority messages would not cause
interference with mi), then we set the in-gateway worst-case
latency as wsource

i + Ci, and the algorithm returns; otherwise,
the while loop continues.

B. Motivating Example through PRE

For instance, when analyzing m10, the job pointer (i.e.,
pointerj) and interference flag (i.e., if lagj) values of each
source-end high-priority gateway message will change, as
shown in Fig. 5.

2

4

6

8

() {210 s, 940 s, 1940 s, 2940 s}

() {420 s, 1740 s, 3540 s, 5340 s}

() {590 s, 1640 s, 3340 s, 5040 s}

() {800 s, 2940 s, 5940 s, 8940 s}

RI m

RI m

RI m

RI m

!
" #"
"
"

#"
$
"
" #
"
"
" #%

pointer2=1,

iflag=true

pointer2=2,

iflag2=true

pointer2=3,

iflag2=false

pointer4=1,

iflag4=true

pointer4=2,

iflag4=false

pointer6=1,

iflag6=true

pointer6=2,

iflag6=false

pointer8=1,

iflag8=true

pointer8=2,

iflag8=false

Fig. 5: Job pointer (i.e., pointerj) and interference flag (i.e., iflagj) values change
for each source-end high-priority gateway message.

In Fig. 5, when pointer2 = 3, pointer4 = 2, pointer6
= 2, and pointer8 = 2, we have if lag2 = false, if lag4
= false, if lag6 = false, and if lag8 = false. Therefore,
if lag_false_count is equal to 0 in this case, and the current
awaiting time of m10 is gradually increased by adding 210
µs (C2), 170 µs (C4), 210 µs (C6), 270 µs (C8), and 210 µs
(C2). That is, wsource

10 is increased to

LGW
10 = B10 + C2 + C4 + C6 + C8 + C2

= 270 + 210 + 170 + 210 + 270 + 210

= 1340 µs.

As shown in Table II, the in-gateway deadline of m10 is 1300
µs (calculated by Eq. (5)). Therefore, the in-gateway worst-
case latency of m10 exceeds its in-gateway deadline, such that
m10 may violate its end-to-end deadline during transmission.

TABLE II: In-gateway worst-case latencies of messages in the motivating example
through PRE and TPA.

mi DGW
i

PRE

(Algorithm 1)

TPA

(Algorithm 2)

Priority LGW
i

schedulable ? Priority LGW
i

schedulable ?
m2 310 µs 2 270 µs yes 2 270 µs yes
m4 980 µs 4 480 µs yes 6 690 µs yes
m6 630 µs 6 650 µs no 4 480 µs yes
m8 1600 µs 8 860 µs yes 10 1280 µs yes
m10 1300 µs 10 1340 µs no 8 860 µs yes

Let Msource-GW(CANx) represent all source-end gate-
way messages sent from subsystem CANx, and let
M schedulable

source-GW (CANx) represent the source-end schedulable gate-
way messages sent from subsystem CANx. Then, the accep-

tance ratio of Msource-GW(CAN1) messages (including m2,
m4, m6, m8, and m10) through PRE is

AR(Msource-GW(CAN1)) =
|M schedulable

source-GW (CAN1)|

|Msource-GW(CAN1)|
=

3

5
= 0.6.

VI. TARGETED PRIORITY ASSIGNMENT

Considering that the worst-case latencies of gateway mes-
sages obtained by PRE may exceed their individual in-gateway
deadlines, priority re-assignments of messages are proposed to
enhance the schedulability in this section.

A. The TPA Algorithm

The Optimal Priority Assignment (OPA) method proposed
by Audsley [13] can address the problem of the priority re-
assignments of messages. However, OPA cannot be applied to
the schedulability enhancement for the gateway. First, OPA
is an arbitrary priority assignment, which means that the
priority of each message can be arbitrarily changed as long
as it is schedulable. Second, OPA is terminated when facing
unschedulability.

Since PRE has determined which messages are unschedula-
ble, we propose the TPA algorithm that targets at the priorities
assigned at the CAN bus and runs a reordering at the gateway
to enhance the schedulability. The algorithm description of
TPA is shown in Algorithm 2.

Algorithm 2 The TPA Algorithm

1: remaining_message_set ← Msource-GW(CANx);
2: remaining_priority_set ← Msource-GW(CANx).priority();
3: schedulable_message_set ← NULL;
4: unschedulable_message_set ← NULL;
5: Sort the messages in remaining_message_set according to their the descend-

ing order of identifiers;
6: while (remaining_priority_set is not NULL) do

7: priority ← remaining_priority_set.get();
8: mi ← remaining_message_set.get();
9: if (priority == i&&LGW

i 6 DGW
i) then

10: remaining_priority_set.remove(priority);
11: remaining_message_set.remove(mi);
12: schedulable_message_set.add(mi);
13: continue;
14: else

15: Boolean schedulable = false;
16: for (mj ∈ remaining_message_set && i! = j) do

17: Assume that mj has the lowest priority in the
remaining_message_set;

18: Calculate LGW
j through PRE (Algorithm 1);

19: if (LGW
j 6 DGW

j) then

20: schedulable = true;
21: Assign priority to mj ;
22: remaining_priority_set.remove(priority);
23: remaining_message_set.remove(mj);
24: schedulable_message_set.add(mj);
25: break;
26: end if

27: end for

28: if (schedulable == false) then

29: Give up the real-time guarantee for mi by setting the lowest priority to
mi;

30: remaining_priority_set.remove(priority);
31: remaining_message_set.remove(mi);
32: unschedulable_message_set.add(mi);
33: end if

34: end if

35: end while

TPA tries to make unschedulable messages schedulable
with limited priority reordering, and gives up (assigning the

lowest priority) if a message inevitably compromises the
schedulability of the entire system. The details are below.

(1) Lines 1 - 4 provide four sets, including 1)
remaining_message_set contains messages that are not
determined through TPA; 2) remaining_priority_set con-
tains priorities that are not determined through TPA; 3)
schedulable_message_set contains messages that have al-
ready been determined to be schedulable through TPA;
and 4) unschedulable_message_set contains messages
that have already been determined to be unschedulable
by TPA. In the initial state, remaining_message_set
is equal to Msource-GW(CANx), and the priorities in
remaining_priority_set corresponds to the messages in
remaining_message_set. Line 5 sorts the messages in
remaining_message_set according to the descending order
of identifiers. For instance, considering the gateway messages
in Msource-GW(CAN1) is (m2, m4, m6, m8, m10), we have
remaining_message_set = (m10, m8, m6, m4, m2) and
remaining_priority_set = (10, 8, 6, 4, 2).

(2) Lines 6 - 34 loop all priorities in
remaining_priority_set. For instance, priories 10, 8,
6, 4, and 2 in remaining_priority_set are accessed once,
as shown in the first column of Table III.

Step (1): Lines 7 and 8 get a priority and
a message mi from remaining_priority_set and
remaining_message_set, respectively. Considering the
motivating example, TPA first get priority 10 and m10 from
remaining_priority_set and remaining_message_set,
respectively.

Step (2): If priority == i and mi’s in-gateway worst-case
latency is within its in-gateway deadline (i.e., LGW

i 6 DGW
i),

then priority re-assignment is not needed and TPA just re-
moves mi from remaining_message_set and adds it to the
schedulable_message_set (Line 9 - 14).

Step (3): If Step (2) is not met, then TPA tries to find a new
message mj from remaining_message_set, and assumes
mj to have the lowest priority in remaining_message_set
until mj’s in-gateway worst-case latency is within its in-
gateway deadline (i.e., LGW

j 6 DGW
j); correspondingly, TPA

removes mj from remaining_message_set and adds it to
the schedulable_message_set (Lines 16 - 27). Considering
the motivating example, priority 10 cannot be assigned to
m10, because LGW

10 exceeds DGW
10 shown in Table II; therefore,

priority 10 is re-assigned to m8 because LGW
8 6 DGW

8 (i.e.,
860 µs < 1,300 µs), as shown in Table III. In short, we choose
the lowest-priority message in remaining_message_set. We
hope this lowest-priority message satisfies its deadline if the
remaining lowest priority is assigned to it. If the deadline is
not satisfied, we look for another low-priority message that
can take this remaining lowest priority.

Step (4): If Step (3) does not find the new message
mj , then TPA gives up the real-time guarantee for mi by
setting the lowest priority to mi; correspondingly, TPA re-
moves mi from remaining_message_set and adds it to the
unschedulable_message_set (Lines 28 - 33).

TABLE III: Process of improving acceptance ratio through TPA for the motivating
example.

Assigned
priority Remaining messages

Corresponding
message

In-gateway
worst-case latency

In-gateway
deadline

10 m10, m8, m6, m4, m2 m8 1,280 µs 1,660 µs
8 m10, m6, m4, m2 m10 860 µs 1,300 µs
6 m6, m4, m2 m4 690 µs 980 µs
4 m6, m2 m6 480 µs 630µs
2 m2 m2 270 µs 310 µs

B. Motivating Example through TPA

After the priority 10 is assigned to m8, the motivating
example is continued in terms of Table III.

(1) We consider the priority 8. TPA tries to find a new
message from remaining_message_set = (m10, m6, m4,
m2). Given that m10’s in-gateway worst-case latency is within
its in-gateway deadline, the priority 8 is assigned to m10, and
the remaining_message_set is updated to = (m6, m4, m2).

(2) We further consider the priority 6. TPA tries to find
a new message from remaining_message_set = (m6, m4,
m2). Given that m4’s in-gateway worst-case latency is within
its in-gateway deadline, the priority 6 is assigned to m4, and
the remaining_message_set is updated to = (m6, m2).

(3) We further consider the priority 4. TPA tries to find
a new message from remaining_message_set = (m6, m2).
Given that m6’s in-gateway worst-case latency is within its
in-gateway deadline, the priority 4 is assigned to m6, and the
remaining_message_set is updated to = (m2).

(4) We further consider the priority 2, which is equal to
the identifier of m2 and m2’s in-gateway worst-case latency
is within its in-gateway deadline, priority re-assignment is not
needed.

Finally, all the five messages in seqsource-GW(CAN1) = (m2,
m6, m4, m10, m8) have met their individual in-gateway
deadlines through TPA. Therefore, the acceptance ratio of
Msource-GW(CAN1) messages (including m2, m4, m6, m8, and
m10) through TPA (Algorithm 2) is

AR(Msource-GW(CAN1)) =
|M schedulable

source-GW (CAN1)|

|Msource-GW(CAN1)|
=

5

5
= 1.0.

For the motivating example, the detailed result comparison
between PRE and TPA is shown in Table II.

VII. PERFORMANCE EVALUATION

A. Real-Life CAN Message Set with 64 Messages

In this section, we adopt a real-life CAN message set with
64 messages from an automotive manufacturer. The priority,
WCET, and deadline values of each message in the real-life
CAN message set are shown in Table IV. These 64 original
messages are collected from a separate subsystem and are not
gateway messages. For the purposes of this study, we treat
these 64 messages as gateway messages, which are all sent
from the CAN1 subsystem to the CAN2 subsystem.

(1) In-gateway deadlines of gateway messages.

Through the introduction of Section III.C, we can easily
obtain the source-end WCRT (Rsource

i) and destination-end

TABLE IV: Real-life CAN message set with 64 messages.

mi Pi Ci Ti (Di) mi Pi Ci Ti (Di)
m1 1 230 µs 10,000 µs m33 33 270 µs 100,000 µs
m2 2 210 µs 10,000 µs m34 34 230 µs 100,000 µs
m3 3 250 µs 10,000 µs m35 35 190 µs 200,000 µs
m4 4 170 µs 10,000 µs m36 36 210 µs 1,000,000 µs
m5 5 250 µs 10,000 µs m37 37 250 µs 12,000 µs
m6 6 190 µs 25,000 µs m38 38 150 µs 100,000 µs
m7 7 270 µs 100,000 µs m39 39 210 µs 1,000,000 µs
m8 8 270 µs 100,000 µs m40 40 150 µs 15,000 µs
m9 9 270 µs 100,000 µs m41 41 270 µs 15,000 µs
m10 10 250 µs 100,000 µs m42 42 150 µs 14,000 µs
m11 11 210 µs 1,000,000 µs m43 43 150 µs 20,000 µs
m12 12 270 µs 100000 µs m44 44 150 µs 20,000 µs
m13 13 270 µs 100,000 µs m45 45 210 µs 20,000 µs
m14 14 270 µs 200,000 µs m46 46 270 µs 50,000 µs
m15 15 210 µs 1,000,000 µs m47 47 270 µs 50,000 µs
m16 16 270 µs 10,000 µs m48 48 270 µs 100,000 µs
m17 17 250 µs 10,000 µs m49 49 190 µs 100,000 µs
m18 18 270 µs 100,000 µs m50 50 190 µs 100,000 µs
m19 19 270 µs 100,000 µs m51 51 210 µs 1,000,000 µs
m20 20 270 µs 100,000 µs m52 52 150 µs 25,000 µs
m21 21 170 µs 100,000 µs m53 53 190 µs 100,000 µs
m22 22 210 µs 1,000,000 µs m54 54 210 µs 1,000,000 µs
m23 23 270 µs 10,000 µs m55 55 150 µs 25,000 µs
m24 24 170 µs 100,000 µs m56 56 210 µs 31,000 µs
m25 25 270 µs 100,000 µs m57 57 170 µs 32,000 µs
m26 26 270 µs 100,000 µs m58 58 210 µs 33,000 µs
m27 27 210 µs 100,000 µs m59 59 190 µs 33,000 µs
m28 28 210 µs 1,000,000 µs m60 60 210 µs 33,000 µs
m29 29 270 µs 100,000 µs m61 61 270 µs 34,000 µs
m30 30 270 µs 100,000 µs m62 62 250 µs 34,000 µs
m31 31 270 µs 100,000 µs m63 63 210 µs 36,000 µs
m32 32 210 µs 1,000,000 µs m64 64 170 µs 36,000 µs

WCRT (Rdest
i) of each message, thereby getting its in-gateway

deadline (DGW
i) based on Eq. (5). The results are shown in

Table V.
(2) In-gateway worst-case latency analysis through PRE.

Through the Davis’ timing analysis (Davis for short) [8] and
PRE, we can obtain the worst-case latency of each message,
as shown in Table V. By comparing the in-gateway deadline
and worst-case latency of each message, we find that 19
messages do not meet their individual in-gateway deadlines
(i.e., unschedulable) through the Davis’ timing analysis, such
that the acceptance ratio is 19/64= 70.31%. Compared with
the Davis’ timing analysis, 10 messages (including m23,
m37, m40, m41, m42, m43, m44, m45, m52, and m55) are
unschedulable through PRE, such that the acceptance ratio is
increased to 54/64= 84.38%.

The fundamental reasons why the in-gateway worst-case
latencies obtained through PRE are much tighter than the
Davis’ timing analysis are: 1) PRE obtains the earliest in-
gateway arrival instants of each gateway message as much as
possible based on the actual situation inside the gateway; 2)
PRE does not treat the minimum in-gateway inter-arrival time
of each message as its in-gateway period.

(3) Acceptance ratio improvement through TPA.

To improve the acceptance ratio, we attempt to re-assign
the priorities of these messages by adopting DMPO (Deadline
Monotonic Priority Ordering) [12] and TPA, respectively.
DMPO assigns higher priorities to messages with shorter in-

gateway deadlines in this paper. The in-gateway deadlines of
64 messages have been obtained and are shown in Table V.

The priorities of 46 messages are re-assigned through TPA,
and the priorities of messages m56 - m64 and m1 - m9

are not changed; the reason is that the in-gateway worst-
case latencies of these messages satisfy the condition that
doe not require priority re-assignment (i.e., Line 9 - 13 of
Algorithm 1). This phenomenon reflects the targeted advantage
of TPA. As a comparison, the priorities of all 64 messages
are re-assigned through DMPO. Finally, 64 messages are all
schedulable through DMPO or TPA, such that the acceptance
rate is increased from 84.375% (through PRE) to 100%.

(4) Gateway prototype platform.

To illustrate the practical applicability of PRE and TPA
in the actual platform, we implement the gateway prototype
platform (Fig. 6), which uses STM32F407VET6 [19] provided
by STMicroelectronics as the motherboard of both ECUs and
the gateway. In the gateway prototype platform, PRE and TPA
are developed for dynamic use to improve the acceptance
ratio and can also be deployed statically to provide timing
guarantees. In Fig. 6, ECU1 and ECU2 are message senders
in the source-end CAN subsystem, and ECU3 is the message
receiver in the destination-end subsystem. The collected data
are uploaded to the host computer through the serial port
conversion module.

Fig. 6: Gateway prototype platform.

Fig. 7: Message information from the receiving ECU in the gateway prototype platform.

TABLE V: In-gateway deadlines, worst-case latencies, and acceptance ratios of 64 messages.

mi Pi DGW
i

Davis [8] PRE
mi Pi DGW

i

Davis [8] PRE
LGW
i

Schedulable ? LGW
i

Schedulable ? LGW
i

Schedulable ? LGW
i

Schedulable ?
m1 1 9,270 µs 270 µs yes 270 µs yes m33 33 91,470µs 7,990 µs yes 7,990 µs yes
m2 2 9,080 µs 500 µs yes 500 µs yes m34 34 91,280 µs 8,260 µs yes 500 µs yes
m3 3 8,790 µs 710 µs yes 710 µs yes m35 35 191,130 µs 8,490 µs yes 8,490 µs yes
m4 4 8,700 µs 960 µs yes 960 µs yes m36 36 990,900 µs 8,680 µs yes 8,680 µs yes
m5 5 8,370 µs 1,130 µs yes 1,130 µs yes m37 37 2,610 µs 8,890 µs no 8,890 µs no

m6 6 23,240 µs 1,380 µs yes 1,380 µs yes m38 38 90,560 µs 9,140 µs yes 9,140 µs yes
m7 7 97,890 µs 1,570 µs yes 9,140 µs yes m39 39 990,290 µs 9,290 µs yes 9,290 µs yes
m8 8 97,620 µs 1,840 µs yes 1,840 µs yes m40 40 5,200 µs 9,500 µs no 9,500 µs no

m9 9 97,350 µs 2,110 µs yes 2,110 µs yes m41 41 4,810 µs 9,650 µs no 9,650 µs no

m10 10 97,120 µs 2,380 µs yes 2,380 µs yes m42 42 3,780 µs 11,820 µs no 11,820 µs no

m11 11 996,950 µs 2,630 µs yes 2,630 µs yes m43 43 7,730 µs 12,220 µs no 12,220 µs no

m12 12 96,620 µs 2,840 µs yes 2,840 µs yes m44 44 7,330 µs 12,370 µs no 12,370 µs no

m13 13 96,350 µs 3,110 µs yes 3,110 µs yes m45 45 7,060 µs 12,520 µs no 12,520 µs no

m14 14 196,080 µs 3,380 µs yes 3,380 µs yes m46 46 36,730µs 12,730 µs yes 12,730 µs yes
m15 15 995,930 µs 3,650 µs yes 3,650 µs yes m47 47 36,460 µs 13,000 µs yes 13,000 µs yes
m16 16 5,600 µs 3,860 µs yes 3,860 µs yes m48 48 86,190 µs 13,270 µs yes 13,270 µs yes
m17 17 5,370 µs 4,130 µs yes 13,270 µs yes m49 49 86,080 µs 13,540 µs yes 13,540 µs yes
m18 18 95,080 µs 4,380 µs yes 4,380 µs yes m50 50 85,890 µs 13,730 µs yes 13,730 µs yes
m19 19 94,810 µs 4,650 µs yes 4,650 µs yes m51 51 985,660 µs 13,920 µs yes 13,920 µs yes
m20 20 94,540 µs 4,920 µs yes 4,920 µs yes m52 52 10,420 µs 14,280 µs no 14,280 µs no

m21 21 94,470 µs 5,190 µs yes 5,190 µs yes m53 53 85,190 µs 14,700 µs yes 14,430 µs yes
m22 22 994,220 µs 5,360 µs yes 5,360 µs yes m54 54 984,960 µs 14,890 µs yes 14,620 µs yes
m23 23 3,890 µs 5,570 µs no 5,570 µs no m55 55 9,870 µs 16,290 µs no 14,830 µs no

m24 24 93,820 µs 5,840 µs yes 5,840 µs yes m56 56 15,600 µs 16,440 µs no 15,400 µs yes
m25 25 93,450 µs 6,010 µs yes 6,010 µs yes m57 57 16,050 µs 16,650µs no 15,610 µs yes
m26 26 93,180 µs 6,280µs yes 6,280µs yes m58 58 16,800 µs 16,820 µs no 15,780 µs yes
m27 27 93,030 µs 6,550 µs yes 15,780 µs yes m59 59 16,630 µs 17,030 µs no 15,990 µs yes
m28 28 992,820 µs 6,760 µs yes 6,760 µs yes m60 60 16,400 µs 17,220 µs no 16,180 µs yes
m29 29 92,490 µs 6,970 µs yes 6,970 µs yes m61 61 17,070 µs 17,430 µs no 16,390 µs yes
m30 30 92,220 µs 7,240 µs yes 7,240 µs yes m62 62 16,860µs 17,700 µs no 16,660 µs yes
m31 31 91,950 µs 7,510 µs yes 16,660 µs yes m63 63 18,730 µs 20,240 µs no 16,910 µs yes
m32 32 991,800 µs 7,780 µs yes 7,780 µs yes m64 64 18,640 µs 20,870 µs no 17,120 µs yes

Fig. 7 shows the message information from the receiving
ECU in the gateway prototype platform. The time unit of each
timer is 200 µs. The timers of the sending ECUs and the
receiving ECU are incremented at the same frequency and
synchronized after the system starts. The values of 1st column
are the new priorities of messages; note that the ID of each
message cannot be changed but its priority may be modified
according to TPA when the message arrives at the gateway.
The values of the 5th column are end-to-end response time
values (unit: 200 µs) of messages. By observing the data, we
find that there are no message distortions in the two sending
ECUs of the message set. That is, each message job sent by
ECU1 and ECU2 can ensure that the message is transferred
safely to ECU3. In other words, the message set is actually
schedulable in the gateway.

B. Scalable CAN Message Sets with 96 and 128 Messages

In practice, 64 messages for the inter-domain communica-
tion (across the gateway) are quite large. We further consider
larger-scale CAN message sets in this work to show scalability.
We directly copy top 32 and all 64 messages, respectively, in
Table IV to form two new message sets. The only change
in the new message set is the priority (ID) of each message
starting from 65 and ending at 96 as well as starting from 65
and ending at 128. Finally, we form two scalable large-scale
message sets with 96 and 128 messages, respectively.

(1) In-gateway worst-case latency analysis through PRE.

Table VI shows the acceptance ratios through Davis’ timing
analysis and PRE on different scales. For the message set
with 96 messages, there are 61 messages do not satisfy their
individual in-gateway deadlines through the Davis’ timing
analysis, such that the acceptance ratio is merely (96 - 61)/96
≈ 35.46%. The number of messages that misses deadlines
is reduced to 6 through PRE; and the acceptance ratio is
increased to (96 - 28)/96 ≈ 70.83%, which exceeds Davis’
timing analysis by at least 30%. For the message set with
128 messages, the acceptance ratio through PRE still exceeds
Davis’ timing analysis by 30%.

TABLE VI: Acceptance ratios through four methods in different scales.

Scale Davis [8] PRE DBMP [12] TPA
64 messages 70.31% 84.38% 100% 100%
96 messages 36.46% 70.83% 68.75% 93.88%

128 messages 35.16% 65.63% 62.5% 78.13%

(2) Acceptance ratio improvement through TPA.

Table VI shows that TPA can improve the acceptance ratio
by 23% (message set with 96 messages) and 13% (message
set with 128 messages) on the basis of PRE. However, DBMP
does not achieve improvement in acceptance ratio, but a slight
decrease in acceptance ratio. This unexpected result indicates
that DBMP affects on the growth of the size of the message
set negatively. According to the analysis in [20], DMPO is

optimal under the idealized message model, including that
the message trigger mechanism must be strictly periodic,
the deadline must be less than or equal to the period, and
the message scheduling paradigm must be preemptive, etc.
However, the trigger mechanism is not periodic, the deadline
is arbitrary, and the scheduling paradigm is non-preemptive in
the in-gateway; therefore, TPA performs better than DMPO in
acceptance ratio improvement for the real-time gateway.

VIII. CONCLUSION

This paper develops a real-time CAN-CAN gateway with
tighter worst-case latency analysis. First, our presented gate-
way architecture facilitates real-time analysis, which is differ-
ent from the existing commercial gateways. Second, we obtain
the safe and tight in-gateway worst-case latencies for messages
through PRE. Third, we improve the acceptance ratio of mes-
sage sets through TPA. Finally, the gateway prototype platform
has been implemented using STM32F407VET6 provided by
STMicroelectronics; we adopt the real-life and scalable CAN
message sets to analyze the in-gateway worst-case latency and
further improve the in-gateway acceptance ratio. The gateway
can be easily extended to support multiple CAN subsystems
if needed, because the awaiting priority queues in the gateway
architecture are created in memory and can be dynamically
adjusted in size.

REFERENCES

[1] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and

using the Controller Area Network communication protocol: theory and

practice. Springer Science & Business Media, Jan. 2012.
[2] J. Taube, F. Hartwich, and H. Beikirch, “Comparison of can gateway

modules for automotive and industrial control applications,” in Proceed-

ings of the 10th international CAN Conference, 2005.
[3] J. Sommer and R. Blind, “Optimized resource dimensioning in an

embedded can-can gateway,” in Proceedings of the International Sym-

posium on Industrial Embedded Systems (SIES’07). IEEE, 2007, pp.
55–62.

[4] M. Sojka, P. Píša, O. Špinka, and Z. Hanzálek, “Measurement au-
tomation and result processing in timing analysis of a linux-based
can-to-can gateway,” in Proceedings of the IEEE 6th International

Conference on Intelligent Data Acquisition and Advanced Computing

Systems (IDAACS’11), vol. 2. IEEE, Sep. 2011, pp. 963–968.
[5] E. Azketa, J. J. Gutiérrez, J. C. Palencia, M. G. Harbour, L. Almeida,

and M. Marcos, “Schedulability analysis of multi-packet messages
in segmented can,” in Proceedings of the IEEE 17th Conference on

Emerging Technologies and Factory Automation (ETFA’12). IEEE,
2012, pp. 1–8.

[6] T. Wunsche, “Can/can-gateway cg-arm7/rmd user manual,” Feb.
2018. [Online]. Available: https://www.traquair.com/pdfs/ems/manuals/
cg-arm7-rmd_dr2_5.pdf

[7] “J1939 can gateway,” 2016. [Online]. Available: https://www.
electronicdesigninc.com/products/j1939-devices/j1939-can-gateway

[8] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, Apr. 2007.

[9] Y. Chen, R. Kurachi, G. Zeng, and H. Takada, “The worst-case response
time analysis for fifo-based offset assigned can messages,” Journal of

Information Processing, vol. 20, no. 2, pp. 451–462, May 2012.
[10] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Schedulability

analysis for controller area network (can) with fifo queues priority
queues and gateways,” Real-Time Systems, vol. 49, no. 1, pp. 73–116,
Jan. 2013.

[11] S. Mubeen, J. Makiturja, and M. Sjodin, “Extending worst case
response-time analysis for mixed messages in controller area network
with priority and fifo queues,” IEEE Access, vol. 2, pp. 365–380, Apr.
2014.

[12] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237–250, Dec. 1982.

[13] N. C. Audsley, “On priority assignment in fixed priority scheduling,”
Information Processing Letters, vol. 79, no. 1, pp. 39–44, May 2001.

[14] S. Lee, D. Lee, M. Kim, and K. Lee, “Traffic-balancing algorithm for
can systems with dual communication channels to enhance the network
capacity,” International Journal of Automotive Technology, vol. 11, no. 4,
pp. 525–531, Aug. 2010.

[15] G. Xie, G. Zeng, R. Kurachi, H. Takada, Z. Li, R. Li, and K. Li, “Wcrt
analysis of can messages in gateway-integrated in-vehicle networks,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9623–
9637, Nov. 2017.

[16] J. Rufino, “Redundant can architectures for dependable communication,”
Technical Report CSTC Technical Report RT-98-02, 1998.

[17] H. Hilmer, H. Kochs, and E. Dittmar, “A can-based architecture for
highly reliable communication systems,” in Proc. Fifth CAN Conf, 1998,
pp. 6–10.

[18] P. Drazdil, “Amis-42700/amis-42770-redundant bus connection,” SAE
Technical Paper, Tech. Rep., 2005. [Online]. Available: https:
//www.onsemi.com/pub/Collateral/AND8348-D.PDF

[19] “Stm32f407ve,” 2020. [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32f407ve.html

[20] S. Zhao, W. Chang, R. Wei, W. Liu, N. Guan, A. Burns, and
A. Wellings, “Priority assignment on partitioned multiprocessor sys-
tems with shared resources,” IEEE Transactions on Computers, DOI:
10.1109/TC.2020.3000051, June 2020.

	Introduction
	Related Work
	Gateway Architecture and Models
	Gateway Architecture
	Message Model and Classification
	WCRTs of Non-Gateway Messages
	In-Gateway Worst-Case Latency
	In-Gateway Deadline

	Bounding Arrival of Messages
	Minimum In-Gateway Inter-Arrival Time
	Pessimistic Worst-Case Latency Analysis
	Tightest Message Arrival Pattern
	Motivating Example
	Earliest In-Gateway Arrival Sequence

	Pointer Reachability Exploration
	The PRE Algorithm
	Motivating Example through PRE

	Targeted Priority Assignment
	The TPA Algorithm
	Motivating Example through TPA

	Performance Evaluation
	Real-Life CAN Message Set with 64 Messages
	Scalable CAN Message Sets with 96 and 128 Messages

	Conclusion
	References

