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Abstract—Real-time systems increasingly use multicore pro-
cessors in order to satisfy thermal, power, and computational re-
quirements. To exploit the architectural parallelism offered by the

multicore processors, parallel task models, scheduling algorithms
and response-time analyses with respect to real-time constraints
have to be provided. In this paper, we propose a reservation-based
scheduling algorithm for sporadic constrained-deadline parallel
conditional DAG tasks with probabilistic execution behaviour for
applications that can tolerate bounded number of deadline misses
and bounded tardiness. We devise design rules and analyses to
guarantee bounded tardiness for a specified bounded probability
for k-consecutive deadline misses without enforcing late jobs to
be immediately aborted.

Index Terms—Real-Time Scheduling, Distributed Computing,
Parallel Task Models

I. INTRODUCTION

A real-time system is a system where the missing of a

deadline may lead to a catastrophe and thus warrants to

formally verify the temporal behaviour of the system to ensure

safety. In the last decade real-time systems have shifted from

uniprocessor to multiprocessor systems in order to deal with

the computational, thermal and energy constraints of modern

complex applications. To that end, a lot of research has been

conducted with regards to the challenge of how to make use

of the parallelism provided by multiprocessors for task sets

with inter- and intra-task parallelism whilst satisfying deadline

constraints. Inter-task parallelism refers to the potential con-

current execution of distinct tasks that execute sequentially,

whereas intra-task parallelism refers to tasks that allow for

parallel execution. Fork/join models [18], synchronous parallel

task models, real-time scheduling algorithms and response-

time analyses thereof have been published, e.g., [29], and

DAG (directed-acyclic graph) based task models [2], [6], [14],

[15], [25]. These models enable tasks with higher execution

demands and inherent parallelism such as computer vision,

radar tracking or video applications to be scheduled with

tighter deadlines.

Besides the different approaches and justifications to rep-

resent intra-task parallelism using the above models, parallel

applications in the domain of autonomous driving and image

processing are subject to multiple conditional branches and

control flow instructions as stated by Melani et. al [25].

Moreover, the execution times of the subjobs of parallel

algorithms in these domains are highly varying due to varying

sensor inputs, e.g., images for object detection in autonomous

vehicles. Beyond that, it was shown that the multicore ar-

chitecture complicates the worst-case timing analysis. This

is due to interference effects from contention on shared

resources, e.g., caches, memory etc. The authors in [13] argue

that the arbitration delay and state perturbation caused by

resource sharing must be captured in the worst-case bounds.

All these uncertainties eventually lead to pessimistic response-

time analyses in real-time systems and thus lead to resource

underutilization. These architectural impacts on the worst-case

execution time analysis have been thoroughly researched by

e.g., cache partitioning [1] or bandwidth sharing mechanisms

for memory accesses [34].

Another approach to this problem is to accept the uncertain

execution behaviour of the parallel tasks and to focus on the

probabilistic response-time characteristics. For many applica-

tions, e.g., closed-loop feedback controllers, hard real-time

system engineering (with a safe but very pessimistic upper

bound) is not required due to the inherent controller robustness

towards timing non-idealities like jitter and deadline misses.

In fact, if only a limited number of deadlines of a control

application are missed, the required quality of control can still

be satisfied.

Recently, many research efforts have been focused on

formalizing and analyzing relaxations of deadline con-

straints [28], e.g., weakly hard systems where m out of k

task instances must meet the deadlines. Moreover, Maggio et

al. [22] investigate the closed-loop control system stability

under consecutive deadline-miss constraints, which further

motivates the need for scheduling algorithms that can guar-

antee probabilistic bounds on consecutive deadline misses to

the application.

In order to formally describe and verify quantitive guar-

antees of deadline misses, some quantifications are of im-

portance for soft real-time systems: Probability of a deadline

miss, probability for k consecutive deadline misses, maximum

tardiness of a job. Despite the guarantees are soft, the precise

quantification of such deadline misses are hard and challenging

even for the ordinary sequential real-time task models that

are scheduled upon a uniprocessor system. A summary of the

literature in this research direction is provided in Section II.

They can only be derived under strict model assumptions, e.g.,

that a job is aborted whenever a job exceeds its deadline in

the state-of-the-art analyses. The reason for this complexity is

partly due to inter task interference, i.e., the preemption and
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interference patterns of the task system due to higher-priority

jobs, which results in a large number of system states that

must be considered in a response-time analysis.

We aim to analyze, optimize and verify the schedulability of

probabilistic conditional parallel DAG tasks on identical multi-

processors with respect to quantities such as deadline-miss

probabilities, consecutive deadline-miss probabilities and tar-

diness constraints. When considering the scheduling and anal-

ysis of probabilistic parallel DAG tasks, not only inter-task,

but also intra-task interference, and multiprocessor scheduling

anomaly effects (the early completion of jobs may lead to

longer response-times) must be considered, which complicate

the analyses for the above mentioned quantities.

Contributions: We propose scheduling algorithms based on

reservations, i.e., service provisioning, for the probabilistic

analysis of parallel DAG tasks to avoid inter-task interference

induced complexities and anomaly effects and are thus firstly

able to solve the stated objective. More precisely, we make

the following contributions:

• We propose a probabilistic version and formal description

of the widely used conditional parallel DAG task model

in Section III.

• We contribute scheduling algorithms and response-time

analyses for probabilistic conditional parallel DAG tasks

based on resource reservation. The reservations can be

scheduled along side real-time workloads using any exist-

ing scheduling paradigm. In addition, we provide design

rules to devise reservations that guarantee probabilistic

characteristics such as bounded tardiness, stability, and

probabilistic upper-bounds for k-consecutive deadline

misses. Our approach is anomaly-free because any early

completions due to scheduling or dynamic DAG struc-

tures are handled by the adoption of resource reservation

and the abstraction of the workload model.

To the best of our knowledge, this is the first paper that

addresses the analysis and optimization for probabilistic con-

ditional parallel DAG task sets with quantitive guarantees.

II. RELATED WORK

The scheduling of parallel real-time tasks with worst-case

parameters, e.g., worst-case execution times, upon multipro-

cessor systems has been extensively studied for different

parallel task models. An early classification of parallel tasks

with real-time constraints into rigid, moldable or malleable has

been described by Goosens et al. [16]. Early work concerning

parallel task models focuses on synchronous parallel task

models, e.g., [11], [23], [29]. Synchronous models are an

extension of the fork-join model [12] in the sense that it allows

different numbers of subtasks in each (synchronized) segment

and that this number could be greater than the number of

processors. Many of the proposed scheduling algorithms and

analyses are based on decomposition, i.e., the decomposition

of the parallel task into a set of sequential tasks and the

scheduling thereof.

Recently, the directed-acyclic graph (DAG) task model

has been proposed and been subject to scheduling algorithm

design and analysis. The DAG task is a more general parallel

structure where each task is described by a set of subtasks

and their precedence constraints that are represented by a

directed-acyclic graph. This parallel model has been shown

to correspond to models in parallel computing APIs such as

OpenMP by Melani et al. [31] or Sun et al. [32]. This model

has been studied in the case of global scheduling in e.g., [6],

[26] or partitioned scheduling algorithms [8], [15]. There

has also been research regarding approaches of synchronous

and general DAG tasks that are not decomposition based,

e.g., federated scheduling as proposed by Li et al. [21] that

avoids inter-task interference for parallel tasks. In federated

scheduling, the set of DAG tasks are partitioned into tasks

that can be executed sequentially on a single processor whilst

meeting it’s deadline requirements and tasks that need to

execute in-parallel in order to meet it’s deadline. The latter

tasks are then assigned to execute on a set of processors

exclusively.

Motivated by the conditional execution behaviour of modern

parallel applications, e.g., autonomous driving or computer

vision, the conditional DAG task model has been proposed. A

plethora of research concerning the real-time schedulability of

this model has been conducted by e.g., [3], [10], [25]. Most

recently, the computational complexity of the scheduling of

conditional DAG with real-time constraints has been investi-

gated by Marchetti et al. [24]. However, due to the worst-case

parameters and the worst-case conditional structure that has to

be considered during real-time verification of the scheduling

algorithms, resource over-provisioning is inevitable.

For soft real-time applications that can tolerate a bounded

number of deadline-misses, probabilistic task models and

response-time analyses for these kind of parallel tasks are

of interest. Moreover, the worst-case parameter inference is

increasingly complex and pessimistic for parallel architec-

tures further bolstering the importance of probabilistic models

and analyses. For sequential stochastic tasks a plethora of

prior work concerning probabilistic analyses exists, e.g., [17],

[30]. Recent work focused on the improvements of efficiency

in convolution-based probabilistic deadline-miss analysis ap-

proaches. In Brüggen et al. [7], the authors propose efficient

convolutions over multinomial distributions by exploiting sev-

eral state space reduction techniques and approximations using

Hoeffding’s and Bernstein’s inequality and unifying equiva-

lence classes. Chen et al. [9] propose the efficient calculation

of consecutive deadline-misses using Chebyshev’s inequality

and moment-generating functions and optimizations thereof.

There has also been efforts to use reservation servers to

schedule probabilistic sequential tasks. For example, Palopoli

et al. [27] have shown how to calculate the probability of a

deadline miss for periodic real-time tasks scheduled using the

constant bandwidth server (CBS). The authors have reduced

the computation to the computation of a steady state prob-

ability of an infinite state discrete time markov chain with

periodic structure. In the context of parallel DAG tasks Ueter

et al. proposed a reservation scheme to schedule sporadic

arbitrary-deadline DAG tasks [33] with real-time constraints.
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Fig. 1. An exemplary probabilistic conditional DAG task in which each
conditional node (diamond) denotes that only one of it’s adjacent subjobs
is released (with the annotated probability) during runtime. In this specific
example four different DAG structures can be instanced during runtime.

Other approaches to tackle the probabilistic analysis of real-

time tasks is real-time queuing theory by Lehoczky et al. [19],

which is an extension of classical queuing theory to systems

with deadlines. An initial work that analyzed the probabilis-

tic response-times of parallel DAG tasks was proposed by

Li [20]. Li extended prior work on federated scheduling [21]

by facilitating queuing theory to devise federated scheduling

parameters such that each task’s tardiness is bounded and soft

real-time requirements are met. A more recent work on the

probabilistic response-time analysis of parallel DAG tasks is

by Ben-Amor et al. [4], [5]. The authors have studied the

probabilistic response-time analysis of parallel DAG tasks

upon multiprocessor systems using partitioned fixed-priority

scheduling at the subtask level. In their model each subtask

is described by a probabilistic worst-case execution time and

static precedence constraints between them. Based on the

above, the authors derive probabilities for subtask response-

times using convolution-based approaches and compose an

overall response-time.

III. TASK AND PROBLEM MODEL

We consider a given set T of probabilistic spo-

radic constrained-deadline conditional parallel directed-acyclic

graph (DAG) tasks in a multiprocessor system that is com-

prised of M identical (homogeneous) processors. Each task

releases an infinite sequence of task instances, namely jobs.

Each conditional parallel DAG task τi ∈ T is defined by a

conditional DAG structure Gi (to be defined later), a relative

deadline Di and a minimal inter-arrival time Ti, which denotes

the minimal distance between two job releases. In this paper

we only consider constrained-deadline tasks, i.e., Di ≤ Ti for

every task τi. An exemplary probabilistic conditional DAG is

illustrated in Figure 1. A probabilistic conditional directed-

acyclic graph is composed of nodes V and edges E that

denote precedence and control flow constraints. Each node is

either a subjob node with an associated execution time or a

condition node that denotes probabilistic conditional branching

to subjobs. In the illustrated example, two decision nodes with

two possible branching options each are given. The given

structure yields four different enumerable DAG realizations

whose probability of realization is given by the probability of

traversing a specific path of condition nodes. A conditional

DAG is composed of finitely many DAGs, each of which

consist of a tuple (V,E), where V denotes the finite set of

PROBABILITY LENGTH VOLUME

0.42 12 13
0.18 13 14
0.28 9 10
0.12 11 11

TABLE I
TABULAR REPRESENTATION OF THE PROBABILITIES OF THE PARAMETERS

VOLUME AND LENGTH FOR THE PROBABILISTIC CONDITIONAL DAG TASK

ILLUSTRATED IN FIGURE 1.

subjobs and the relation E ⊆ V × V denotes the precedence

constraints of these subjobs such that there are no directed

circles in the underlying graph. For each of these DAGs the

volume and length parameters are calculated as follows. We

use pre(vi) := {vj ∈ V | (vj , vi) ∈ E} and vj ≺ vi if vj ∈
pre(vi) Conversely, we use succ(vi) := {vj ∈ V | (vi, vj) ∈
E} and vj ≻ vi if vj ∈ succ(vi).

Definition 1 (Path). A path π in a directed-acyclic graph G

is any sequence of subjobs vi1 ≺ vi2 ≺ . . . ≺ vik for vij ∈ V
such that pre(vi1 ) = ∅ and succ(vik) = ∅.

Definition 2 (Length). Let a path π be a sequence of subjobs

such that each subjob in the sequence is an immediate succes-

sor of the previous subjob in terms of precedence constraints.

Then the length of a path is given by

ℓen(π) :=
∑

vi∈π

ℓen(vi)

where the length of a subjob denotes its execution time.

Subsequently, the length of DAG G is given by

ℓen(G) := max{ℓen(π) | π is a path in G}.

Definition 3 (Volume). The volume of DAG G is given by the

graph’s cumulative execution time, i.e.,

vol(G) :=
∑

vi∈V

ℓen(vi).

A. Probabilistic Parametric Description

Each probabilistic conditional DAG task is described by

the tuple τi = (Gi, Di, Ti) where Gi denotes a probabilistic

conditional DAG structure, Di denotes the relative deadline

and Ti denotes the minimal inter-arrival time between two

job releases. For each task τi ∈ T a cumulative distribution

function (CDF) is inferred from the conditional DAG structure,

where Fi(u, v) describes the probabilistic behaviour of the vol-

ume and length of a DAG instance. That is each task τi releases

an infinite number of jobs τi,ℓ, ℓ = 0, 1, 2, . . . and each job is

associated with a DAG instance Gi,ℓ such that the parameters

volume and length of Gi,ℓ are a realizations according to the

probabilistic characterization of the distribution function.

For instance the distribution function of the conditional

DAG illustrated in Figure 1 is devised by the calculation

of the probability for each of the DAG’s realizations and
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its respective parameter values. The instance illustrated in

Figure 2 represents the graph where both upper edges are

chosen for which the probability is 0.7 · 0.6 = 0.42. The

associated length is 12 and the associated volume is 13. By

similar reasoning, choosing the edges with probability 0.7·0.4,

0.3 · 0.6, and 0.3 · 0.4 yield 0.28, 0.18 or 0.12 realization

probability of the associated DAG structures. Calculating the

volume and length of each of these realizations yields the

data listed in Table I. Consequently, we derive Fi(u, v) =
P(vol(Gi) ≤ u, ℓen(Gi) ≤ v) as follows:

1(u−13) ·1(v−12) ·0.42+1(u−14) ·1(v−13) ·0.18

+1(u−10)·1(v−9)·0.28+1(u−11)·1(v−11)·0.12

where 1 denotes the step function, i.e., 1(x) is 1 if x ≥ 0 and

0 otherwise. We note that for probabilistic conditional DAG

tasks as presented, the CDF is a step function with finitely

many steps. Moreover, we assume that the probabilities of

DAG instances are independent.

B. Tardiness

Every job that misses its deadline must be handled by the

system, i.e., a mechanism must be devised that decides the

actions taken upon such events. A common mechanism is the

immediate abortion of every job which exceeds its deadline

in order to avoid any interference of subsequent jobs. This

approach is inefficient in the sense that all computation results

and state changes are dumped and even may have to be

revoked for consistency reasons, which holds especially true

if the amount of time that the deadline is exceeded is rather

small. Informally speaking, the tardiness of a job measures the

delay of job with respect to its deadline.

Definition 4 (Tardiness). Let δi(ℓ) denote the tardiness of the

ℓ-th job of task τi, i.e., the amount of time that the ℓ-th job

exceeds the task’s deadline under the consideration of possibly

pending workload from prior jobs. The tardiness can be

recursively stated as δi(ℓ) = max{δi(ℓ− 1)+ (Ri,ℓ−Di), 0},
where Ri,ℓ denotes the response time of the ℓ− th job of task

τi. Furthermore δi(0) = 0 by definition.

We note that due to this definition, the ℓ-th job of task

τi does meet its deadline if δi(ℓ) = 0, and it does miss its

deadline if δi(ℓ) > 0. In pursuance of improving this problem

we intent to bound the tardiness of each job of a task by a

tardiness bound.

Definition 5 (Tardiness Bound). A task τi is said to have a

tardiness bound ρi > 0 if any job of that task will be aborted

if the job’s tardiness exceeds ρi, i.e., we have 0 ≤ δi(ℓ) ≤ ρi
for all ℓ ≥ 0.

The tardiness bound is user-specified and refines the formal

description of a probabilistic sporadic constrained-deadline

parallel DAG task to the tuple (Fi, Di, Ti, ρi).

C. Deadline Misses

We pursue to design reservation systems that pro-

vide sufficient service to each task τi in the task set

3
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3
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Fig. 2. DAG instance of the exemplary conditional DAG task shown in
Figure 1 where the conditional branches with probability 0.7 and 0.6 are
chosen.

T = {τ1, τ2, . . . , τn} such that the probability of k consecutive

deadline misses is bounded.

Definition 6 (Consecutive Deadline Misses). Any sequence of

k consecutive job releases τi,ℓ, τi,ℓ+1, . . . , τi,ℓ+k−1 for ℓ ≥ 0
is subject to k-consecutive deadline misses if the following

conditions hold:

• All jobs in the sequence miss their deadline

• Either ℓ = 0 or the previous job τi,ℓ−1 does not miss its

deadline.

For each task we define a function θi : N→ [0, 1] to specify

that we tolerate k consecutive deadline misses for a given

probability of at most θi(k).

Definition 7 (k Consecutive Deadline Miss Constraint). Let

φi(j, k) := P(δi(j) > 0, . . . , δi(j + k − 1) > 0 | j =
0 or δi(j − 1) = 0) denote the probability that the sequence

τi,j , τi,j+1, . . . , τi,j+k−1 suffers from k-consecutive deadline

misses. Then a probabilistic conditional DAG task τi is said

to satisfy the deadline constraint θi(k) if

sup
j≥0

{φi(j, k)} = φi(0, k) ≤ θi(k), (1)

i.e., at each position j the probability φi(j, k) does not exceed

the threshold θi(k).

We note that the equality in Eq. (1) is due to the lack of

pending workload prior to the release of job τi,j .

IV. SCHEDULING PROBLEM

We use a reservation system to handle the scheduling of the

DAG tasks and use any partitioned scheduling algorithm to

schedule the reservation system and other tasks in the system.

A. Reservations

In a reservation system service is reserved for each prob-

abilistic parallel DAG task τi due to some regulation. At

those reservations the task instances of τi can be processed.

The reservation system is mi-in-parallel if there are at most

mi ∈ N reservations at the same time. In this work we consider

a simplified version of in-parallel reservation system:

Definition 8 (Our Reservation System). A reservation system

consists of mi reservation servers that provide Ei amount of

service each and that is replenished every Pi > 0 time units.

More specifically, to provide the service, each Pi time units

there are activated a multiset of mi ∈ N distinct reservations,
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that each guarantee a service of Ei time units over an interval

of length Pi.

The instances of a task are assigned to the provided service

in first-in-first-out (FIFO)-manner. Furthermore, we assume

that at each time all assigned reservations only serve the

subjobs of a single DAG job by the FIFO-policy. The reser-

vation system is scheduled upon M identical multiprocessors

according to any scheduling paradigm and provides service to

the DAG jobs whenever they are scheduled as follows.

Definition 9 (List-Scheduling). In a list schedule on mi

in-parallel reservation servers a subjob of a given DAG

job G = (V,E) is executed on any reservation server

that is idle and scheduled for execution and as soon as

all preceding subjobs have executed until completion. More

formally, the starting time si for each subjob vi is given

by min{t | some scheduled reservation server idles at t, t ≥
max{fj | vj ∈ pre(vi)}}.

For the remainder of this section, we assume the existence

of a feasible schedule S upon M identical multiprocessors,

meaning that all reservations will provide the promised ser-

vice.

Definition 10 (Work). Let workSi (t1, t2) denote the amount of

workload from DAG jobs derived by task τi that was worked

during the time interval t1 to t2 given the schedule S.

Based on this definition, the worst-case response time of

a job τi,ℓ of a DAG task τi that was released at ti,ℓ is

given by the smallest t′ ≥ ti,ℓ such that workSi (ti,ℓ, t
′) ≥

vol(Gℓ
i)+ backlog

S
i (ti,ℓ), where backlogSi (ti,ℓ) is the amount

of unfinished work at time ti,ℓ of jobs of τi released before

ti,ℓ. Note that backlogSi (ti,ℓ) = 0 if there are no previous

deadline misses since we assume Di ≤ Pi in our system

model. In the following we express the processed work in

terms of provided service and develop a response-time bound

as stated in Theorem 1.

For sake of argument, let S denote a feasible schedule of

a reservation system that works a job of a DAG task τi until

completion. Furthermore let servSi (t1, t2) denote the service

that is provided to the DAG job during the time interval from

t1 to t2 in the schedule S.

Definition 11 (Envelope). Let S be a concrete schedule

of T. Consider a given DAG job instance G of some task

in T with subjobs V = {v1, . . . , vℓ}. Let each subjob vk
have the starting time sk and finishing time fk in S. We

define the envelope sk1
, fk1

, sk2
, fk2

, . . . , skp
, fkp

of G, with

p ∈ {1, . . . , ℓ}, recursively by the following properties:

1) ki 6= kj ∈ {1, . . . , ℓ} for all i 6= j

2) vkp
is the subjob of V with maximal finishing time

3) vki−1
is the subjob in pre(vki

) with maximal finishing

time, for all i ∈ {p, p− 1, . . . , 2}
4) pre(vk1

) = ∅

We note that the definition of an envelope for a DAG job

instance may be not unique if there are subjobs with equal

finishing time. In this case we choose one among them

arbitrarily.

Based on the definition of an envelope, we are able to

formally state the following lemma.

Lemma 1. Given a schedule S of T. We consider a task τi ∈ T

with an mi-in-parallel reservation system. Let G = τi,j be one

DAG job instance of τi with envelope sk1
, fk1

, . . . , skp
, fkp

.

Then the amount of work that is finished during the interval

from fkq−1
to fkq

for q ∈ {2, . . . , p} is lower bounded by

workSi (fkq−1
, fkq

) ≥servSi (fkq−1
, skq

) + servSi (skq
, fkq

)

− (mi − 1)ℓen(vkq
)

where vkq
is the subjob from the envelope starting at time skq

and finishing at fkq
.

Proof: In the proof we split the work at time skq

and estimate each summand of workSi (fkq−1
, fkq

) =
workSi (fkq−1

, skq
) +workSi (skq

, fkq
) on its own. Combining

both estimations yields the desired result.

In a first step we will prove that between finish and start of

two consecutive subjobs in the envelope, the provided service

is fully utilized by the DAG instance, i.e.,

workSi (fkq−1
, skq

) = servSi (fkq−1
, skq

)

holds for all q ∈ {2, . . . , p}. Given the workload conserving

properties of list-scheduling used to dispatch subjobs to the

service, an eligible subjob is scheduled whenever service is

available. Since by definition skq
is the earliest time that vkq

is able to execute, all service during fkq−1
to skq

must have

been used to work on other (non envelope) subjobs.

Secondly, we show that the workload workSi (skq
, fkq

) from

start to finish of a subjob in the envelope can be estimated by

max{servSi (skq
, fkq

)− (mi − 1) · ℓen(vkq
), ℓen(vkq

)}.

Clearly, during the starting time and finishing time of vkq

at least ℓen(vkq
) will be worked. Additionally, given the

provided service servSi (skq
, fkq

) due to sequential execution

of vkq
, at most mi−1 reservations of duration ℓen(vkq

) may be

unused. ThereforeworkSi (skq
, fkq

) ≥ max{servSi (skq
, fkq

)−
(mi − 1) · ℓen(vkq

), ℓen(vkq
)}.

Based on this lemma, we can calculate the response-time

of a DAG job. To do this we first extend the Lemma.

Lemma 2. Under the conditions of Lemma 1, we have that

workSi (rG, rG+t) ≥ serv
S
i (rG, rG+t)−(mi−1)ℓen(G) (2)

holds, where rG is the release of job G and 0 ≤ t ≤ fkp
.

Proof: The main part to prove this lemma is already done

in Lemma 1. We just have to be careful about the scenarios

where t is not a time instant of the envelope.

Similarly to the proof of Lemma 1 we can show that

workSi (fkq−1
, t) = servSi (fkq−1

, t) for all t ∈ [fkq−1
, skq

]
and that workSi (skq

, t) ≥ servSi (skq
, t) − (mi − 1)ℓen(vkq

)
for all t ∈ [skq

, fkq
]. Furthermore, by the same reasoning

workSi (rG, t) = servSi (rG, t) holds for all t ∈ [rG, sk1
].
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We obtain the desired result by splitting the interval [rG, t]
into parts already described above and estimating all of them

at the same time. To formalize this, we define

µ := (rG, sk1
, fk1

, . . . , skp
, fkp

).

For q ∈ {1, . . . , 2p+ 1} we denote by µ(q) the q-th entry of

µ and by µt(q) := min{µ(q), t} the q-th entry bounded by t.

By decomposing workSi (rG, rG + t), we obtain that it can

be written as the sum of
∑p

q=1
workSi (µ

t(2q − 1), µt(2q))

and of
∑p

q=1
workSi (µ

t(2q), µt(2q + 1)). The first summand

is lower bounded by the sum of the corresponding

service values
∑p

q=1
servSi (µ

t(2q − 1), µt(2q)), and

the second summand from above is lower bounded by
∑p

q=1

(

servSi (µ
t(2q), µt(2q + 1))− (m− 1)ℓen(vkq

)
)

. By

combining both of the results, we obtain the lower bound

2p
∑

q=1

servSi (µ
t(q), µt(q + 1))− (m− 1)

( p
∑

q=1

ℓen(vkq
)

)

,

which is again bounded by servSi (rG, rG+t)−(m−1)ℓen(G).
We conclude that workSi (rG, rG + t) ≥ servSi (rG, rG + t)−
(m− 1)ℓen(G).

Definition 12 (Service Bound Function). For a task τi ∈ T

the minimal service that is provided by the reservation system

during an interval of length t ≥ 0 is denoted by sbfi(t). We

call sbfi the service bound function of τi.

We use the service bound function to provide a lower bound

servSi (rG, rG + t) ≥ sbfi(t) for all schedules S. This leads

us to the following theorem.

Theorem 1 (Response-Time Bound). We consider a task τi ∈
T. Assume that the reservation system of τi is mi-in-parallel

and its minimal service is described by sbfi. Let G be the

DAG which describes the task instance τi,j of τi. Then the

response time of G is upper-bounded by

min{t > 0 | sbfi(t) ≥W
G
i }. (3)

where WG
i := vol(G) + (mi − 1) · ℓen(G) + backlogSi (rG)

for notational brevity

Proof: Let t′ := min{t > 0 | sbfi(t) ≥WG
i }. We do the

proof by contraposition: If we assume that t′ does not bound

the response time, then t′ < fkp
, where fkp

is the last entry

in the envelope of G. In this case Lemma 2 yields:

workSi (rG, rG + t′) ≥ servSi (rG, rG + t′)− (mi − 1)ℓen(G)

≥ sbfi(t
′)− (mi − 1)ℓen(G)

By the definition of t′ we have sbfi(t
′) ≥ vol(G)+(mi−1) ·

ℓen(G) + backlogSi (rG). Hence,

workSi (rG, rG + t′) ≥ vol(G) + backlogSi (rG)

the job G is finished at time t′, i.e., t′ ≥ fkp
.

We emphasize that the reservation schemes and respec-

tive supply-bound function are not enforced to follow any

specific kind of reservation scheme. The complexity of the

worst-case schedule of provided service

0 2(Pi-Ei) 2Pi-Ei 3Pi-2Ei 3Pi-Ei

miEi

2miEi

t

worki

Fig. 3. Supply Bound Function sbf(t) of the reservation system.

calculation of the response-time depends only on the supply

bound function. For instance, Figure 3 shows the supply-bound

function of a our reservation system from Definition 8. As

depicted, there may be no service provided to the task for up

to 2(Pi − Ei) time units in the worst case. We note that the

first activation of reservations has to occur no later than at the

release of the first job of τi. Otherwise our analysis becomes

invalid. However, the reservation system can stop assigning

new reservation servers if there is no pending or unfinished

job of τi, as long as it starts assigning new reservations if new

jobs arise in the ready queue.

If we assume a reservation server as in Definition 8, then

the response-time or service-time of a DAG job G is described

by the following theorem.

Theorem 2 (Service Time). Let G = τi,j be a task instance of

τi. We assume that for τi we have a reservation system as in

Definition 8 with mi equal sized in-parallel services Ei ≤ Pi.

We can give an upper bound RG on the response time of G

by

RG =

(⌈

WG
i

miEi

⌉

+ 1

)

(Pi − Ei) +
WG

i

mi

(4)

where WG
i := vol(G) + (mi − 1)ℓen(G) + backlogSi (rG) for

notational brevity.

Proof: For the proof we assume that vol(G) > 0 since

otherwise no work has to be done and RG = 0 is already

a trivial response-time bound. We aim to utilize Theorem 1.

Therefore, we have to find the minimal t > 0 such that

sbfi(t) =WG
i . In the following we show one illustrative and

one formal proof to justify that this minimal t is in fact RG

from Eq. (4):

We assume the worst-case service as depicted in Figure 3.

We can see in the figure that every time when service is

provided, it is done on mi resources simultaneously. Hence,

the total time which τi has to be served, until G is finished,

6



is
WG

i

mi
. This happens during

⌈

Wi

mi·Ei

⌉

+ 1 service cycles.

Therefore, we have to add this many times the amount of

the service cycle, where τi is not served, i.e., (Pi − Ei). In

total, the response time is
(⌈

WG
i

mi·Ei

⌉

+ 1
)

(Pi − Ei) +
WG

i

mi
.

For the more formal proof, we also assume the worst-case

service from Figure 3. For the function g : R>0 → R>0 with

g(t) :=

(⌈

t

miEi

⌉

+ 1

)

(Pi − Ei) +
t

mi

the composition sbf ◦ g is the identity and the func-

tion g picks the minimal value of the inverse image of

sbfi(t), i.e., g(t) = min(sbf−1

i (t)) holds. Hence, we obtain

g(WG
i ) = min{t > 0 | sbfi(t) ≥WG

i }.
In general, if we know an upper bound b on the backlog of

the previous job, we can state the response time bound from

Eq. (4) independent from the previous schedule, by

R′
G(b) =

(⌈

V G
i (b)

miEi

⌉

+ 1

)

(Pi − Ei) +
V G
i (b)

mi

(5)

where V G
i (b) := vol(G) + (mi − 1)ℓen(G) + b. Based on

Eq. (5), we bound the response time for the case that the

preceding job has a deadline miss and for the case that the

preceding job has no deadline miss.

Corollary 1. Under the assumptions of Theorem 2,

R′
G(ρi ·mi) is an upper bound on the response time of G

if the preceding job has a deadline miss, and R′
G(0) is an

upper bound if the preceding job has no deadline miss.

Proof: This follows directly from Theorem 2 by using

either backlogSi (rG) ≤ ρi ·mi (in case of a deadline miss) or

backlogSi (rG) = 0 (in case of no deadline miss).

V. RESERVATION ANALYSIS AND OPTIMIZATION

In this section we devise the analysis and optimization

algorithm to generate reservation systems that provably respect

the upper-bounds for k consecutive deadline misses in a

probabilistic sense. We emphasize that in order to co-design

the k consecutive deadline-miss constraints with the reserva-

tions configurations time-efficient algorithms are required to

calculate the probabilities for k consecutive deadline misses

for any given reservation configuration.

A. Analysis of Reservation Systems

Based on the finite sample space of DAG structures G of the

probabilistic conditional DAG tasks τi we define the random

variables R1
i := (G 7→ R′

G(ρimi)) and R0
i := (G 7→ R′

G(0)),
which yield for each DAG job the response time bounds

from Corollary 1 with and without a previous deadline miss.

According to Definition 7, the constraint for k consecutive

deadline misses is fulfilled if

φi(0, k) ≤ θi(k), (6)

where φi(0, k) is the probability that the first k jobs of τi miss

their deadline, and θi(k) is some predefined value.

Since φ(0, k) = P (δi(k) > 0, δi(k − 1) > 0, . . . , δi(1) > 0),
we can use Bayes’ Theorem, to reformulate φ(0, k) as

P (δi(k) > 0 | δi(k − 1) > 0, . . . , δi(1) > 0) · φi(k − 1).

The probability that τi,k does not meet its deadline does not

decrease if the tardiness of the preceding job is increased.

Therefore, if δi(k−1) = ρi, then the probability for a deadline

miss of τi,k is maximal. In this case, the amount of tardiness of

the other jobs δi(k−2), . . . , δi(1) is irrelevant for the tardiness

of τi,k. More specifically,

P (δi(k) > 0 | δi(k − 1) > 0, . . . , δi(1) > 0)

≤ P (δi(k) > 0 | δi(k − 1) = ρi)

holds and we can thus bound the probability for k consecutive

deadline misses by

φi(0, k) ≤ P (δi(k) > 0 | δi(k − 1) = ρi) · φi(0, k − 1). (7)

Then by Corollary 1 we know that

P (δi(k) > 0 | δi(k − 1) = ρi) ≤ P
(

R1
i > Di

)

and for the probability of the first job (without previous

deadline miss)

φi(0, 1) = P (δi(1) > 0) ≤ P
(

R0
i > Di

)

.

Combining the results yields a bound on the probability of k

consecutive deadline misses:

φi(0, k) ≤ P
(

R1
i > Di

)

· φi(0, k − 1)

≤ . . . ≤ P
(

R1
i > Di

)k−1
· φi(0, 1)

≤ P (R′
i > Di)

k−1
· P

(

R0
i > Di

)

Since P
(

R0
i > Di

)

≤ P
(

R1
i > Di

)

, we also derive a simpli-

fied bound for the probability of k consecutive deadline misses

of task τi by

φi(0, k) ≤ P
(

R1
i > Di

)k
. (8)

As a prerequisite to derive upper-bounds on response-times

for queuing systems it must be shown that the system is

stable. Informally speaking this means that all backlog of the

reservation system will have been worked at some point in

time. We first give a formal definition of stability and then

show that our devised reservation-based queuing system is

stable by construction.

Definition 13 (Stability). A reservation system Ri is consid-

ered stable if for all ℓ ≥ 0 with δi(ℓ) = 0 it is almost certain

that there exists k > 0 such that δi(k+ ℓ) = 0. More formally,

lim
k→∞

φ(0, k) = 0, (9)

i.e., the probability for k consecutive deadline misses ap-

proaches 0 for k →∞.

Theorem 3 (Stability). A reservation system Ri is stable if

P(R′
i > Di) < 1.

Proof: The probability for k consecutive deadline misses

is bounded by φi(0, k) ≤ P
(

R1
i > Di

)k
according to Eq. (8).
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Algorithm 1 Calculation of Reservation Systems

Require: T, θ1(k1), θ2(k2), . . . , θn(kn), Ω1,Ω2, . . . ,Ωn;

Ensure: R1,R2, . . . ,Rn that satisfy the above requirements;

1: Initialize reservations R← {};
2: for each task τi in {τ1, τ2, . . . , τn} do

3: for mi in {1, 2, . . . ,Ωi} do

4: Ei ← min{Ei | (Φn
i )

ki ≤ θi(ki)};
5: if Ei could not be found then

6: continue;

7: else

8: Ri ←Ri∪{mi reservations with service Ei};
return R;

If
(

R1
i > Di

)

< 1, then P
(

R1
i > Di

)k
→ 0 for k →∞. This

concludes the theorem.

In consequence we do not have to especially consider

stability concerns in the design of the reservation systems other

than k-consecutive deadline constraints.

B. Distribution Function Calculation

In this section, we show how to practically calculate the

response-time upper bounds. First, we define the auxiliary

random variable

Xi :=
vol(G) + (mi − 1) · ℓen(G) + ρi ·mi

mi · Ei

=
V G
i

miEi

for which the distribution function P(Xi ≤ u) can be directly

computed from the probabilistic DAG task model, i.e., by

enumerating over all possible DAG job structures weighted

by their realization probabilities as previously described. With

reference to Corollary 1, the distribution function of R1
i can

be written as follows:

P(R1
i ≤ u) = P ((Pi − Ei) · (⌈Xi⌉+ 1) + Ei ·Xi ≤ u)

Let dom(Xi) denote all values that Xi can take, then we define

the set of constant values Ii := {ℓ ∈ N | ⌊inf(dom(Xi))⌋ ≤
ℓ ≤ ⌈sup(dom(Xi))⌉}. Moreover given Ii the domain of

ψ(Xi) = (Pi − Ei) · (⌈Xi⌉+ 1) + Ei ·Xi can be partitioned

as follows:
⋃

ℓ∈Ii

{(Pi − Ei) · (ℓ+ 2) + Ei ·Xi | ℓ < Xi ≤ ℓ+ 1}

by the fact that ⌈Xi⌉ 7→ ℓ + 1 for every Xi ∈ (ℓ, ℓ + 1].
By the σ-additivity property of distribution functions and

rearrangements yields

∑

ℓ∈Ii

P(Xi ≤
u− (Pi − Ei) · (ℓ + 2)

Ei

| ℓ < Xi ≤ ℓ+1) (10)

C. Optimization of Reservation Systems

In this section we present Algorithm 1 to calculate reserva-

tion systems for the scheduling of probabilistic constrained-

deadline conditional DAG tasks. Under the consideration of

probabilities of upper-bounds for the maximal number of

tolerable ki consecutive deadline misses and given tardiness

bounds the objective is to find minimal numbers of in-

parallel reservations mi and associated minimal amounts of

service time Ei. For each probabilistic constrained-deadline

conditional DAG task the algorithm determines all feasible

configurations (mi, Ei) by iterating through the number of

in-parallel reservations mi ∈ [1,Ωi] and search for the

smallest required reservation service to still comply with the

consecutive deadline-miss constraints.

Theorem 4 (Monotonicity). The functions

Φn
i : R>0 → R>0, Ei 7→ P(R1

i > Di)|mi=n

that yield the probabilities of an upper-bound of a deadline-

miss for a fixed number of in-parallel reservations with respect

to the service time Ei are monotonically decreasing.

Proof: For easier readability let

Yi :=
vol(Gi) + (mi − 1) · ℓen(Gi) + ρi ·mi

mi

for which the distribution function is independent of Ei for

every fixed mi. According to the definition of P(R1
i > Di) in

the beginning of this section, we have to prove that

P

(

(

⌈

Yi

Ei

⌉

+ 1
)

· (Pi − Ei) + Yi > Di

)

≥ P

(

(

⌈

Yi

Ei + δ

⌉

+ 1
)

(Pi − (Ei + δ)) + Yi > Di

)

for any positive arbitrary increment δ ≥ 0 and any realizations

of Yi ≥ 0. Let an arbitrary realization Yi ≥ 0 satisfy

(

⌈

Yi

Ei + δ

⌉

+ 1) · (Pi − (Ei + δ)) + Yi > Di

In this case Yi satisfies

(

⌈

Yi

Ei

⌉

+ 1) · (Pi − Ei) + Yi > Di

as well which yields the assumption by the property of

distribution functions.

Due to the monotonicity of the functions Φn
i as shown in

Lemma 4, it is possible to find the minimal amount of reser-

vation service to guarantee compliance with the consecutive

deadline-miss constraints by using binary search in the interval

(0, Di]. We emphasize that Ωi is an upper-bound specified by

the user that can be set to an arbitrary fixed number that is

larger than the number of available processors or determined

as the point where an increase in the number of in-parallel

reservations does not yield a significant decrease in the amount

of required service to satisfy the deadline-miss probability

constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a probabilistic version and formal

description of the widely used conditional parallel DAG task

model and proposed a resource reservation system that allows

for scheduling anomaly free scheduling whilst provably guar-

anteeing probabilistic quantities such as bounded tardiness,

8



stability, and probabilistic upper-bounds of k consecutive

deadline misses. In addition, we provided an algorithm to

optimize the reservations systems with respect to the above

quantities and showed that probabilistic conditional DAG tasks

with a high degree of parallelism can improve a system’s

resource usage if deadline misses are allowed. In the future

we intent to improve the tightness of our proposed bounds and

evaluate the effectiveness of the approach by implementing a

prototype system.
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