A Multi-Level DPM Approach for Real-Time DAG
Tasks 1n Heterogeneous Processors

Federico Reghenzani*w, Ashikahmed Bhuiyaniw, William Fornaciari*, Zhishan Guo*
*Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
TESTEC, European Space Agency, Netherlands
iDepartment of Electrical and Computer Engineering, University of Central Florida, USA
§Department of Computer Science, West Chester University of Pennsylvania, USA

Abstract—The modeling and analysis of real-time applications
focus on the worst-case scenario because of their strict timing
requirements. However, many real-time embedded systems in-
clude critical applications requiring not only timing constraints
but also other system limitations, such as energy consumption.
In this paper, we study the energy-aware real-time scheduling of
Directed Acyclic Graph (DAG) tasks. We integrate the Dynamic
Power Management (DPM) policy to reduce the Worst-Case
Energy Consumption (WCEC), which is an essential requirement
for energy-constrained systems. Besides, we extend our analysis
with tasks’ probabilistic information to improve the Average-
Case Energy Consumption (ACEC), which is, instead, a common
non-functional requirement of embedded systems. To verify the
benefits of our approach in terms of reduced energy consumption,
we finally conduct an extensive simulation, followed by an
experimental study on an Odroid-H2 board. Compared to the
state-of-the-art solution, our approach is able to reduce the power
consumption up to 32.1%.

Index Terms—Parallel Real-Time Tasks, Energy Minimization,
Dynamic Power Management, Probabilistic Execution Time.

I. INTRODUCTION

The current trend of embedded systems is to move to-
wards high-performance multi-core architectures, including
multiprocessor System-on-Chip. Many emerging computation-
intensive real-time applications, such as self-driving cars, rely
on parallel processing, i.e., they can simultaneously execute on
multiple processors. The real-time community has studied the
scheduling strategies for different parallel workload models,
such as the Directed Acyclic Graph (DAG) task model [1]-[3],
gang task model [4]-[6], and synchronous task model [7]. The
parallel task model’s fundamental characteristic, i.e., running
simultaneously on multiple processors, is essential to exploit
the computational power of modern multi-core platforms,
including heterogeneous processors. The evolution and per-
vasiveness of Internet-of-Things (IoT) applications increase
this need of powerful embedded systems, but often clash with
energy consumption constraints.

The energy constraints. Many real-time embedded systems
include critical applications requiring not only a predictable
timing behavior, but also to satisfy other system constraints.
Energy consumption is one of them, which might be a non-
functional or functional requirement. In the former case, the

Corresponding author: Zhishan Guo, zsguo@ucf.edu.
= Equal contribution.

design objective is to reduce as much as possible the energy
consumption to avoid the cascade effect on the design of the
overall system. Typical metrics used to evaluate such a require-
ment are the average power consumption and the Average-
Case Energy Consumption (ACEC). The second case, instead,
is the case of energy-constrained systems, typically when the
electrical source is an unstable energy harvester coupled with
an energy-storage device, e.g., a battery. The possibility to
perform battery re-charging during the operation is usually
limited and dependent on external factors. Examples include
satellites, devices located in remote regions, and medical
equipment (e.g., pacemakers). Hence, along with the real-time
performance requirements, such a platform must survive for a
given time frame even in the absence of a stable power source.
The energy-efficient design evolves from a nice-to-have feature
to another critical requirement. In this case, the metric to be
considered is the Worst-Case Energy Consumption (WCEC)
[8]. The main component affecting ACEC and the WCEC is
the processor’s power consumption, which mainly comes from
two sources, i.e., the switching activity and the leakage current.
The former contributes to dynamic power consumption, and
the latter is known as static power consumption. Depending on
the platform, one source may dominate the other, as described
in the next paragraph.

Energy management. There are two approaches for energy
management, i.e., Dynamic Voltage Frequency Scaling (DVFS)
and Dynamic Power Management (DPM). They are commonly
applied to reduce dynamic and static power consumption.
DVFS adjusts the voltage and frequency of a processor during
run-time in order to reduce the switching component of the
power consumption. In the last decade, the dynamic power
consumption was the dominant factor, and hence DVFS has
been emphasized in research [9]. However, there is an ex-
ponential increase in the static power consumption with the
transistor technology shift toward the sub-micron domains. In
such a platform, static power becomes equal to dynamic power
(e.g., in 90 nm high-end processor technology, leakage power
consumes nearly half of the total power dissipation [10]).
With the shift towards more dense manufacturing technologies,
static power could be even more significant than dynamic
power. Hence, the interest on DPM approaches is increasing, in
order to exploit the idle interval and perform processor mode-

switching to reduce leakage power consumption.

Challenges. Applying DPM is a non-trivial problem, espe-
cially in hard real-time context: the transitioning between
different power modes has additional overheads in terms of
energy consumption and latency. Therefore, triggering the low
power mode switch when the processor is idle is beneficial
(for power saving) only if the idle slot is longer than a certain
threshold, known as the break-even time [11]. Therefore, for
DPM to be beneficial, it is critical to efficiently decide whether
or not performing power mode transitioning. This challenge
is amplified when dealing with heterogeneous processors and
parallel DAG tasks. The power mode switch decision can be
taken at run-time, depending on the actual system condition,
while an offline analysis is required to verify the ACEC and/or
WCEC requirements. To perform such analysis we have to rely
on either the probabilistic information of the task execution
time (for ACEC requirements) or the Worst-Case Execution
Time (WCET) information (for WCEC requirements).
Contribution. Considering the parallel DAG task model, we
study how to integrate the DPM approach to reduce CPU!
energy consumption. We calculate the break-even points for
heterogeneous processors and model the idle intervals to find
the best possible task allocation. Our approach also guarantees
hard real-time requirements by taking into account the DPM
overheads, given a statically computed WCET of the tasks,
even in the ACEC optimization case. Specifically, the key
contributions are:

1) We propose a resource management strategy to allocate
the DAG nodes to a set of heterogeneous processors
equipped with DPM and, in particular, with the C-States
mechanism (subsequently explained in Section III-B),
that satisfies the timing requirements.

2) We perform an analysis to find the break-even points
that maximize the benefit of the DPM technique. Such
values are then exploited both online to optimize the
energy at run-time, and offline to compute the WCEC
of the tasks for verifying system requirements.

3) We present a probabilistic analysis to calculate and
optimize the ACEC and verify the common-case energy
requirements, while still guaranteeing the hard timing
constraints.

4) Finally, the proposed techniques are applied in a sim-
ulation environment to test different platform/task set
configurations, followed by a small-scale experimental
evaluation on a real platform, which will strengthen the
results’ confidence.

As later presented in Section II, this work advances the
state-of-the-art by providing comprehensive models and DPM
policies able to exploit modern system properties (heteroge-
neous architectures, multi-level DPM) and different require-

IThere are other components (e.g., I/O devices, cache, system bus) that
contribute to the overall energy consumption. However, in this work, we
focus on CPU, because it is one of the major contributors to the overall
system energy consumption and the more challenging with respect to timing
requirements.

ments (optimization of ACEC or WCEC), while guarantee the
strict hard real-time requirements of parallel DAG tasks.

Paper organization. The rest of the paper is organized as
follows. We present the related work in Section II. Section III
describes all the considered models and the problem, and it
provides to the reader the necessary background. Section IV
presents the computation of the break-even points, which
are used in the subsequent Section V to derive the best
allocation and the WCEC value. This analysis is extended with
probabilistic information to obtain the ACEC in Section VI,
and the simulation and experimental results are respectively
presented in Section VII and Section VIII. We conclude the
paper in Section IX with some future research directions.

II. RELATED WORK

To date, many previous works have studied the en-
ergy/power optimization for sequential (no intra-task paral-
lelism) tasks in both single-core and multi-core platforms
(refer to [12] for a comprehensive survey). However, the
sequential task model does not allow a single task to execute
at multiple cores simultaneously. Optimizing the energy in a
parallel context differs significantly from the sequential tasks’
approaches. Although there is much work proposed on the
RT community that studied the real-time scheduling analysis
of the parallel task model [13]-[19], none of them have
considered the energy-awareness.

To our knowledge, a limited number of works studied
the energy-aware scheduling strategy of the real-time parallel
tasks, especially of the DAG model. Zhu et al. [20], [21] pro-
posed an energy-aware scheduling policy that utilizes slacks
between the inter-dependent sequential tasks. Both the work by
Bhuiyan et al. [22] and Guo et al. [3] considered a simplified
model (e.g., the number of cores are unlimited, the entire
schedule until the hyper-period available a priori) to propose
the energy-aware real-time scheduling of DAG tasks. Based
on the DAG task model, some recent works have studied the
energy-aware scheduling in a homogeneous and heterogeneous
clustered platforms [23]-[25]. The work by Saifullah et al. [26]
studied the CPU energy optimization of the DAG task consid-
ering the federated scheduling policy. Considering the gang
task model in a homogeneous platform, Paolillo et al. [27]
studied the energy-aware scheduling malleable gang jobs. All
these work as above-mentioned restricted their attention to the
DVES policy to reduce energy consumption and do not take
into account the DPM policy.

Gerards et al. [28] studied the energy-aware scheduling of
the frame-based real-time tasks considering both the DPM
and DVFS approach. However, they did not consider the
time overhead of the DPM policy while switching processor
execution mode. Besides, they have restricted their attention
to a single-core platform. Esmaili et al. [29] proposed an
approach for modeling idle intervals in MPSoC platforms.
Huang et al. [30] proposed a DPM policy optimizing the
energy consumption and by using time-triggered scheduling,
but limited the discussion to ACEC and homogeneous proces-
sors. Compared to the previous works, this paper advances the

energy-aware intra-task scheduling by proposing a multi-level
DPM policy in a heterogeneous context, analyzing both the
ACEC and WCEC cases, while guaranteeing hard real-time
requirements.

III. SYSTEM MODEL, PROBLEM STATEMENT AND
BACKGROUND

A. Workload Model

In this work, we consider a set of sporadic parallel DAG
tasks denoted by 7 = {71, 72, ,7,}. For each task 7, € 7
(1 <i < n), the minimum inter-arrival time, relative deadline,
and WCET? are respectively denoted by 7}, D;, and C;. We
assume that each task is an implicit deadline task, i.e., D; =
T;. A task 7; consists of total of /V; nodes, each denoted by
N} <1< N;). Bach node N} has its worst-case execution
requirement C!. If the nodes are executed on a single unit-
speed processor, then 21]11 C! = C;. There exist precedence
constraints among the nodes in a DAG, which is represented
by a directed edge among the nodes. For example, in Figure
1(a), N2 — N3 implies that N can not start execution if
N2 is still executing. In this case, N? is called the parent of
N2, while 2 is a child of N?. A node may have multiple
parents or children, e.g., N;' has two parents (N}, N?), and
N} has two children (N}, V). If a node has multiple parents,
it can start the execution only when all of its parents finish
their execution. The maximum degree of parallelism of task
7; is denoted by M;, which is the maximum number of nodes
that execute in parallel, at any time.

A critical path in a DAG task is a directed path that has
the maximum total execution requirements. The length of
the critical path, L;, is the sum of all the nodes’ execution
requirements on a critical path. For instance, in Figure 1(a),
NP — NP — NP and NP — NP — NP are the critical paths,
and the critical path length is 10. Note that, L; is the minimum
execution time of task 7; even when the task gets exclusive
access in an infinite number of cores. Hence, to ensure that 7;
is schedulable, the condition 7; > L, must hold.

B. Platform and Energy Model

We consider a set of heterogeneous processors
{p1,p2, ..., Pm} (including processors with an homogeneous
architecture but configured with different frequency scaling).
To each processor and workload we statically assign a

CC,! , where Cl

represents the amount of time requ1red to exécute the node
N} on the processor p;. The value Cl depends on the
processor’s architecture and DVFS conﬁguratlon The nodes
are assumed to be profiled on each processor and the Cfﬁj
computed offline. If, for any reason, a node of a task cannot
be executed on a particular processor, then the time is set
to C7, = oo. The processors are capable of performing the
DPM. leferent DPM strategies have been implemented in
the last decades, and the most common is to select between

coefficient called execution speed Sl

2The WCET of the tasks is assumed as computed statically by considering
a single unit-speed processor.

TABLE I
AN EXAMPLE OF C-STATES TYPICAL OF THE INTEL PROCESSORS FROM
THE 2010S ONWARDS. [31].

C-State (S} (S]1 [SH) O3

Core voltage ON ON ON OFF

Core clock ON OFF OFF OFF

Core PLL ON ON OFF OFF

L1/L2 caches | Keep Keep Flush Flush

Wake-up time - LOW MEDIUM HIGH

‘Wake-up energy LOW MEDIUM HIGH
Idle power MAX MEDIUM LOW VERY LOW

running and sleeping state. However, modern processors are
capable to perform multi-level DPM, i.e., they can switch
to different levels of power saving. We generalize them
with the concept of C-States. Each processor, at a given
instant, can be in one of the following power saving states:
{00,041, ...,0,}. The state Og represents the condition when
the processor is active and running the tasks. The states
©4,...,0, represent, instead, the power-saving states, i.e.,
when the processor is (partially) shut down and not running
the workload. The larger the index of the C-State, the more
aggressive the power saving technique is and, consequently,
the larger the overhead to switch back to ©y. An example for
Intel processors is shown in Table I. To each processor py is
mapped the power consumption C7** and the overhead T7%F of
the j-th C-State. The value of C7'* depends on many external
factors (such as temperature) but it is usually provided by
the manufacturer (in worst- and/or common-case scenario) or
experimentally measured under different execution conditions.
The overhead T7% is the amount of time required to wake-up
the p; processor from the C-State ©; to the C-State O.
During this wake-up process, the system consumes an energy
overhead identified by E7:*. The values T%* and E%F have
no meaning, but for the sake of the following notation we
consider them to be T%F = E%k = 0. If such information
are available, then we do not need to specify a power model
to use the approach proposed in this article.

Remark 1. The heterogeneity is visible in the platform de-
scription: each processor has a different speed (for a partic-
ular workload), different power consumption in each C-State,
and timing and energy overheads. We do not target a specific
“heterogeneity”, provided that the previous values are known
or can be measured.

C. Real-Time DAG Task Decomposition

Task decomposition is a well-known technique proposed by
Saifullah et al. [13] that transforms the nodes of a parallel DAG
task 7; into a set of sequences of nodes, each one possible to
run in parallel (refer to Figure 1). Initially assuming that at
least M; cores are available for each task, for every node /\/f,
a vertical line is drawn at every time instant where N} starts
or ends. These vertical lines partition the DAG into several
segments t},t7, In this manner, while respecting the node
dependencies (i.e., edges in the DAG), task decomposition
converts each node Ml € 7; into an individual sub-task, and

€ T, =12 —>
¢ t'=3 t2=1y t3=2 t4=4 |
N,1=4 ——>(Nj5=2 ! ! i i 1
Ni’l Ni1 Ni4 Ni6 E
@ N N2 N2 N3

(a)

Fig. 1. A task represented with (a) the DAG model, and (b) an example of its decomposed structure (after applying task decomposition).

also defines a scheduling window (for each node /\/'f), which
denotes the time slot from the release offset of A to its
deadline, measured in segments.

Example 1. Consider the decomposed DAG task T; in Figure
1(b). Task decomposition converts each node Ml to an individ-
ual sub-task with a start time and a deadline. In this example,
the scheduling windows for the nodes, i.e., N}, N2, .. NP, are
[1, 2], [1, 1], [2, 4], [3, 3], [3, 3], [4, 4], respectively. This
means that N7} executes from the beginning of the 15 segment
to the end of the 2% segment, while N? executes throughout
the 15t segment. The DAG task T; of Figure 1 has a maximum
degree of parallelism of M; = 3 in segment t3, where the
nodes N2, N}, and NP execute in parallel.

7

Intra-Task Processor Merging. Once a DAG task 7; is
decomposed and allocated to multiple processors, likely, some
of these processors are lightly loaded. This situation may
not be optimal, from both the resource utilization and en-
ergy consumption standpoints. Even worse, the number of
processors m may be lower than the number of levels, making
the allocation unfeasible. To get rid of this problem, Guo et
al. [3] proposed the intra-task merging technique that merges
those lightly loaded processors, while guaranteeing the timing
constraints’ satisfaction. Intra-task processor merging reduces
the number of required cores and, consequently, decreases the
leakage power consumption, resulting in overall energy and
resource efficiency.

The schedulability goal of this paper is to ensure that no
sub-tasks exceed the scheduling window time frames output
of the task decomposition. In fact, provided that the task
decomposition is correctly performed, if all the sub-tasks
meet their deadlines at the end of each scheduling window
— maintaining constant in this way the task WCET -, the
schedulability of the whole task set depends only on the
scheduling algorithm applied at the task-level. Our approach
focuses on analyzing the DAG of the single task without
restricting the choice of the scheduling algorithm among the
tasks. In particular, we ensure the intra-task timing constraints,
i.e. the DAG nodes, while an external scheduling algorithm is
in charge of the inter-task scheduling. We summarized the key
notations presented in this section in Table II.

D. The Optimization Problem

This work focuses on minimizing the total energy consump-
tion at the task-level, including the energy consumption when

TABLE II
SUMMARY OF KEY MODEL NOTATIONS.
Symbol Description
i The i-th task
T;,Ci, D; | Period, WCET, and relative deadline of the task 7;
3 /\/il7 N; The I-th node and the total number of nodes of 7;
EO M; the maximum level of parallelism for task 7;
5 ck The WCET of the node A/}
= bé, dé Start time and duration of node /\fil
L; Length of the critical path for task 7;
t? Length of the z-th segment of task 7;
Di The i-th processor
Szl.’ j The execution speed for processor p; and workload
g N
8 0, The i-th C-state
= cik Power consumption of the processor pj, in ©;
=~ T2%F E3F | Time and Energy overhead to switch from 9,106
in pg

the processor is idle. The energy optimization strategy must
also meet the strict timing requirements under all circum-
stances. The minimization operates on the processor allocation
of each node and on the decision if switching or not the
processor to a higher C-State during idle times. The choice
of a DPM-only approach instead of DVFS is motivated by
[3, Theorem 2], which asserted that selecting a fixed speed is
beneficial with respect to energy assumptions, over a dynamic
approach, for real-time DAG tasks.

The offline analysis allows us to perform the same opti-
mization with two different goals: the WCEC or the ACEC
minimization. The former involves the use of the WCET of
the nodes to carry out the best optimization in the worst-case
scenario, while the latter exploits probabilistic information
on the node execution time to compute (and minimize) the
average-case energy consumption. While the former targets
the specific case of energy-constrained devices as described in
Section I, the latter is oriented to a wider class of embedded
systems in which the energy consumption reduction is a non-
functional requirement but a desired feature.

IV. MODELING IDLE INTERVALS AND THEIR ENERGY
CONSUMPTION

To incorporate the DPM approach in DAG tasks we need to
model the idle intervals at the end of each node. In Subsection
IV-A, we propose an approach to compute the idle intervals. In
Subsection IV-B, we provide a discussion regarding the energy
consumption during each idle interval and the task period.

A. Modeling the Idle Interval

In the DPM approach, the processors enter a deep sleep state
when idle and wake up when necessary. DPM is a useful tool
in decreasing system energy consumption without degrading
the performance. However, the beneficial employment of DPM
is a non-trivial problem. The main reason is the non-negligible
transition overhead (in terms of time and energy) between
sleep and wakeup state [32], [33]. It is essential to know
the processor idle interval, which leads to achieving the right
strategy for the successful employment of the DPM approach.
Calculating the idle interval before each node. Upon ap-
plying the existing task decomposition and intra-task processor
merging techniques (refer to [3], [13] and Subsection III-C),
some essential information (e.g., the maximum degree of
parallelism of the task, the required number of cores) becomes
available. Recall that task decomposition is a technique to
convert each node, J\/'f € 7, into an individual sub-task with
its own release time, deadline, and execution requirement,
without violating their precedence constraints. At each level,
there might exist a single node or multiple nodes. For example,
in Figure 1, N}, N, and NP execute at level 1 (bordered
inside the dotted blue rectangle), and /\fi5 executes at level 3
(bordered inside the dotted red rectangle).

For such a decomposed task 7;, we are aware of the optimal
execution speed for each node N} € 7;, which also guarantee
the real-time correctness, i.e., 7; does not miss its deadline
under any circumstances. In the assignment of a processor to
each level, we satisfy the speed requirements of each node
in this level, i.e., the assigned processor executes at speed
greater or equal to each node’s energy-aware execution speed.
For details, refer to Section V and Eq. (7), where we propose
a processor-task allocation approach that minimizes energy
consumption. Hence, each node finishes its execution earlier
and leave some idle slot within its scheduling window.

Before moving further into the details, we define some
notations used several times throughout this paper. We denote
the start time and the duration of a node A/} € 7; at processor
Pk as bl’k and dl’k, respectively, where dl’k is defined as
cl/st i - The speed of Sy of the processor py is given and
constant. We define a decision variable called Ot arm that
represents node execution order at pj processor [29] We
define Oy, p1 orm as:

1 if M is scheduled immediately before
N[™ at py, processor
0 otherwise

Ok NNy =

We use the notation O, ; 5 to denote whether N} is the first
node to be scheduled at py, plrocessor, at any inter-arrival period
of a job of task 7;. Similarly, Oy x7m 7 denotes that N
is the last node (at any inter-arrival period of a job of task
7;) to be scheduled at pj processor. Now we can model idle
intervals for all the nodes that are allocated to the py, processor,
thanks to the decision variable, Oy, yrt nrm. Note that the start
time of node A" depends on other nodes (if it has multiple
parents) executing on a different processor. However, the task

decomposition technique determines the starting time of each
node respecting their precedence constraints, refer to Figure
1(b). Here we concern only about the parent node A/} that
shares the same processor with /™ as the completion time of
this parent node influences the idle time available before node
N]™ starts execution.

We consider the following two cases (to model the idle

interval before executing node N;™ at p; processor) in each
period:
Case-1: N" is not the first node to be served at processor py,
(e.g., node NP at the topmost level in Figure 1(b)). Let the
total amount of idle time immediately before scheduling A"
(at processor py) be IZ-m ** and calculated as follows:

Yo W) O (D
Vl:NiZETi

m,k __ 1m,k
Tk = gk

Case-2: N/" is the first node to be served at processor py
(e.g., node N at the bottom-most level in Figure 1(b)). In

(3
. K
this case Z;"" is

Iim,k = b;ﬂ,k _ Z (bi,k + dé’k) . Ok,/\f},J ()
Vl:N}Gn

Where the second term denotes the completion time of the last
node of task 7; (at pyg Erocessor) in the previous period. By
subtracting it from b;”’ , we calculate the idle time (before
serving this node) in this period. Because the goal of our
approach is to optimize the single-task energy consumption,
we assumed that the previous job running on the processor is
a job of the same task 7;. In the other case, depending on the
task scheduling algorithm, we have three options: 1) replace 7;
in Eq. (2) with the previous task, provided that the schedule is
predictable; 2) assume the idle time only from the beginning
of the task, i.e., Z;" k= bm —min, b;"Y; 3) use, even so, the
single-task idle time of Eq. (2). The last two solutions are both
sub-optimal but safe to use. Which one is preferable depends
on the specific case and considered task scheduling algorithm.

B. Energy Consumption During an Idle Interval

Having incorporated the DPM in our model, we now study
the energy consumption the system incurs switching to and
from the sleep mode. The switching to the sleep mode is
not beneficial (w.r.t energy consumption) if the idle interval
is smaller than a threshold [33]. This idle interval is known as
the break-even time [11], [34]. Esmaili et al. [29] calculated
the break-even time as follows: Tpr = max(Ty, Ec—w) We
extend this notation by introducing a set of break-even times
for each C-State ©; (1 < j <) and for each processor py:

sw?

ThY = max (TJ kT k) 3)
where:

i,k i—1,k _ pj,kj,k j—1,kj—1,k
ng — ng ¢’ Tsjw +C/ Tejw

Ci—Lk — Cik

The break-even point formula has been derived as follows:

T = (4)

Eidgie o
@0 ,'/

O .-
,IVJ,/' ,,*'l ’_,—"‘ @2

2k | '
ES"W - ~

I e
Esw

0 1,k 2,k ;k
th 9! m,
Ty Tgg I

Fig. 2. The graphical interpretation of the break-even points of an example
with three C-states and CO-F = 1, CLF = 0.5, C2F = 0.25, ELF = 5,
Ex =10, TR =1, Tk =3.

e The break-even time cannot be lower than the time
required for switching, otherwise we can possibly in-
validate the timing requirements: if the maximum idle
time is smaller than the time required for switching, the
overhead of the C-State switch delays the activation of
the following node.

o Since the C-State switch has an overhead also in terms
of energy (FE7F), the switch is not advantageous for
smaller values of idle time. The graphical representation
has been depicted in Figure 2. The energy consumption
as a linear function of time for a C-State ©; is Ccik g,
then the intersection between the energy consumption
line of ©;_; and ©; gives us the break-even point for
the switching from ©;_; to ©;. The break-even point is
then the solution z of the equation: EJ_1F +Ci—1Lk(z —
T3, %) = B3 + Gk (z — T3b),

To model the CPU energy consumption during an idle

interval, we proceed by extending the original function for
FEiqie [29], obtaining:

CO.k:I;n,k if 0 < I:nk < Tgé
ELk 4 eLk(gmk _plky jp pLk o gmk o p2k
B (@) = § B #CT @ = L) i T <I7° <Tie (s

Ek.r + Cr,k(I;_mJ\" _ Tr,k‘,) if ng < I;YL,IC

sw sw

In this formula, Tg% denotes the break-even times previ-
ously computed by Eq. (3), and Z;" * denotes the total idle
time before executing N;™ € 7;, and Z," % is derived from Eq.
(1) and Eq. (2). Finally, total energy consumption during all
the idle intervals in a task-period, 75, is calculated as follows:

Biae(T) = > Eiae(T;") 6)

Vl:/\/i’ €Ty

In Section V we exploit this information of Eidle(Iim’k) to
derive an offline minimization strategy for the WCEC. While,
in Section VI, we introduce probabilistic information to use
the same strategy for computing, and minimizing the ACEC.
However, it should be noted that the decision taken with Eq.
(5) can be also applied online for a further optimization:

TABLE III
THE ENERGY CONSUMPTION TABLE, SHOWING THE RELATION BETWEEN
THE PROCESSOR pj, € p WHEN pj IS ALLOCATED TO A LEVEL L; €L

Processors— o
Levels). p1 p2 Pk
: T 2 13
L5 E; E; T E3
L;. Ej Ej Ej

The idle time can be measured at the end of each node and
compared with the offline-computed break-even points. The
decision can, in this way, change online and be different with
respect to the decision used for WCET and ACEC analyses,
further improving the energy consumption for each specific
case of execution. However, the following offline analyses are
still essential to verify that the system adhere with the WCEC
and ACEC design requirements.

V. EFFICIENT PROCESSOR ALLOCATION ALGORITHM

Our energy management strategy is composed of two pro-
cesses. First, identify the idle slot while executing a task
7; and employ the DPM technique, i.e., decide whether to
switch to a higher C-State during the idle slots to minimize
energy consumption. Second, allocate a set of cores to the
DAG task 7; to minimize overall energy consumption while
satisfying the strict schedulability requirements. In Section IV,
we have already discussed how to identify the idle interval
(while executing a task) interval and calculate the energy
consumption during this idle interval. In this section, we
discuss our second goal, i.e., allocating a set of cores to the
nodes of the DAG task 7; to reduce energy consumption.
We apply the Hungarian algorithm [35] to the decomposed
DAG to find an energy-conserving task-processor allocation.
Although the DAG decomposition technique or the Hungarian
algorithm itself is not new, analyzing the energy optimization
by exploiting the idle slots is sufficiently novel. Finally,
we discuss how to calculate the overall energy consumption
throughout the task period of T; (of task 7;), combining both
the analyses presented in Section IV and in Section V.
Processor to task allocation. Let, £ denotes the set of
levels of task 7; when decomposed. In our task allocation
approach, we allocate one processor p; exclusively at each
level Eé« € L' hence, all the nodes at the same level execute
at the same speed throughout their release to their deadline.
If the processor speed is known, we can easily calculate the
energy consumption, as we know the information regarding the
release time, deadline, and execution requirement of each node
executing at each level. Note that we can allocate a processor
to any level, provided that the speed of the processor is
sufficient to finish all the nodes within its scheduling window.
Hence, at any level E; € L% we can allocate a processor
pr € p, if it satisfies the following constraints:

Algorithm 1 Building the energy consumption table.

Algorithm 2 Processor to task allocation.

1: Input: Set of processors p = {p1,...,pr} and the number
of levels £* = {Lj,...,L}} in a DAG task 7;.
2: Output: A table that store the energy consumption value.

3. E[j]lk]; /* A table to store energy consumption */
4: Set oo to 108 /* An arbitrary large value */
5: for t =1to j do
6: fory=1tok do
7: /* Verify speed-con’straints in Eq. (7) */
& VN €Ll —F+— <5, then
Zzz:bi i
9: Calculate EJk according to Eq. (8)
10 Ellly) = EX;
11 else
12: Elx]y] = oo;
13: end if
14: end for
15: end for
16: return &.
) C!
YN} € Li: —— < Sty (7)
St

Here C!,bl, and f! respectively denotes the execution re-

quirement, release offset and deadline of node J\fil (see Ex-
ample 1), ¢7 denotes the length of segment z, and Zz 'f:bl tz
denotes the available execution slot for a specific node. Refer
to Example 1 and Figure 1(b) for details. Let us assume that
we allocate a processor py, in level E;, and denote the energy
consumption (by processor py) as EJk , where we calculate EJ’C
as follows:

E} = Eiaie(T(L})) + Eactive(T (L)) (8)

J

where

Biae(T(L}) = Y Eiae(Z;'™), and
vNleL:

Eactive(T(ﬁé)): Z dﬁ,kch
vNleL:

Here, T(L?) denotes the duration of level £}. Note that, there
may be some idle time available at the end of each level (since
the critical path length L; is less than or equals to task period
T;), task decomposition distributes such idle slot, i.e., T; — L;,
uniformly by multiplying each segment by a common factor
T;/L; (refer to Section III in [3]). Hence, we can conclude
that Vj : T(E;) =1T;.

We calculate E¥ (VL. € L', py € p) according to Eq. (8)
and Algorithm 1, storing these information in a two dimen-
sional array £ represented in Table III. Algorithm 1 starts
by creating £ of size j x k, where 7 < k (Line 3), and
traverses each level Ej € L and each processor py € p (Lines
5-6). Then it checks whether a processor can be assigned
to a level (Line 8), i.e., speed of this processor satisfies

1: Input: Energy consumption table &.

2: Output: Processor to level allocation that results mini-
mum energy consumption.

3: Set oo to 108 /* An arbitrary large value */

4: /* If £ is not a square table, add dummy row to make it
square size */

5: if 7 < k then

6: forz=j4+1tokdo

7: for y=1to0 k do

8: Elx]ly] = o0; /* Dummy row */
9: end for

10: end for

11: end if

12: Solve & using the Hungarian algorithm [35].
13: return the optimal processor to level allocation.

the speed constraint presented in Eq. (7). If it satisfies the
speed constraints, we store the energy consumed by this
processor (when allocated to this level) at the corresponding
cell (Line 9). Otherwise, we put an arbitrarily large value
to this cell (Line 11). Algorithm 1 concludes by returning
& (Line 15). Here, each entry E]’“ € & denotes the energy
consumed by processor py, when pj, is allocated to level 7.
For any level £ € L', if any processor pj, € p, fails to satisfy
the constraints in Eq. (7), we put an arbitrarily large value in
the corresponding cell. We do this to ensure that the scheduler
does not assign py, to E;, i.e. to a level which does not satisfy
the timing requirements.

Now we know the energy consumption at all possible pro-

cessor to level mapping combinations. We use this information
to determine the processor allocation with minimum energy
consumption. At each level, we assign a processor that is not
allocated to any other level previously — we pick a single
entry from each row and column in Table III. The pseudo-
code is presented in Algorithm 2. We determine the optimum
assignment that minimizes the total energy consumption using
the Hungarian algorithm [35], [36] (Line 12), which has
polynomial complexity. Note that the Hungarian algorithm
works only when the input is an N x N square matrix with
non-negative elements. In our case, Table III may not be square
in size as j < k. Hence, we add (k — j) extra dummy rows in
Table III (to make it square in size), and fill them with arbitrary
large values (Lines 5—11). Finally, Algorithm 2 concludes by
returning the optimal processor to task allocation that results
in minimum energy consumption.
Total Energy Consumption. Having computed the energy
consumption at each level and the optimal processor allo-
cation, let the energy consumption at each level E; (after
assigned with the processor determined by Algorithm 2) be
denoted by E. The total energy consumption Ej,, of the task
T; 1s:

Ej,= Y E ©)

VL €Lt

Optimality. The use of the Hungarian algorithm guarantees
the energy consumption optimality of the processor to level
allocation. The optimality of the overall solution depends
then on the selection of DPM states, which is optimal by
construction for a given DAG decomposition. In fact, Eq. (5)
minimizes the energy consumption according to the idle times
Z7* which in turns depends on the DAG decomposition and
on how intra-task processor merging is performed. Therefore,
we can claim the optimality of the offline algorithm for a given
DAG decomposition, while the overall optimality depends on
the algorithms used to build the DAG decomposition.

VI. EXPLOITING PROBABILISTIC INFORMATION TO
MODEL THE AVERAGE-CASE

The analysis presented in the previous two sections was
performed by considering the WCET: the definition of duration
of a node (dli’k) was defined as Cf /S Instead, in this section,
we consider the duration of a node as a function of the random
variable? of the execution time X;, i.e., Jik = X!/S). This
random variable is used, as subsequently detailed, to optimize
the ACEC instead of the WCEC.

Remark 2. The probabilistic information is used for energy
optimization only, and the hard real-time guarantees are not
affected by such information. In this way, any inaccuracy in
the probabilistic characterization of the execution time would
impact the energy optimization problem only, but not the
schedulability analysis, that still relies on the static WCET.

Alternatively, the statically-computed WCET can be replaced
by the probabilistic-WCET [37]. In a such a case, the
probabilistic-WCET can be used to compute the probabilistic-
WCEC and, in turn, the WCEC and apply the same procedure
of the previous section. The probabilistic analysis of this
section focus, instead, on the average-case and not the worst-
case.

A. Probabilistic Execution Time Model

A random variable is the statistical representation of the
output of a phenomenon: in our case, it is the node execution
time. In common with previous works [38], [39], the random
variable of the execution time is a discrete quantity, and it can
be expressed with a probabilistic profile matrix. This matrix
is identified by the symbol pETil’k, has size 3 x w, and is
defined as follows:

el e ew
pET = | filer) file2) filew) (10)
Fi(e1) Fi(e2) Fi(ew)

where e, ea,...,e, are execution time values, f(-) is the
probabilistic mass function (PMF), and F'(-) the cumulative
distribution function (CDF). Even if the last two rows are
redundant (PMF is computable from the CDF and vice versa),
this simplifies the notation in the subsequent sections.

3In this paper, the random variables are identified by the mark ~

Example 2. Let us consider the following execution profile:

) 7 12 19 20
0.10 0.60 0.25 0.04 0.01
0.10 0.70 095 099 1

pET}® =

It represents the statistical distribution of the execution time of
the node N? € 71 running in the processor p3. The probability
that the node requires 5 units of execution time is 0.1, for 7
unit of execution time case the probability is 0.6 and so on.
The last row represents the CDF. For instance, in this profile,
the probability is 0.95 for execution time less or equal to 12.

1) Estimating the Distribution: The distribution of execu-
tion time is rarely known at design-time, and it is, in general,
computationally expensive. A more practical approach is to
measure the execution time directly on the real system and
estimate the probabilistic execution time distribution. The es-
timation is possible by exploiting different statistical methods.
If we are interested in the probabilistic-WCET (pWCET), we
have to choose the Extreme Value Theory approach, while
an estimation of the probabilistic-ET can be performed by
estimating the empirical CDF. We assumed the WCET as given
and statically computed in this work, so the pWCET is not
useful in such a scenario. Instead, to improve the average-
case energy consumption, the pET can be estimated by directly
measuring n-samples of the execution time:

1 n
Fz(x) = E Zlflfi<.'L‘
=1

where 1,, ., is the indicator function* and T1,%2, ..., Ty is the
set of measured execution time samples. From the empirical-
CDF F;(z) it is possible to compute the PMF by subsequent
differences of the CDF: f;(x) = F(z)— F(x—1). In this way,
the pET matrices can be estimated.

Uncertainty quantification. Provided that we observed all in-
put and states of our systems, the Dvoretzky-Kiefer-Wolfowitz
inequality [40] provides us the measurement error:

e

where c is an arbitrary low confidence. For example, if the
number of samples is n = 10000, the maximum absolute
error on the CDF is lower than ¢ < 0.02 with a confidence
of ¢ = 1075. More sophisticated statistical techniques can
obtain better results with a smaller number of samples, but
this analysis would be out of scope for this paper’s goals. The
error in the estimated distribution would increase (or decrease)
the expected energy consumption, but it would not affect the
scheduling analysis. Having this value, we can determine, by
adding it to the subsequent formulas, the final expected error
(at a given confidence) on the overall energy consumption of
the system.

Y

4The indicator function 1 A has value 1 if the condition A is respected,
otherwise 0.

2) Common Operations: To deal with the algebra of ran-
dom variables, we report in this paragraph the operations
necessary for the subsequent analysis.

Convolution. The sum of random variables is performed
thanks to an operator called convolution. This operator is
identified by the symbol ®. In particular, the convolution of
two random variables Xg,,, = X7 ® X5 is defined as the
convolution of their PMFs fx . (z) = fx, (z)® fx,(z). The
general formula of X =Y ® Z for discrete random variables
is:
+o00

px(z) =py(z) ®@pz(x) = Y py(n)pz(z —n)
Sum and product with a constant. The sum and product of
a random variable with a constant are a shift of PMF function
along the random variable axis: the expression of the PMF for
Y, where Y = X + k, is py () = px (2 — k); the expression
of the PMF for Z, where Z = kX, is pz(x) = px(¢/k). The
PET matrix can be accordingly recomputed with the newly
obtained PMF.
Expected value. Also called mean, average or first moment,
the expected value of a discrete random variable is defined
as E[X] = 25:1 x;p;, where n is the number of terms
composing the PMF, ie., in our pET representation, the
number of columns of the pET matrix.

B. Computing the Probabilistic Idle Time and the Average
Energy

From the probabilistic execution time profile of each node,
we compute the probabilistic version of Eq. (1) and Eq. (2),
by exploiting the previously defined operator:

Case-1:
=t = @ G A Opaine (12)
Vi:NteETs
Case-2:
M=o — R O A O, (13)
VIENEeT;

The start time bi’k, the decision variables Oy i nrm and

O A, 7 are deterministic and non-random variables. The

break-even points T]é’g of Eq. (3) are not affected by the

probabilistic analysis because they are computed from the
processor’s C-States characteristics and not dependent on the
task. Instead, Eq. (5) is transformed by replacing the condition
with the probability values extracted from the CDF of the idle
time as follows:

cor . mk P = Fsi(THE)
S L (I =T33 P =Fpp(Tip) = Frmr(Tpr)

B+ (I ~TU) P =1 Fpn(T)
(14
The graphical interpretations of the probabilistic version for

break-even points and the F;4. are depicted in Figure 3.

A
1
2,k\ | —
F(TBE) HE
1k ——o E
F(TBE) ' '
0 Ti,k T2k e
BE BE Iz

Fig. 3. Graphical interpretation, given the probabilistic information, of the
break-even points. The figure shows the CDF of the idle time for the m node
of the i-th task running on processor pg.

From this equation it is possible to rebuild a probabilistic
profile as defined in Section VI-A. Then, we can recompute
the Eq. (8) by using a characteristic function of the random
variable to compute a scalar value for Eidle(ffl’k). We are
interested in the ACEC, therefore we compute the expected
value of Eige(Z™*) = E[Eiq.(Z™")] with the previous
formula defined in Section VI-A2. In this work we limit our
focus to the average value, but other approaches are possible,
including optimizing the 95% percentile, the median value,
the pWCET, or the pWCEC [8]. Once the scalar value for
Eidle(flm ’k) is computed, the energy analysis proceed as ex-
plained in the previous section — in particular, via Algorithm 1
and Algorithm 2 — but, instead of optimizing the WCEC, it
minimizes the ACEC.

C. A Complete Example

To show a complete example with the probabilistic informa-
tion, we consider the DAG task of Figure 1, and, in particular,
we focus on the decision during the idle time between the node
N7 and the node N execution on py with speed S7, = 1.
Let us assume that the node N7? has a begin time b?’z =0
and is characterized by the following probabilistic-ET:

12 3
pET>? = [020 0.75 0.05
0.20 0.95 1

By using the WCET to compute d?’Q, the idle time If’ 2 s
zero, as calculated by Eq. (5) because the next node N7 has
b?’Q = 3 and 532 = 1. Instead, by replacing the duration
with its probabilistic version Jf’Q, we obtain the following
probabilistic profile for ifz

) 0 1 2
pI>* =1 0.05 0.75 0.20
0.05 0.80 1

Let us assume that the computing platform has the following
parameters:
e Three C-states: Oy, 01, 04
o Power consumption of p, for each C-state: C°?
15,C*2 =5,0%%2 =1

o Energy overheads: EL2 =7, E%2 =12

o Time overheads: T2 = 0.2, T%2 = 0.5
So, we can compute the break-even times according to Eq. (3)
(please note that the computation of break-even time is not
dependent on probabilistic information): Té’é 3 Té’é =
%. We then build the energy idle as follows:

=g
15- if)Q P = F;32(3/5) = 0.05
T4+5-(IP*02) P =Fpa() - Fpa(s) = 075
1241 (232 -05) P=1-Fss2(11/s) = 0.2

Eiae(I3?)

Finally, we compute the scalar expected value of Eidle(ff ’2) =
E[Eiaie (Z}?)):

Eiare(T™") = [15-0] - 0.05 4 [T+ 5(1 — 0.2)] - 0.75
+[12+1(2-0.5)]-0.2=10.95

This value represents the average energy consumption of the
idle time when the break-even strategy is applied, and it can
then be used to optimize the ACEC. For the sake of the
example, we also computed the idle energy in case a fixed
selection C-States policy is applied:

o the processor remains in Oy,
Eiqe(Z3?) =17.25

the processor always switches (and remains) to O,
obtaining average Eidle(ff’ ’2) =12.75

the processor always switches (and remains) to Oo,
obtaining average F;q. (7:'5’ ’2) =13.15

In this example, it is possible to notice how the optimized
strategy is better than any fixed selection of the C-States. The
next section performs an extensive simulation to show how

this strategy is beneficial in different scenarios.

obtaining average

VII. SIMULATION RESULTS

We performed a large-scale simulation and an experimental
study on a real hardware platform to evaluate the proposed
policies and their energy efficiency. The latter is presented in
Section VIII, while, in this section, we focus on the simulation.
Subsection VII-A compares our approach with a previous work
by focusing on the WCEC optimization, while Section VII-B
improves the ACEC by exploiting the probabilistic policy.
We compared our policies with the recent work by Guo et
al. [3] because it has a similar DAG task model and problem
assumptions, while other works would make a correct and fair
comparison difficult. We denoted this baseline in this article
with Fed_Guo.

A. Energy Results of the WCEC Approach

To verify the performance of our WCEC policy, we con-
ducted the simulation on randomly generated task sets by
varying the following input parameters:

e 2 < M; < 4: Degree of parallelism of DAG tasks (with

the number of nodes in the interval [4; 16]

e p: Set of processors

e S € [1;1.5]: Execution speeds

A total number of 10000 random generated task sets
have been explored, comparing the energy consumption of

10

@
&
8

T T T
[WCEC[Fed_Guo]
I WCEC[Our Approach] |

@
8
8

n
R
8

N
8
8

a
8

3
8

a
g

Energy Consumption (J)

o

Fig. 4. Energy consumption comparison between our approach and Fed_Guo.
The figure shows only the first 20 scenarios of the overall 10 000 randomly
generated DAGs.

TABLE IV
AGGREGATE RESULTS OF THE IMPROVEMENT OF OUR APPROACH
COMPARED TO THE BASELINE Fed_Guo ON 10 000 GENERATED TASK SETS.

Energy Saving | Absolute value | Percentage
Average 46 J 22.2%
Variance 264 J? -

Maximum 94 J 32.1%
Minimum 12 J 9.6%

both our approach and the baseline approach Fed_Guo. The
code and the full dataset is available online to enhance the
reproducibility®. We depicted the results of the first 20 runs in
Figure 4, while the aggregate data of the whole experiments
are reported in Table IV. Our approach exhibits an average
of 22% energy savings compared to Fed_Guo, with a peak
maximum of 32.1% and a minimum 9.6%. Our approach
outperforms the baseline in all the generated task sets. The
application of the C-States method is more effective than the
static policy applied to idle slots like in Fed_Guo, considerably
reducing the energy consumption when the policy is optimized
for the WCEC case.

B. Energy Results of the ACEC Approach

To check the improvement of the ACEC optimization, we
considered the DAG A of Figure 4 and generated random
CDFs for the task execution time. We performed the energy
optimization, this time according to the probabilistic analysis
of Section VI. Then, we run the task set 10000 times by
sampling the task execution time from the random CDFs
previously generated with the inverse transform sampling
method. The first 50 runs are illustrated in Figure 5. The
theoretical WCEC (estimated by the analysis of the previous
subsection) is 165. On the overall 10000 samples data, the
two optimizations performed as follows:

o WCEC-policy (Section V): the minimum and maximum
observed energy consumption are respectively 28.8 J and
94.3 J, while the average value is 53.6 J.

¢ ACEC-policy (Section VI): the minimum and maximum
observed energy consumption are respectively 27.8 J and
89.9 J, while the average value is 46.7 J.

Consequently, the ACEC-policy reduces the average energy
consumption on average of about 12.8%, compared to our

Shttps://doi.org/10.5281/zenodo.5528052

https://doi.org/10.5281/zenodo.5528052

180

+ ACEC-policy -

= 160 - x WCEC-policy
= 40 - —-—-—ACEC-policy (avg)
5 — — —WCEC-policy (avg)
3 120 - —— WCEC theoretical
g
2 100 -
5

80
(®] * X
> x x

60 F x x x * +
[x X + X
© Soh ooz o iinTct *Xj{% Fx o ool o Sonptunt o
c 40} FURRTR T x L OXFTOTTT
S AR X + + + t+ ++ i

20 I I I I I I

Fig. 5. The first 50 runs of the ACEC experiment. The figure shows the
pessimism of the theoretical WCEC and how the allocation of the ACEC-
optimized policy presents a lower average-case energy consumption compared
to the WCEC-optimized policy.

TABLE V
CHARACTERIZATION OF THE ODROID-H2 BOARD. THE VALUES OF T
ARE PROVIDED BY THE MANUFACTURER, WHILE WE MEASURED THE
OTHER PARAMETERS. EACH REPORTED VALUE IS THE AVERAGE OF 1 000
SAMPLES, AND THE OEFFICIENT OF VARIATION WAS LESS THAN 1 FOR
ALL THE VALUES.

@7; Tsw[,us} FEsw [mJ] 0171 [mW] Clyg[mW] 0173[mW]
COo 0 0 656.3 507.7 310.0
CIE 10 0.23 413

C6 150 0.32 29.6

C8 5963 1.31 27.4

WCEC-policy, and 28.6%, compared to the Fed_Guo WCEC-
policy.

VIII. EXPERIMENTAL RESULTS

This section reports the experimental evaluation to estimate
the improvement in terms of both ACEC and WCEC compared
to the Fed_Guo baseline (described in Section VII), when our
analyses are employed on a real platform.

A. Experimental Setup

The chosen platform is the Odroid-H2 board equipped with
a quad-core J4105 processor and implementing the Intel x86-
64 C-States. In particular, this board is capable of applying
DVES for each core. We used this feature not for energy con-
sumption but to simulate the processor heterogeneity setting
a different fixed frequency to each core. The board has the
4 C-States (including the running C-State ©g) reported in
Table V. The board runs the Linux kernel, which has been
patched with PREEMPT_RT and configured for the real-time
workload. Even if Linux is not a hard real-time kernel in
the safety-critical sense, the PREEMPT_RT patch makes it
a good test bench for scientific purposes [41]. To improve
the reproducibility and reduce the interference, we dedicated
the core 0 to run the Linux kernel, service applications,
interrupts, and the measurement scripts, while core I, core
2, core 3 are the actual processors considered in the analysis
and configured to run real-time workload by following the
relative guidelines [41]. The core 1 was configured at full
speed S71 =1, core 2 at speed S = 1.25, and core 3 at speed

11

Ss 1.5. We connected the board to an industrial-graded
power measurement device with a resolution of 2 W and a
sampling frequency of 320 ,S/s controlled by a third machine
not affecting the timing property of the system under analysis.
To characterize each core, we computed the difference between
the baseline (core 0, with all the other core offline) and each
configuration (e.g., core 0 and core 2 online, with all the other
core offline). The results of the relevant metrics are reported
in Table V.

B. Results

We compare our approach to the same baseline used in
Section VII. We built a DAG and its decomposed structure
similar to the example of Figure 1. The workload of each
node has been selected by taking 5 benchmarks from the
well-known Milardalen WCET suite [42]: N} = cnt, N? =
insert, Ni?’ = ns, NZ-4 Ni‘r’ = prime, and Ni6 =
sgrt. Each benchmark was modified to allow us to inject
a random (but predictable, for reproducibility) input and to
increase the total execution time. The original Milardalen
WCET benchmarks are too small and fast to efficaciously
measure the power/energy consumption. Therefore, depending
on the benchmark, we implemented each execution so that it
is composed of repetitive executions for a variable number
of times. The benchmark choices have been driven by their
WCETs in order to match the decomposition of Figure 1. Due
to the complexity of the test-bench hardware and software, a
measurement-based approach was used to obtain the WCET
estimation. Since a WCET underestimation would have inval-
idated the results, a proper run-time mechanism was put in
place to detect any violation (which never occurred in any the
experiment case) of the WCET thresholds of the nodes.

We run the experiments and compared the baseline Fed_Guo
with our policy. Both WCEC-optimization and ACEC-
optimization policies provided the same processor allocation.
Hence the optimal WCEC solution is also the optimal ACEC
solution in this case. We gathered 1 000 samples data resulting
in the following aggregate data:

e Fed_Guo: the minimum and maximum observed energy
consumption are respectively 1.78 .J and 4.80.J, while
the average value is 2.00 J.

e Our policy: the minimum and maximum observed energy
consumption are respectively 1.53 J and 4.50 J, while the
average value is 1.75 J.

Our policy improved the (observed) WCEC of 12.32% and
of the ACEC of 6.29%. These results are slightly worse than
the theoretical results of the previous section. This can be
explained by the fact that our approach relies on a perfect
characterization of the hardware and the benchmarks (like
most of all hard real-time approaches), which is difficult in
the considered complex computing platform. The operating
system and the software layers are another source of overhead
not considered in the model but present in the experimental
data. Nevertheless, even with such an imperfect model, our
approach still outperforms the baseline, saving a significant
amount of energy.

IX. CONCLUSION

We proposed an energy-aware task allocation strategy that

can optimize the WCEC in the context of hard real-time
tasks described with a DAG and running on heterogeneous
processors. The offline analysis allows us to verify worst-
case requirements in an energy-constrained system, while the
online actuation ensures the best possible choice depending
on the actual values of tasks’ execution time. Then, this
allocation policy is extended thanks to probabilistic execution
time information to optimize the average-case — i.e., minimize
the ACEC. Both policies guarantee the schedulability thanks
to the statically computed node WCETs, taking into account
also the DPM overheads. To verify the effectiveness of our
approach, we run an extensive simulation, which resulted in
an energy saving of up to 32.1% of the WCEC compared to
the baseline (22% on average), with a further improvement
of 12.8% when the ACEC-policy is employed. Then, we run
a small-scale experimental test on a real board to measure
the real energy consumption, resulting in an improvement of
12.32% the WCEC and 6.29% the ACEC.
Future Research. Although representing parallelizable code
using a DAG model is very popular in the real-time com-
munity, such a model suffers from several shortcomings [43],
e.g., the complex internal structure of the code. Recently, an
alternative model is proposed that characterizes a DAG by
just two parameters [43] — work and span. This model does
not require details knowledge regarding each node and its
dependencies. In the future, we plan to extend our analysis for
the model mentioned above. In addition, future works dealing
with scheduling and resource management may consider other
components, e.g., resource contention (cache misses, shared
data, etc.), software overheads (context switches, scheduler,
etc.), and input/output devices that affect the overall power
and energy consumption.

ACKNOWLEDGMENTS

This work is supported by NSF grants CNS 1850851,
PPoSS 2028481, and the European Union’s Horizon 2020
Research and Innovation programme (No. 801137) [44].

REFERENCES
[1] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic DAG task model,” in ECRTS, 2013.
J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
ECRTS. IEEE, 2014.
Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient multi-core scheduling for real-time dag tasks,” in LIPIcs-Leibniz
International Proceedings in Informatics. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.
J. Goossens and P. Richard, “Optimal scheduling of periodic gang tasks,”
Leibniz transactions on embedded systems, vol. 3, no. 1, pp. 04-1, 2016.
Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” in Real-Time Systems Symposium (RTSS),
2017 IEEE. 1EEE, 2017, pp. 128-138.
A. ahmed Bhuiyan, K. Yang, S. Arefin, A. Saifullah, N. Guan, and
Z. Guo, “Mixed-criticality multicore scheduling of real-time gang task
systems,” in 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2019, pp. 469-480.

[2]

[3]

[5]

[6]

12

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(271

B. Andersson and D. de Niz, “Analyzing global-edf for multiprocessor
scheduling of parallel tasks,” in International Conference On Principles
Of Distributed Systems. Springer, 2012, pp. 16-30.

F. Reghenzani, G. Massari, and W. Fornaciari, “A probabilistic approach
to energy-constrained mixed-criticality systems,” in 2019 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
2019, pp. 1-6.

N. K. Jha, “Low power system scheduling and synthesis,” in IEEE/ACM
International Conference on Computer Aided Design. ICCAD 2001.
IEEE/ACM Digest of Technical Papers (Cat. No. 01CH37281). 1EEE,
2001, pp. 259-263.

K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo, “Ap-
plying real-time interface and calculus for dynamic power management
in hard real-time systems,” Real-Time Systems, vol. 47, no. 2, pp. 163—
193, 2011.

H. Cheng and S. Goddard, “Online energy-aware I/O device scheduling
for hard real-time systems,” in Proceedings of the conference on Design,
automation and test in Europe:. European Design and Automation
Association, 2006.

M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 15, no. 1, p. 7, 2016.
A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of dags,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 12, pp. 3242-3252, 2014.

K. Agrawal, S. Baruah, P. Ekberg, and J. Li, “Optimal scheduling of
measurement-based parallel real-time tasks,” Real-Time Systems, pp. 1-
7, 2020.

D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, “A real-
time scheduling service for parallel tasks,” in 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS). 1EEE,
2013, pp. 261-272.

A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
2013.

S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global EDF
scheduling of systems of conditional sporadic DAG tasks,” in ECRTS,
2015.

S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS. IEEE, 2012.

S. Baruah, “The federated scheduling of systems of mixed-criticality
sporadic DAG tasks,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 227-236.

D. Zhu, N. AbouGhazaleh, D. Mossé, and R. Melhem, ‘“Power aware
scheduling for and/or graphs in multiprocessor real-time systems,” in
ICPP. IEEE, 2002.

D. Zhu, D. Mosse, and R. Melhem, “Power-aware scheduling for
and/or graphs in real-time systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 9, pp. 849-864, 2004.

A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient real-time scheduling of dag tasks,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 17, no. 5, p. 84, 2018.

A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, N. Guan, and Z. Guo,
“Energy-efficient parallel real-time scheduling on clustered multi-core,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 9,
pp. 2097-2111, 2020.

Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,
“Energy-efficient real-time scheduling of DAGs on clustered multi-core
platforms,” in 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). 1EEE, 2019, pp. 156-168.

L. Premi, F. Reghenzani, G. Massari, and W. Fornaciari, “A game theory
approach to heterogeneous resource management: Work-in-progress,” in
2020 International Conference on Embedded Software (EMSOFT), 2020,
pp. 25-27.

A. Saifullah, S. Fahmida, V. P. Modekurthy, N. Fisher, and Z. Guo,
“CPU energy-aware parallel real-time scheduling,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2020.

A. Paolillo, J. Goossens, P. M. Hettiarachchi, and N. Fisher, “Power
minimization for parallel real-time systems with malleable jobs and
homogeneous frequencies,” in RTCSA. IEEE, 2014.

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. E. Gerards and J. Kuper, “Optimal dpm and dvfs for frame-
based real-time systems,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 1-23, 2013.

A. Esmaili, M. Nazemi, and M. Pedram, “Modeling processor idle
times in mpsoc platforms to enable integrated DPM, DVFS, and task
scheduling subject to a hard deadline,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, 2019, pp. 532-537.
K. Huang, K. Wang, D. Zheng, X. Jiang, X. Zhang, R. Yan, and X. Yan,
“Expected energy optimization for real-time multiprocessor socs running
periodic tasks with uncertain execution time,” IEEE Transactions on
Sustainable Computing, pp. 1-1, 2018.

I. Corporation, “Energy-efficient platforms — considerations for
application software and services,” Intel Corporation, White paper
325085-001, 2011. [Online]. Available: https://www.intel.ru/content/
dam/doc/white-paper/energy-efficient- platforms-2011-white- paper.pdf
A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proceedings of the 4th workshop
on Embedded networked sensors. ACM, 2007, pp. 28-32.

A. Sinha and A. Chandrakasan, “Dynamic power management in wire-
less sensor networks,” IEEE Design & Test of Computers, vol. 18, no. 2,
pp. 62-74, 2001.

G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time
multiprocessor system-on-chip with optimal DVFS and DPM combi-
nation,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 13, no. 3s, p. 111, 2014.

H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.
Hittp://www.hungarianalgorithm.com/hungarianalgorithm.php.

R. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems,” Leibniz Transactions on
Embedded Systems, vol. 6, no. 1, pp. 03—1, 2019.

D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in 2013 IEEE 34th
Real-Time Systems Symposium, 2013, pp. 224-235.

A. Bhuiyan, F. Reghenzani, W. Fornaciari, and Z. Guo, “Optimizing
energy in non-preemptive mixed-criticality scheduling by exploiting
probabilistic information,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3906-3917,
2020.

A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax charac-
ter of the sample distribution function and of the classical multinomial
estimator,” Ann. Math. Statist., vol. 27, no. 3, pp. 642-669, 09 1956.
F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on PREEMPT_RT,” ACM Comput. Surv., vol. 52, no. 1,
Feb. 2019.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mélardalen
WCET Benchmarks: Past, Present And Future,” in 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010), ser.
OpenAccess Series in Informatics (OASIcs), B. Lisper, Ed., vol. 15.
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2010, pp. 136146, the printed version of the WCET’ 10 proceedings are
published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.

K. Agrawal and S. Baruah, “A measurement-based model for parallel
real-time tasks,” in 30th Euromicro Conference on Real-Time Systems.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

W. Fornaciari, G. Agosta, D. Atienza, C. Brandolese, L. Cam-
moun, L. Cremona, A. Cilardo, A. Farres, J. Flich, C. Hernandez,
M. Kulchewski, S. Libutti, J. M. Martinez, G. Massari, A. Oleksiak,
A. Pupykina, F. Reghenzani, R. Tornero, M. Zanella, M. Zapater,
and D. Zoni, “Reliable power and time-constraints-aware predictive

management of heterogeneous exascale systems,” in Proceedings of

the 18th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, ser. SAMOS *18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 187-194.

13

https://www.intel.ru/content/dam/doc/white-paper/energy-efficient-platforms-2011-white-paper.pdf
https://www.intel.ru/content/dam/doc/white-paper/energy-efficient-platforms-2011-white-paper.pdf

	Introduction
	Related Work
	System Model, Problem Statement and Background
	Workload Model
	Platform and Energy Model
	Real-Time DAG Task Decomposition
	The Optimization Problem

	Modeling Idle Intervals and their Energy Consumption
	Modeling the Idle Interval
	Energy Consumption During an Idle Interval

	Efficient Processor Allocation Algorithm
	Exploiting Probabilistic Information to Model the Average-Case
	Probabilistic Execution Time Model
	Estimating the Distribution
	Common Operations

	Computing the Probabilistic Idle Time and the Average Energy
	A Complete Example

	Simulation Results
	Energy Results of the WCEC Approach
	Energy Results of the ACEC Approach

	Experimental Results
	Experimental Setup
	Results

	Conclusion
	Acknowledgments
	References

