
Leveraging LLVM’s ScalarEvolution for
Symbolic Data Cache Analysis

Valentin Touzeau
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

valentin.touzeau@cs.uni-saarland.de

Jan Reineke
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

reineke@cs.uni-saarland.de

Abstract—While instruction cache analysis is essentially a
solved problem, data cache analysis is more challenging. In
contrast to instruction fetches, the data accesses generated by
a memory instruction may vary with the program’s inputs and
across dynamic occurrences of the same instruction in loops.

We observe that the plain control-flow graph (CFG) ab-
straction employed in classical cache analyses is inadequate to
capture the dynamic behavior of memory instructions. On top of
plain CFGs, accurate analysis of the underlying program’s cache
behavior is impossible.

Thus, our first contribution is the definition of a more
expressive program abstraction coined symbolic control-flow
graphs, which can be obtained from LLVM’s ScalarEvolution
analysis. To exploit this richer abstraction, our main contribution
is the development of symbolic data cache analysis, a smooth
generalization of classical LRU must analysis from plain to
symbolic control-flow graphs.

The experimental evaluation demonstrates that symbolic data
cache analysis consistently outperforms classical LRU must
analysis both in terms of accuracy and analysis runtime.

Index Terms—cache analysis, chains of recurrences, data
caches, symbolic analysis

I. INTRODUCTION

Due to technological developments, the latency of accesses
to DRAM-based main memory is much higher than the latency
of arithmetic and logic computations on processor cores. This
“memory gap” is commonly tackled by a hierarchy of caches
between the processor cores and main memory.

In the presence of caches, the latency of a memory access
may vary widely depending on the level of the memory
hierarchy that is able to serve the access. Hits to the first-
level cache take just a few processor cycles, while accesses
that miss in all cache levels and thus need to be served by
main memory can take hundreds of cycles.

This variability is a challenge in the context of real-time
systems, where it is necessary to bound a program’s worst-case
execution time (WCET) [1] to guarantee that safety-critical
applications meet all of their deadlines. For accurate WCET
analysis it is thus imperative to take caches into account. The
timing variability induced by caches also introduces security
challenges. Implementations of cryptographic algorithms have
been shown to be vulnerable to cache timing attacks [2]
and cache analysis [3], [4], [5] may help to uncover such
vulnerabilities or prove their absence.

Cache analysis aims to statically characterize a program’s
cache behavior by classifying memory accesses in the program
as guaranteed cache hits or misses. One perspective on cache
analysis is that it is the composition of two phases:

1) A transformation of the program under analysis into a
simpler program abstraction: a control-flow graph (CFG)
whose edges are decorated with memory accesses.

2) An analysis of this decorated CFG that classifies accesses
as “always hit”, “always miss”, or “unknown”.

For instruction cache analysis this two-phase approach works
well, as CFGs accurately captures most programs’ instruction
fetch sequences. For data cache analysis, however, a plain CFG
abstraction can be highly inaccurate. Consider for example the
following simple loop:

for (int x = 0; x < 100; x++)
sum += A[x]

In each iteration of the loop a different address is accessed,
and so the corresponding edge in the CFG needs to be
conservatively decorated with all possible addresses. The order
in which the array elements are accessed is lost and it becomes
impossible to make accurate predictions about the program’s
cache behavior. A program abstraction that more precisely
captures a program’s memory access behavior is thus needed.

Our first contribution is the definition of symbolic control-
flow graphs in Section IV, which is our formalization of the
output of LLVM’s ScalarEvolution analysis [6], [7]. Symbolic
CFGs accurately capture the link between loop iterations and
accessed memory blocks via chains of recurrences [8], [9] in
a manner that is amenable to static analysis.

To exploit this more expressive program abstraction our
main contribution is the development of symbolic data cache
analysis in Section V, a smooth generalization of Ferdinand’s
classical LRU must analysis [10], [11] from plain to symbolic
control-flow graphs. To fully realize the potential of symbolic
data cache analysis we further introduce a context-sensitive
analysis combining loop peeling and unrolling in Section VI
and various implementation tricks in Section VII.

The experimental evaluation on the PolyBench benchmark
suite in Section VIII demonstrates that symbolic cache analysis
compares favorably to classical LRU must analysis both in
terms of accuracy and analysis runtime.

ar
X

iv
:2

31
0.

04
80

9v
2

 [
cs

.P
L

]
 1

7
O

ct
 2

02
3

II. BACKGROUND

A. Caches

Caches are fast but small memories that buffer parts of the
large but slow main memory in order to bridge the speed gap
between the processor and main memory. Caches consist of
cache lines, which store data at the granularity of memory
blocks b ∈ B. Memory blocks usually comprise a power-of-
two number of bytes BS , e.g. 64 bytes, so that the block
block(a) that address a maps to is determined by truncating
the least significant bits of a, i.e., block(a) = ⌊a/BS⌋. In order
to facilitate an efficient cache lookup, the cache is organized
in sets such that each memory block maps to a unique cache
set set(b) = b mod NS , where NS is the number of sets.
The number of cache lines k in each cache set is called the
associativity of the cache.

If an accessed block resides in the cache, the access hits the
cache. Upon a cache miss, the block is loaded from the next
level of the hierarchy. Then, another memory block has to be
evicted due to the limited size of the cache. The block to evict
is determined by the replacement policy. In this paper, we as-
sume the least-recently-used (LRU) policy, which replaces the
block that has been accessed least recently. A memory block b
hits in an LRU cache of associativity k if b has been accessed
previously and less than k distinct blocks in the same cache set
have been accessed since the last access to b. LRU is generally
considered to be the most predictable replacement policy [12].

In this paper, we refer to the age of block b as the number of
distinct blocks in the same cache set that have been accessed
since the last access to b. Thus, an access to block b hits the
cache if and only if its age is less than the associativity k .

B. Control-Flow Graphs as a Program Representation

Control-flow graphs (CFGs) are a program representation
commonly employed in compilers and static analysis tools.
A CFG is a directed graph G = (V,E, v0), whose vertices V
correspond to control locations in the program including the
initial control location v0 ∈ V , and whose edges E represent
the possible control flow between the graph’s vertices.

For the purpose of cache analysis, CFGs are used to repre-
sent the possible sequences of memory accesses generated by
the underlying program. To this end, each edge of the CFG
is decorated with the set of memory addresses that may be
accessed when control passes along that edge.

As defined above, CFGs over-approximate the behavior
of the program they represent as they do not capture the
functional semantics of the instructions. In particular, all
paths through the graph are assumed to be feasible even if, in
reality, some are not. Also, and this is particularly problematic
for data cache analysis, the CFG representation does not
capture the dependence of the accessed memory addresses
on the loop iterations. We will see in Section III how this
may lead to gross overapproximations of the number of
cache misses. To overcome this issue, we introduce symbolic
control-flow graphs in Section IV.

C. Ferdinand’s May and Must Cache Analysis

The aim of Ferdinand’s may and must cache analyses [10],
[11] is to classify memory accesses in a CFG as definite hits
or definite misses. As noted before, under LRU replacement,
an access results in a cache hit if and only if the age of the
accessed block is less than the cache’s associativity.

Instead of computing all reachable concrete cache states,
must and may analysis operates on abstract cache states, which
maintain upper and lower bounds on the age of each memory
block. Each block’s bounds hold independently of the ages
of other blocks. This allows for a compact representation of
large sets of concrete cache states. For example, the abstract
must cache state λb.∞ that maps every block to age bound ∞
compactly represents all possible concrete cache states. As the
correlation between the ages of different blocks is lost, the re-
sulting analysis is not exact. However, recent work [13], [14],
[15] has shown that the loss in precision due to this abstraction
is small in practice. Our symbolic data cache analysis intro-
duced in Section V, can be seen as a smooth generalization
of Ferdinand’s must analysis to symbolic control-flow graphs.

III. ILLUSTRATIVE EXAMPLE

As an illustrative example of the drawbacks of cache anal-
ysis performed on plain CFGs, consider the simple program
in Figure 1a. The first loop of our example program iterates
across array A in the forward direction, while the second loop
iterates across the same array in the opposite direction.

A. Intuitive Cache Analysis

Let us intuitively analyze the program’s cache behavior. For
this analysis, we will assume a tiny set-associative cache with
LRU replacement consisting of 2 cache sets, an associativity
of 4, and cache lines of size 8 bytes. Thus, the cache has a
capacity of 2 · 4 · 8 = 64 bytes. Also assume that integers are
of size 4 bytes, and so the cache can hold 16 array cells.

Assuming an initially empty cache, the first loop does not
exhibit any temporal locality, as each array cell is only touched
once. However, it does exhibit spatial locality, as pairs of adja-
cent array cells may reside in the same memory blocks. Thus,
every other iteration of the first loop will result in a cache hit.

The second loop accesses the same array cells as the
first. Now it depends on the cache geometry whether and
to what extent this temporal locality can be exploited. Un-
der our assumptions, the cache will contain array cells
A[84], A[85], . . . , A[99] after the first loop has terminated.
Thus, the first 16 iterations of the second loop hit the cache.
The remaining iterations profit only from spatial locality as
the first loop did, hitting in every other iteration.

B. Traditional Cache Analysis

Under Ferdinand’s must cache analysis [10], [11] and recent
exact analyses [13], [14] the program is abstracted via its
CFG and the CFG’s edges are annotated with the sets of
memory blocks that may be accessed while executing the
corresponding part of the program as discussed in Section II-B.
Figure 1b shows the plain CFG abstraction for our example

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[x] | 0 ≤ x < 100}

{A[y] | 0 ≤ y < 100}

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99− j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis

a) Symbolic Control-Flow Graphs: We have seen that
the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 − j]. This is to be interpreted as follows: In an
execution of the program, let σ(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99− σ(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of

both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i−1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is

that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . .)
to iteration 16 (18, . . .), then the symbolic cache state needs to
be updated to account for incrementing i. The resulting sym-
bolic cache state is depicted in Figure 2d. We show how to lift
Ferdinand’s analysis to symbolic cache analysis in Section V.

In our example, one can observe that the symbolic cache
states “stabilize” in odd and even loop iterations after the cache
has been filled in the first 16 iterations. Thus the analysis needs
to distinguish the first 16 loop iterations from the rest, and odd
from even loop iterations in the remainder of the execution.
This can be achieved by context-sensitive analysis [21], [22],
[23]. In Section VI we introduce a context-sensitive analysis
that can be configured to virtually peel and unroll the loops
appropriately for a given cache configuration.

IV. SYMBOLIC CONTROL-FLOW GRAPHS

We have seen the intuition behind symbolic control-flow
graphs in Section III-C. One aspect that has been left undefined
there is the shape of expressions used to represent memory
accesses and loop bounds. We fill this gap in Section IV-A,
which is then used in the formal definition of symbolic control-
flow graphs in Section IV-B. In Section IV-C we provide a
semantics for symbolic CFGs, which will allow us to make
formal correctness statements about the symbolic data cache
analysis introduced in Section V.

A. Multivariate Chains of Recurrences

We employ multivariate chains of recurrences [8], [9],
[20] (short: MCRs) as the formalism for expressions. Given
a subset of a program’s loop variables S ⊆ LoopVar , the set
M (S) of MCRs over S is given by the following grammar:

e := n ∈ Z
| e1 bop e2 where bop ∈ {+,−, ·}, and e1, e2 ∈ M (S)

| {e1,+, e2}i where i ∈ S, e1 ∈ M (S \ {i}), e2 ∈ M (S)

Thus, expressions can (i) be constants; (ii) they can be
formed from subexpressions via addition, subtraction, and
multiplication; and (iii) they can be add recurrences of the
form {e1,+, e2}i.

Given an environment σ : LoopVar → N assigning loop
variables to their values, an MCR can be evaluated as follows:

JnKσ := n

Je1 bop e2Kσ := Je1Kσ bop Je2Kσ

J{e1,+, e2}iKσ := Je1Kσ +

σ(i)−1∑
k=0

Je2Kσ[i 7→k]

By σ[i 7→ v] we denote the function that maps i to v and oth-
erwise is the same as σ. Thus, in an add recurrence e1 can be
seen as the initial value, and e2 as the increment. For example:

J{23,+, 4}iKσ = J23Kσ +

σ(i)−1∑
k=0

J4Kσ[i 7→k] = 23 + 4 · σ(i)

Thus, the array access A[i] from our example can be expressed
as {A,+, 4}i, assuming A ∈ N is the base address of the
array and each element of the array is of size 4. Similarly, the
array access A[99−j] can be expressed as {A+396,+,−4}j .

Nested add recurrences can represent arbitrary polynomial
functions, e.g. J{0,+, {5,+, 1}i}j}Kσ = 5 · σ(j) + σ(i) · σ(j)
and J{0,+, {0,+, 2}i}i}Kσ = (σ(i)− 1) · σ(i).

In order to update symbolic cache states upon incrementing
loop variables, we need a shift operation on MCRs that adapts
an expression to account for the increment of a variable.
Such an operation should thus satisfy the following equality:
JSh(e, i)Kσ[i7→σ(i)+1] = JeKσ . For example, Sh({A,+, 1}i, i)
could be {A− 1,+, 1}i.

To implement such a shift operation we need an initializa-
tion operation that satisfies JInit(e, i)Kσ = JeKσ[i 7→0], which
can be implemented as follows:

Init(n, i) := n

Init(e1 bop e2, i) := Init(e1, i) bop Init(e2, i)

Init({e1,+, e2}j , i) :=

{
e1 : i = j

{Init(e1, i),+, Init(e2, i)}j : i ̸= j

This allows us to implement the Sh(e, i) operation:

Sh(n, i) := n

Sh(e1 bop e2, i) := Sh(e1, i) bop Sh(e2, i)

Sh({e1,+, e2}i, i) := {e1 − Init(Sh(e2, i), i),+,Sh(e2, i)}i
Sh({e1,+, e2}j , i) := {Sh(e1, i),+,Sh(e2, i)}j
The correctness of the Init(e, i) and Sh(e, i) can be shown
by structural induction, which we omit here for brevity.

To take into account loop bounds when exiting a loop
provided by assume statements in our symbolic control-flow
graphs, we rely on a substitution operation with the following
semantics: JSub(e, i, expr)Kσ = JeKσ[i 7→JexprKσ]. A heuristic
implementation of Sub(e, i, expr), which may fail on some
inputs, can be realized as follows:

Sub(e, i, expr) :=

e if e ∈ Z
s1 bop s2 if e = e1 bop e2 ∧ s1 ̸= fail ∧ s2 ̸= fail

{s1,+, s2}j if e = {e1,+, e2}j ∧ j ̸= i

∧ s1 ̸= fail ∧ s2 ̸= fail

e1 + e2 · expr if e = {e1,+, e2}i ∧ i /∈ e2

fail otherwise

where s1 = Sub(e1, i, expr) and s2 = Sub(e2, i, expr).
Engelen [9], [20] provides a set of rewrite rules for MCRs

that are proven to be confluent and terminating. We rely on
these rewrite rules to bring MCRs into a normal form.

In general, not all accesses generated in a program can be
accurately captured by an MCR. As an example, consider the
accesses generated by a loop traversing a dynamic heap data
structures, such as a linked list. To soundly represent such
accesses we introduce unknown accesses, denoted X, which
are interpreted to take any possible value. Fortunately, X is

Set 0 Set 1

A[12] A[14]
A[8] A[10]
A[4] A[6]
A[0] A[2]

(a) Cache state at the end
of iteration 15.

Set 0 Set 1

A[16] A[14]
A[12] A[10]
A[8] A[6]
A[4] A[2]

(b) Cache state at the end of
iteration 17.

Set a Set b

A[i− 3] A[i− 1]
A[i− 7] A[i− 5]
A[i− 11] A[i− 9]
A[i− 15] A[i− 13]

(c) Symbolic cache state at the end of
iterations 15, 17, 19, . . .

Set a Set b

A[i− 4] A[i− 2]
A[i− 8] A[i− 6]
A[i− 12] A[i− 10]
A[i− 16] A[i− 14]

(d) Symbolic cache state at the start of
iterations 16, 18, 20, . . .

Fig. 2: Cache states that arise during the execution of the first loop.

only rarely needed in the analysis of real-time applications, in
which dynamic data structures are uncommon.

B. Symbolic Control-Flow Graphs

A symbolic CFG is a tuple G = (V,E,LoopVar , v0),
where V is a set of vertices and E ⊆ V ×D × V is a set of
edges, LoopVar is a set of loop variables, and v0 ∈ V is a
vertex with no incoming edges marking the program entry.

Edges are decorated with accesses A and statements S, i.e.,
D = S ∪ A:

• Accesses are MCRs or unknowns:
A := M (LoopVar) ∪ {X}

• Statements either mark the entry to a loop (entry i), a
back edge of a loop (backedgei), or an assumption on
the value of a loop variable (assumei,e):

S := {entry i, backedgei | i ∈ LoopVar}
∪ {assumei,e | i ∈ LoopVar , e ∈ M (LoopVar \ {i})}

C. Semantics of Symbolic Control-Flow Graphs

The state of an execution of a symbolic control-flow graph
consists of two parts: The program state σp ∈ Σp and the
cache state σc ∈ Σc.

We represent the program state by a map σp that maps
loop variables to their values. Each loop variable counts the
number of times that the loop back edge has been taken since
last entering the loop. The program semantics of a symbolic
CFG is then captured by a transformer updateS that captures
the effects of statements on program states.

updateS(σp, s) :=
σp[i 7→ 0] if s = entry i

σp[i 7→ σp(i) + 1] if s = backedgei
⊥p if s = assumei,expr ∧ σp(i) ̸= JexprKσp

σp if s = assumei,expr ∧ σp(i) = JexprKσp

Note that we use the special value ⊥p to represent unreachable
program states, i.e. those not satisfying an assume statement.

We represent cache states as maps σc from memory blocks
to ages, i.e. σc tracks the age of each memory block in its

cache set: σc ∈ B → N. The LRU replacement policy is then
captured by the following transformer:

updateLRU (σc, b) := λb′ ∈ B.
0 if b = b′

σc(b
′) else if set(b) ̸= set(b′)

σc(b
′) else if σc(b) ≤ σc(b

′)

σc(b
′) + 1 otherwise

To paraphrase the above definition: (i) The accessed block b
attains age 0. (ii) The ages of blocks in other cache sets
(set(b) ̸= set(b′)) do not change. (iii) If the accessed block b
is younger than block b′, then b has already been accounted
for in the age of b′, and thus the age of b′ should not increase.
(iv) Otherwise, b maps to the same cache set as b′ and is older
than b′ and thus the access increases the age of b′.

The complete state of the system is a pair (σp, σc) and we
can capture its evolution upon arbitrary CFG decorations by
combining the previous transformers into a single one and
accounting for unknown accesses:

update((σp, σc), d) :=
{(updateS(σp, d), σc)} if d ∈ S
{(σp, updateLRU (σc, block(JdKσp

)))} if d ∈ A \ {X}
{(σp, updateLRU (σc, b)) | b ∈ B} if d = X

where block maps addresses to the corresponding memory
blocks (see Section II-A). Note that update((σp, σc), d) maps
to sets of states to capture the non-determinism introduced by
unknown accesses. We lift update to sets of states as follows:

update(S, d) := {(σ′
p, σ

′
c) | (σp, σc) ∈ S

∧ (σ′
p, σ

′
c) ∈ update((σp, σc), d) ∧ σ′

p ̸= ⊥p}

We drop unreachable states (where σ′
p = ⊥p) here.

We define the set of reachable states at each control lo-
cation RC : V → P(Σp × Σc) as the least solution to the
following set of equations:

RC(v0) = {(λi.0, σc) | σc ∈ Σc} (1)

∀v ∈ V \ {v0} : RC(v) =
⋃

(u,d,v)∈E

update(RC(u), d) (2)

Equation (1) captures that initially all loop variables are
zero, while the initial cache state can be arbitrary. Equation (2)

captures that the reachable states at node v are determined
by the reachable states at v′s predecessor nodes u updated
according to the CFG decoration between u and v. In keeping
with abstract interpretation literature [24], we refer to RC as
the collecting semantics.

V. SYMBOLIC DATA CACHE ANALYSIS

Explicitly computing the collecting semantics RC would be
very costly and only possible at all if all loops were bounded.
In this section, we lift Ferdinand’s must analysis to symbolic
control-flow graphs to obtain a tractable analysis.

A. Abstract Domain

As described earlier, Ferdinand’s must analysis maps mem-
ory blocks to an upper bound on their maximum age in order
to classify memory accesses as hits. Our analysis relies on a
similar map, except that it maps symbolic blocks, represented
via MCRs, to such age bounds. Our abstract domain is thus

σ̂ ∈ ̂SymCache = M (LoopVar) ↪→ {0, . . . , k − 1,∞},

where ↪→ indicates that symbolic cache states are partial
functions. We refer to the domain of a cache state σ̂, i.e., the
set of MCRs for which σ̂ provides an age bound, as dom(σ̂).

If our analysis maps an MCR e to age x at program point v,
it means that the memory block containing the address given
by JeKσp has age at most x for any program state σp reachable
at v. This set of program and cache states associated with an
abstract state σ̂ is captured by the concretization function γ:

γ(σ̂) := {(σp, σc) | ∀e ∈ dom(σ̂) : σc(block(JeKσp
)) ≤ σ̂(e)}

(3)
Similarly to the definition of the collecting semantics (see

Equations (1) and (2)), which uses set unions to capture all
possible behaviors of the program, we need a join operator
on the abstract domain to summarize states from several
incoming CFG edges. This join operator ⊔ conservatively
keeps, for each MCR, the maximum of the two upper
bounds provided by the joined states: σ̂1 ⊔ σ̂2 = λe ∈
dom(σ̂1) ∩ dom(σ̂2).max{σ̂1(e), σ̂2(e)}. This join operator
is correct with respect to the concretization function:

Lemma 1 (Join Correctness). For all σ̂1, σ̂2 ∈ ̂SymCache:

γ(σ̂1) ∪ γ(σ̂2) ⊆ γ(σ̂1 ⊔ σ̂2)

The proofs of all lemmas and theorems can be found in
the appendix.

B. Abstract Transformers

To reflect the cache updates upon memory accesses, we
provide two abstract transformers: ̂updateA\{X}, for accesses
to MCRs, and ̂updateX, for unknown accesses.

Unknown accesses can potentially increase the age of any
block in the cache. Thus:

̂updateX(σ̂) := λe′ ∈ dom(σ̂).

{
σ̂(e′) + 1 if σ̂(e′) + 1 < k

∞ otherwise

It is easy to prove that this transformer is correct:

⊤

ss sb+ds db

sb ssdb ds

⊥

Fig. 3: Lattice of alias relations.

Lemma 2 (Unknown Access Transformer Correctness). For
all σ̂ ∈ ̂SymCache, we have:

update(γ(σ̂),X) ⊆ γ(̂updateX(σ̂))

The ̂updateA\{X} transformer is similar to the one used
by Ferdinand’s must analysis; it rejuvenates the accessed
symbolic block, and increases the ages of blocks in the same
cache set that are younger than the accessed block.

The main difference lies in the fact that contrary to concrete
memory blocks, which have a fixed address, it is not always
obvious whether two symbolic blocks map to the same cache
set or even to the same block. We thus rely on an auxiliary
function alias , which, given two symbolic blocks, determines
their alias relation.

There are six possible alias relations between two MCRs:
1) “Same block” sb: they map to the same memory block.
2) “Same set” ss: they map to the same cache set.
3) “Different set” ds: they map to different cache sets.
4) “Different block” db: they map to different blocks.
5) “Same set, diff. block” ssdb : conjunction of ss and db.
6) “Same block or different set” sb+ds: disjunction of ds

and sb; can also be seen as the complement of ssdb.
As shown in [25], these relations form a lattice, whose Hasse
diagram is shown in Figure 3. The alias relation of two
MCRs e1 and e2 can be determined as follows, where BS is
the size of memory blocks (in bytes) and NS is the number
of cache sets:
alias(e1, e2) :=

sb if e1 − e2 = n ∈ Z ∧ n = 0

ds else if e1 − e2 = n ∈ Z ∧
BS ≤ n mod (NS · BS) ≤ (BS ·NS)− BS

sb+ds else if e1 − e2 = n ∈ Z ∧ −BS < n < BS

⊤ otherwise

We assume a modulo operation based on floored division, i.e.,
a mod n := a−n·⌊a/n⌋, so that 0 ≤ a mod n < n for n > 0.

The alias relation between e1 and e2 is determined by
computing the difference n of the two expressions. If the
difference between e1 and e2 is not a constant expression,
then no relation is established (last case). Otherwise, different
relations can be deduced depending on the value of n:

(i) If n is 0, we can deduce sb.
(ii) Addresses whose difference is a multiple of the way size

(NS · BS) are guaranteed to be in the same cache set.

Conversely, if the difference between e1 and e2 is more
than BS “away” from being a multiple of the way size,
then e1 and e2 must map to different sets.

(iii) If e1 and e2 are close, i.e., less than a block size apart,
they either map to the same block or to different sets.

Other aliasing relations, such as ssdb and db could also be
deduced, but are not useful in the following.

Using alias to deduce the relation between symbolic blocks,
we can formally define the transformer ̂updateA\{X} to apply
when performing the memory access associated with MCR e.

̂updateA\{X}(σ̂, e) := λe′ ∈ dom(σ̂) ∪ {e}.

0 if alias(e, e′) ⊑ sb

σ̂(e′) else if alias(e, e′) ⊑ sb+ds
σ̂(e′) else if σ̂(e) ≤ σ̂(e′)

σ̂(e′) + 1 else if σ̂(e′) + 1 < k

∞ otherwise

Unsurprisingly, the transformer closely resembles the def-
inition of its concrete counterpart updateLRU . (i) As in the
concrete case, the accessed symbolic block is rejuvenated to
age 0, as are all symbolic blocks that represent the same
block. (ii) A symbolic block that is in the sb+ds relation
to the accessed block retains its age, which is safe, as seen
by the following case distinction: Either the block is actually
the accessed block and it should get age 0, or it maps to a
different set and its age should be unchanged (first two cases of
updateLRU). (iii) If the accessed symbolic block e is younger
than symbolic block e′, then e has already been accounted for
in the age of e′, and thus the age of e′ should not increase. (iv)
The age of a block cannot increase by more than one upon
a single access, so the fourth case is always safe. (v) We do
not distinguish ages beyond k , as it is not helpful to classify
accesses as hits or misses. Instead we summarize these with
the safe upper bound ∞.

As for the join operator and for unknown accesses, we prove
that the access transformer is correct:

Lemma 3 (MCR Access Transformer Correctness). For all
σ̂ ∈ ̂SymCache and e ∈ A, we have:

update(γ(σ̂), e) ⊆ γ(̂updateA\{X}(σ̂, e))

The ̂updateA\{X} transformer described above captures the
effect of memory accesses. As the symbolic cache states are
tied to the program state via the concretization function given
in (3), changes to the loop variables need to be accounted for
by appropriately adapting our symbolic cache states. We thus
provide a second transformer, ̂updateS , which captures the
effect of program statements on symbolic cache states.

We define ̂updateS separately for each type of statement.
The case of a back edge is arguably the most interesting
one. Each symbolic block e needs to be replaced by its
shifted version when i is incremented, so that the expression
preserves its original value, which is achieved as follows:

̂updateS(σ̂, backedgei) := {(Sh(e, i), b) | (e, b) ∈ σ̂} (4)

For example, Sh({A,+, 4}i, i) = {A − 4,+, 4}i, which
corresponds to replacing A[i] by A[i−1] upon incrementing i.
One might wonder whether the set defined in Equation (4)
actually defines a function. This is indeed the case for MCRs
in normal form [9], [20] for which Sh(·, i) is bijective.

Entering a loop entails resetting the corresponding loop
variable to i. However, unless the prior value of i is known,
there is no way of rewriting expressions involving the vari-
able i accordingly. Thus, in such cases the information for the
corresponding MCRs is discarded:

̂updateS(σ̂, entry i) := {(e, b) | (e, b) ∈ σ̂ ∧ i ̸∈ e}

Finally, assume statements allow the analysis to substitute
the corresponding loop variable by the assumed expression.
This allows to retain information across multiple loops or in
nested loops, e.g. in our running example where data cached
in the first loop is reused in the second loop.

̂updateS(σ̂, assumei,expr) :=

red({(e′, b) | (e, b) ∈ σ̂ ∧ e′ = Sub(e, i, expr) ̸= fail}),

where red(S) := {(e, b) | (e, b) ∈ S ∧ ∀(e, b′) ∈ S : b′ ≥ b}.
The substitution may result in multiple expressions

becoming equal, e.g., Sub({0,+, 2}i, i, 10) =
Sub({10,+, 1}i, i, 10). Then red(S) keeps the best bound and
thereby ensures that the resulting relation is still a function.

This abstract transformer for statements is also correct:

Lemma 4 (Statement Transformer Correctness). For all σ̂ ∈
̂SymCache and s ∈ S, we have:

update(γ(σ̂), s) ⊆ γ(̂updateS(σ̂, s))

C. Analysis Correctness and Termination

We can now merge the statement and access transformers
into a single one that deals with the three kinds of decorations:

ûpdate(σ̂, d) :=


̂updateS(σ̂, d) if d ∈ S
̂updateA\{X}(σ̂, d) if d ∈ A \ {X}

̂updateX(σ̂, d) if d = X

Similarly to the collecting semantics we define the abstract
semantics as the least solution of the following equations:

R̂(v0) = ∅ (5)

∀v ∈ V \ {v0} : R̂(v) =
⊔

(u,d,v)∈E

ûpdate(R̂(u), d) (6)

Equations (5) and (6) are the abstract counterpart of Equa-
tions (1) and (2). We can now state the main correctness the-
orem about our analyzer, which follows by standard Abstract
Interpretation arguments from Lemmas 1, 2, 3, and 4:

Theorem 1 (Analysis Correctness). For all v ∈ V , we have:

RC(v) ⊆ γ(R̂(v))

peel0

{0}Loop iterations:

Contexts:
peel1

{1}

peel2

{2}

peel15

{15}. . .

. . . unroll0

{16, 18, . . . }

unroll1

{17, 19, . . . }

Fig. 4: Peeling and unrolling contexts and their corresponding loop iterations.

VI. LOOP PEELING AND UNROLLING

A common problem that cache analyses by abstract inter-
pretation suffer from is the loss of precision due to joins at
the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS −1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel ≥ 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0 ≤ x < MaxPeel} ∪
{unrollx | 0 ≤ x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar → Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n ∈ N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain ̂SymCaches that associates
a symbolic cache state with each context:

̂SymCaches = Ctxts ↪→ ̂SymCache

These abstract states are updated as follows upon statements:

̂updateS(σ̂, entry i) := λctx ∈ Ctxts.{⊔
t∈Tags

̂updateS(σ̂(ctx [i 7→ t]), entry i) if ctx (i) = peel0
⊥ otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0 ≤ x < MaxPeel − 1}
∪ {(peelMaxPeel−1, unroll0)}
∪ {(unrollx, unrollx+1) | 0 ≤ x < MaxUnroll − 1}
∪ {(unrollMaxUnroll−1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define ̂updateS(σ̂, backedgei):

̂updateS(σ̂, backedgei) := λctx ∈ Ctxts.⊔
ctx(i)=t′

(t,t′)∈E

̂updateS(σ̂(ctx [i 7→ t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx)
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.

We omit eval mod here for brevity; its definition is provided
in the appendix.

Using eval mod , we can refine the alias function and use
the context to deduce alignment relations. Given two MCRs
e1 and e2, and a context ctx , we refine alias as follows:

alias(e1, e2, ctx) :=

sb if n = e1 − e2 ∈ Z ∧ a1 ⊑ Mod(n1,BS)

∧ a2 ⊑ Mod(n2,BS) ∧ n− n1 + n2 = 0

ss if n = e1 − e2 ∈ Z ∧ a1 ⊑ Mod(n1,BS)

∧ a2 ⊑ Mod(n2,BS)

∧ n− n1 + n2 mod NS · BS = 0

ds if n = e1 − e2 ∈ Z ∧ a1 ⊑ Mod(n1,BS)

∧ a2 ⊑ Mod(n2,BS)

∧ n− n1 + n2 mod NS · BS ̸= 0

alias(e1, e2) otherwise

where a1 = eval mod (e1, ctx) and a2 = eval mod (e2, ctx),
Exact(k) ⊑ Mod(n,m) if k = n mod m, and
Mod(n′,m′) ⊑ Mod(n,m) if m|m′ and n = n′ mod m.

This refined alias function first looks at the difference e1−e2
just like the non-refined version, except that the conditions to
derive some relations are relaxed if the alignments (a1 and a2)
of e1 and e2 are known.

In the first case, n1 and n2 are the offsets of e1 and e2 in
their respective blocks. Thus, one can deduce the address of
the block that e1 maps to (e1 − a1), and compare it to the
address of the block that e2 maps to (e2 − a2). The equality
of block addresses can be rewritten n − n1 + n2 = 0. If the
equality holds, then e1 and e2 map to the same block.

The second case is similar, but we check an equality on
cache sets instead of blocks. We thus consider alignments
relative to sets, by evaluating e1 and e2 modulo NS · BS .
The equality is also checked modulo the same value because
addresses that are NS · BS apart map to the same set.

The third case is analogous, except we check for expressions
mapping to different sets instead of the same one. Finally, in
cases were eval mod fails to evaluate e1 and e2 precisely, we
rely on the version of alias from Section V-B as a fallback.

VII. IMPLEMENTATION

We implemented the symbolic analysis in LLVMTA [26],
[27], [28], a WCET analysis tool based on the LLVM compiler
infrastructure. In particular, LLVMTA relies on LLVM to
compile the program, which itself uses ScalarEvolution [6],
[7] to perform optimizations. It was thus convenient to reuse
this framework and convert ScalarEvolution expressions to our
own MCR representation upon which we added support for the
shifting and substitution operations. The main difficulty arising
when converting ScalarEvolution expressions to MCRs is that
ScalarEvolution (SCEV) expressions do not only contain inte-
ger constants but also LLVM values that belong to the LLVM
intermediate representation (IR). Consider an array A that is
allocated on the stack in a function f and then passed down to
another function g accessing A[i]. A SCEV expression for such

an access would typically look like {%A,+, 4}i, where %A is
a parameter of f . We rely on debug information to determine
the register containing the value of %A, and then query a ded-
icated constant value analysis to get the register value. This al-
lows us to translate information available at the IR level down
to the machine-code level at which our analysis is performed.

Several tricks are implemented to make the analysis more
efficient. First, we rely on hash consing (https://en.wikipedia.
org/wiki/Hash_consing) of MCRs to reduce the memory foot-
print of the analysis: when building an MCR, we check if it
was already build before, and return a pointer on the old MCR
when possible. In addition to saving memory, this allows us to
cache and reuse the results of all operations involving MCRs.

Another trick to speed up the analysis is to avoid represent-
ing a symbolic cache state σ̂ ∈ ̂SymCache as a single map
of MCRs to ages. Instead, a cache state is split into several
maps, which we called “virtual sets”. We use one virtual set
per physical cache set to store expressions that are known
to map to this cache set. An additional virtual set is used for
expressions whose corresponding cache set is unknown. When
looking for “same block” MCRs (e.g. in ̂updateA\{X}), MCRs
that map to a different virtual set than the accessed MCR can
be excluded from the check, saving time. Virtual sets can also
be shared between abstract states. Upon a memory access,
if the set to which the accessed MCR is known, only the
corresponding virtual set is modified. The remaining virtual
sets can thus be shared between the old and the new abstract
state, saving memory and avoiding copies.

Regarding the values of MaxPeel and MaxUnroll , it is not
possible to choose fixed values that would work well for every
benchmark due to the presence of nested loops. For example,
it is possible to peel the first 256 iterations of a single loop,
but doing so for each loop of a loop nest of depth 3 would
lead to the creation of 2563 different contexts, blowing up the
analysis complexity. We thus introduce the notion of a peeling
budget in the analysis, which indicates the number of peeling
contexts to create per loop nest. This budget is first spent on
the innermost loop, then on the second innermost loop if it
is possible to fully peel the innermost one, and so on. For
example, consider a loop nest of depth 2, with loop bounds
of 20 and 50 for the outer and inner loops, respectively. A
peeling budget of 200 would lead to fully peeling the inner
loop, because the loop bound of the inner loop is less than
the current budget. Then the budget remaining for the outer
loop would be 200/50, leading to a MaxPeel value of 4 for the
outer loop. We could introduce a similar notion for computing
the MaxUnroll value associated to each loop. Because this
seemed unnecessary in many benchmarks, we chose to only
unroll the innermost loop.

VIII. EXPERIMENTAL EVALUATION

The aim of our experiments is to evaluate the following
three aspects of our contributions:

1) The gain in accuracy obtained by performing cache
analysis over a symbolic CFG.

2) Scalability when increasing the dataset sizes.

https://en.wikipedia.org/wiki/Hash_consing
https://en.wikipedia.org/wiki/Hash_consing

3) Scalability in terms of the cache geometry.

First, we demonstrate the properties of our analysis on the
illustrative example from Section III. Then, we present experi-
ments designed to assess the accuracy gain due to the symbolic
approach and its scalability. All experiments are performed
assuming a set-associative cache consisting of 8 cache sets,
8 cache ways, and cache lines of 64 bytes. We qualitatively
contrast our work with other related work in Section IX.

In this evaluation we use the PolyBench [29] benchmarks.
PolyBench has the advantage of providing a parametric dataset
size, i.e. one can adapt the sizes of the data structures the algo-
rithms iterate over. PolyBench provides 5 datasets size: mini,
small, medium, large, and extra large, which is convenient to
assess the scalability of our approach.

A. Behavior of the Symbolic Analysis on Illustrative Example

To verify that the symbolic analysis is behaving as expected,
we analyze multiple variants of the program in Figure 1a
from Section III. In all experiments, we use an array of
12 · 1024 = 12288 integers, but we vary the number of loop
iterations in both loops between 4 and 12288, iterating back
and forth across prefixes of the array. We then compare the
following analyses:

• The symbolic analysis in optimal settings: we peel the
exact number of iterations (1024) required to fill the cache,
and we unroll enough iterations (128) to obtain perfect cache
alignment information.

• Ferdinand’s must analysis [10], [11] under the same
settings, i.e. using the same MaxPeel and MaxUnroll values.

• Ferdinand’s analysis where both loops are fully peeled.
In each of these analyses we configure LLVMTA to compute
a bound on the number of cache misses.

We use Ferdinand’s analysis as a baseline, as the symbolic
analysis can be seen as a lifted version of Ferdinand’s analysis
to symbolic CFGs, and thus the observed differences can be
directly attributed to operating symbolically.

Figure 5a shows the number of predicted misses when
increasing the loop bounds. As expected, for low values of
the loop bounds all analyses fully peel the loops, and achieve
the same perfect results: The first loop incurs one miss in
every 16 iterations, as 16 consecutive integers of 4 bytes fit
in a 64-byte cache line. The second loop does not lead to any
additional misses because the accessed data fits entirely in the
cache. Once the loop bounds are big enough to fill the cache,
to the right of the dashed vertical line, the predicted number
of misses increases by 2 for every 16 loop iterations for both
the symbolic analysis and Ferdinand’s analysis if the loops are
fully peeled. This is due to additional misses at the end of the
second loop, which accesses blocks that were evicted at the
end of the first loop. Indeed, the results of the symbolic anal-
ysis and of Ferdinand’s analysis under full peeling are exact.

However, when the loop bounds exceed the number of
peeled iterations, Ferdinand’s analysis is unable to classify any
access as a hit anymore. As a consequence, the bound on the
number of potential misses increases with every access: spatial

locality is not exploited because the analysis does not know
the offset of the accesses inside a cache line.

Figure 5b shows the analysis runtime of the three analyses
in terms of the loop bounds. Once the loop bounds exceed
the MaxPeel value, the analysis cost remains constant.
Conversely, when increasing the value of MaxPeel to match
the loop bound, Ferdinand’s analysis gets more and more
expensive, quickly exceeding the cost of the symbolic analysis.

B. Accuracy of the Symbolic Analysis

In order to evaluate the benefits of the symbolic analysis in
more realistic cases, we analyze the PolyBench benchmarks
(with the default dataset size large), and compare its accuracy
with Ferdinand’s analysis. The cache configuration is fixed, but
we vary the values of MaxPeel and MaxUnroll . Indeed, both
analyses perform very differently in terms of running time and
accuracy when varying the peeling and unrolling settings, and
comparing the two for a fixed setting would thus be difficult.
So we set a runtime limit of one hour per benchmark and retain
for each analysis the best achievable result within this time for
each benchmark. Figure 6 shows that in these conditions, the
symbolic analysis always outperforms Ferdinand’s analysis.
The geometric mean of the ratios of the bounds computed by
the symbolic and non-symbolic analysis across all benchmarks
is 0.335, significantly improving analysis accuracy.

C. Scalability Evaluation

We claim that the symbolic analysis runtime is largely
independent of the number of loop iterations, as long as
the number of loop iterations exceeds the number of peeled
iterations. To support this claim, we ran the analysis using
the same cache configuration and peeling/unrolling settings
(MaxPeel = 1024, MaxUnroll = 128) for all the dataset
sizes available in PolyBench. Figure 7 shows the analysis
runtime for each benchmark and dataset size. Notice that the
dataset size has a smaller impact on the analysis runtime than
the benchmark itself, which suggests that the complexity of
a benchmark’s access patterns is more important than the
number of accesses generated by the benchmark. As expected,
analysis times for the large and extra large datasets are usually
very close to each other even though the number of memory
accesses in the XL case is 6.25 times higher on the average.
For the smaller dataset sizes the loop bounds often do not reach
the peeling settings, and thus the analysis cost still increases
moving from XS to S, and sometimes also from S to M and L.

D. Impact of the Cache Geometry

To evaluate the impact of the cache geometry on the analysis
runtime we designed two experiments.

In the first experiment, we investigate the impact of the
associativity on the analysis runtime. We fix the cache line
size to 64 bytes and the number of cache sets to 8, as in the
previous experiments, and analyze associativities 8, 16, 32,
and 64, corresponding to cache sizes of 4, 8, 16, and 32 KB,
respectively. We run the symbolic analysis on all benchmarks
of PolyBench for the large dataset. To enable the analysis

0

5000

10000

15000

20000

0 2500 5000 7500 10000 12500

Value of the loop bounds

N
u
m

b
e
r

o
f
m

is
se

s
Analysis: Partially-peeled Ferdinand Fully-peeled Ferdinand Symbolic

(a) Accuracy comparison when increasing the dataset’s size.

0

300

600

900

1200

0 2500 5000 7500 10000 12500

Value of the loop bounds

A
n
a
ly

si
s

ru
n
tim

e
 (

in
 s

)

Analysis: Partially-peeled Ferdinand Fully-peeled Ferdinand Symbolic

(b) Analysis time comparison when increasing the dataset’s size.

Fig. 5: Accuracy and analysis time comparison on the running example.

1e+06

1e+08

1e+10

co
rr
el

at
io

n

ja
co

bi
-1

d

tri
so

lv

du
rb

in

ge
su

m
m

v
at

ax
bi

cg m
vt

ge
m

ve
r

de
ric

he

do
itg

en
trm

m

ge
m

m
sy

rk

2m
m

sy
m

m

co
va

ria
nc

e

sy
r2

k

fd
td

-2
d
3m

m

gr
am

sc
hm

id
t

ja
co

bi
-2

d
ad

i

he
at

-3
d

se
id

el
-2

d

ch
ol

es
ky

flo
yd

-w
ar

sh
al

l

nu
ss

in
ov

lu
dc

m
p lu

Benchmark

N
u
m

b
e
r

o
f
m

is
se

s

Analysis: Ferdinand's analysis Symbolic analysis

Fig. 6: Accuracy comparison under a time constraint of 1 hour.

1

10

100

1000

du
rb

in

ja
co

bi
-1

d
ad

i

tri
so

lv

ja
co

bi
-2

d

he
at

-3
d

se
id

el
-2

d

sy
m

m

nu
ss

in
ov

fd
td

-2
d

flo
yd

-w
ar

sh
al

l

co
va

ria
nc

e
trm

m lu

ch
ol

es
ky

de
ric

he

lu
dc

m
p
at

ax

gr
am

sc
hm

id
t

co
rr
el

at
io

n

ge
m

ve
r

do
itg

en m
vt

sy
r2

k
bi

cg

ge
su

m
m

v

ge
m

m
sy

rk

2m
m
3m

m

Benchmark

A
n
a
ly

si
s

ru
n
tim

e
 (

in
 s

)

Dataset size: XL L M S XS

Fig. 7: Analysis runtimes for increasing dataset sizes.

to exploit the increased cache size, we double the peeling
budget each time we double the associativity. Figure 8 shows
the geometric mean of the slowdowns relative to an analysis
with associativity 8. We observe a slowdown of 2.56, 10.7,
and 70 at associativity 16, 32, and 64, respectively.

In the second experiment, we investigate the impact of the
number of cache sets on the analysis runtime. Thus, we fix
the cache line size to 64 bytes and the associativity to 8,
and perform analyses for 8, 16, 32, 64, and 128 cache sets,
corresponding to cache sizes of 4, 8, 16, 32 and 64 KB,
respectively. Again, we double the peeling budget each time
we double the number of cache lines. Figure 9 shows the
geometric mean of the slowdowns relative to an analysis with

8 16 32 64
100

101

102

Associativity (k)
Sl

ow
do

w
n Associativity (k)

Fig. 8: Geometric mean of slowdowns relative to an analysis
with associativity 8 across PolyBench for the large dataset.

8 16 32 64 128
100

101

102

Number of Sets (NS)

R
el

at
iv

e
Sl

ow
do

w
n Number of Sets (NS)

Fig. 9: Geometric mean of slowdowns relative to an analysis
with 8 cache sets across PolyBench for the large dataset.

8 cache sets. We observe a slowdown of 2.07, 5.99, 23.8, and
125 at 16, 32, 64, and 128 cache sets, respectively.

In both experiments, we observe that the analysis runtime
increases superlinearly with the cache size. Indeed, there are
two effects at play here that are each individually expected
to induce a linear slowdown: (i) the peeling budget is pro-
portional to the cache size and thus the number of contexts
increases linearly, and (ii) the abstract cache states grow
linearly in the cache size. The effect of (ii) on the analysis
runtimes is less pronounced when increasing the number of
cache sets than when increasing the associativity due to the
use of virtual sets, and we observe smaller slowdowns there.

IX. RELATED WORK

Static cache analysis has received considerable attention in
the context of WCET analysis. In the following, we focus on
work targeted at data cache analysis. For a broader review of
the literature consider the survey paper by Lv et al. [30].

At a high level, work on static cache analysis can be
partitioned into classifying and bounding analyses:

• Classifying analyses [10], [11], [31], [32], [33], [34],
[35], [13], [14], [36], [37] classify individual accesses in the
program as hits or misses. Ferdinand’s may and must analysis
and our symbolic analysis fall into this class.

• Bounding analyses [38], [39], [11], [40], [41], [42], [19],
[43] compute bounds on the number of misses that occur in
a program fragment or in a subset of the program’s accesses.

Let us first discuss related classifying analyses. We have
already extensively discussed Ferdinand’s LRU must analy-
sis [10], [11] throughout the paper. It relies on a plain CFG
abstraction, and precise analysis results for data caches are
only possible if loops are fully unrolled.

Sen and Srikant [31] build upon LRU must analysis and
make two contributions: (i) They introduce a new domain
to analyze the set of memory addresses associated with a
static memory reference called circular linear progressions.
(ii) They introduce a new approach to context-sensitive anal-
ysis in which a loop is partitioned into n same-length regions
that are further split into two parts. The first part is analyzed in
“expansion mode”, meaning that it is fully virtually unrolled,
distinguishing all individual iterations, while the second part is
analyzed in “summary mode”. To achieve accurate results, the
approach requires an unrolling value that is proportional to the
number of loop iterations, similarly to Ferdinand’s analysis.

Hahn and Grund [25], [44] introduce relational cache
analysis, which tracks relations between memory accesses
in the program following the lattice in Figure 3 similarly
to our analysis. Wegener [23] proposes to judiciously apply
loop peeling and unrolling to relational cache analysis. Their
work is able to detect the exploitation of spatial and temporal
locality within a given loop iteration (or within a sequence
of loop iterations in case of unrolling). The fundamental
limitation of [25], [44], [23] that our approach overcomes,
is that their analysis never tracks more than a single symbol
for each static memory reference (per unrolled iteration of the
loop) in the program, whereas our analysis may dynamically
generate an unbounded number of symbols for the same static
reference due to the shifting operation upon loop back edges.
As a consequence, in our example program, the temporal
locality in the second loop would be entirely missed by
relational cache analysis. The other major difference lies in
our use of LLVM’s ScalarEvolution framework to determine
access expressions and loop bounds.

Let us now turn to bounding analyses. Kim et al. [38] deter-
mine a bound on the number of memory blocks accessed in a
program. If at most m distinct blocks are accessed, and these
fully fit into the cache, then at most m misses may occur. Such
a cache persistence [19] argument only works in cases where

the amount of accessed data is smaller than the cache itself,
which is often not the case, e.g. in our illustrative example
and in the entire PolyBench suite for larger dataset sizes.

Huynh et al. [40] present a persistence analysis that takes
a different perspective, separately considering each memory
block accessed in the program. For each such block, the anal-
ysis determines whether it is persistent, i.e., whether accesses
to that block can result in more than one miss. This persistence
classification is furthermore performed at different spatial and
temporal scopes, e.g. distinguishing different intervals of loop
iterations. As a result the analysis may be highly accurate.
However the analysis complexity is at least linear in both the
number of distinct memory blocks accessed by the program
and the dynamic number of accesses performed (> 1011 for
several PolyBench benchmarks for the XL dataset), whereas
our analysis is independent of both of these.

The approach of Sotin et al. [43] consists in encoding
the program semantics and the cache replacement policy
in a formula whose integral solutions correspond to cache
misses, and to discharge this counting problem to an external
solver [45]. The approach is however limited to counting
misses associated to a single static memory reference inside a
loop. Ad hoc extensions handling non-linear accesses, several
accesses in the same loop, and analyzing nested loops are
suggested, but it is not clear whether these approaches can be
combined together to handle larger classes of programs.

Finally, there is a long and rich history of analytical cache
models [46], [47], [48], [49], [50], [51], [52], [53], [54], [55]
that determine the exact number of misses generated by loop
nests. A common limitation of this line of work is that it
cannot handle programs with input-dependent branches or
memory accesses.

X. CONCLUSIONS AND FUTURE WORK

We have introduced symbolic data cache analysis a novel
analysis that systematically exploits a richer program abstrac-
tion than prior work, namely symbolic control-flow graphs,
which can be obtained from LLVM’s ScalarEvolution analysis.
The experimental evaluation demonstrates that this new anal-
ysis outperforms classical LRU must analysis both in terms of
accuracy and analysis runtime.

As a proof of concept, we have lifted the classical LRU
must analysis to the symbolic level. Other existing analyses
operating on plain CFGs could similarly be made symbolic,
e.g. persistence analyses or classifying analyses for various
replacement policies. It would also be interesting to investigate
whether exact cache analysis on symbolic CFGs is possible
along the lines of recent exact cache analyses on plain CFGs.

Another direction for future work is to apply the idea of
symbolic cache analysis to even richer program abstractions,
e.g. modeling operations on heap data structures.

ACKNOWLEDGMENTS

This project has received funding from the European Re-
search Council under the EU’s Horizon 2020 research and
innovation programme (grant agreement No. 101020415).

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, 2008.
[Online]. Available: https://doi.org/10.1145/1347375.1347389

[2] D. J. Bernstein, “Cache-timing attacks on AES,” 2005. [Online].
Available: https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[3] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit:
A tool for the static analysis of cache side channels,” ACM Trans.
Inf. Syst. Secur., vol. 18, no. 1, pp. 4:1–4:32, Jun. 2015. [Online].
Available: http://doi.acm.org/10.1145/2756550

[4] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu,
“Cached: Identifying cache-based timing channels in production
software,” in 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017,
E. Kirda and T. Ristenpart, Eds. USENIX Association, 2017,
pp. 235–252. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/wang-shuai

[5] C. Sung, B. Paulsen, and C. Wang, “CANAL: a cache timing
analysis framework via LLVM transformation,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018,
M. Huchard, C. Kästner, and G. Fraser, Eds. ACM, 2018, pp.
904–907. [Online]. Available: https://doi.org/10.1145/3238147.3240485

[6] LLVM, “ScalarEvolution.” [Online]. Available: https://github.com/llvm/
llvm-project/blob/main/llvm/include/llvm/Analysis/ScalarEvolution.h

[7] J. Absar, “Scalar Evolution - Demystified,” 2018, European LLVM
Developers Meeting. [Online]. Available: https://llvm.org/devmtg/
2018-04/slides/Absar-ScalarEvolution.pdf

[8] O. Bachmann, P. S. Wang, and E. V. Zima, “Chains of recurrences
- a method to expedite the evaluation of closed-form functions,” in
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC ’94, Oxford, UK, July 20-22, 1994, M. A. H.
MacCallum, Ed. ACM, 1994, pp. 242–249. [Online]. Available:
https://doi.org/10.1145/190347.190423

[9] R. van Engelen, “Efficient symbolic analysis for optimizing compilers,”
in Compiler Construction, 10th International Conference, CC 2001
Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings, ser. Lecture Notes in Computer Science, R. Wilhelm,
Ed., vol. 2027. Springer, 2001, pp. 118–132. [Online]. Available:
https://doi.org/10.1007/3-540-45306-7_9

[10] C. Ferdinand, “Cache behavior prediction for real-time systems,” Ph.D.
dissertation, Saarland University, Saarbrücken, Germany, 1997, iSBN:
3-9307140-31-0. [Online]. Available: https://d-nb.info/953983706

[11] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, no. 2-3,
pp. 131–181, Nov. 1999. [Online]. Available: https://doi.org/10.1023/A:
1008186323068

[12] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability
of cache replacement policies,” Real-Time Systems, vol. 37, no. 2,
pp. 99–122, Nov. 2007. [Online]. Available: https://doi.org/10.1007/
s11241-007-9032-3

[13] V. Touzeau, C. Maïza, D. Monniaux, and J. Reineke, “Ascertaining
uncertainty for efficient exact cache analysis,” in Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II, ser. Lecture
Notes in Computer Science, R. Majumdar and V. Kuncak, Eds.,
vol. 10427. Springer, 2017, pp. 22–40. [Online]. Available: https:
//doi.org/10.1007/978-3-319-63390-9_2

[14] ——, “Fast and exact analysis for LRU caches,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 54:1–54:29, 2019. [Online]. Available:
https://doi.org/10.1145/3290367

[15] G. Stock, S. Hahn, and J. Reineke, “Cache persistence analysis: Finally
exact,” in IEEE Real-Time Systems Symposium, RTSS 2019, Hong
Kong, SAR, China, December 3-6, 2019. IEEE, 2019, pp. 481–494.
[Online]. Available: https://doi.org/10.1109/RTSS46320.2019.00049

[16] F. Mueller, “Timing analysis for instruction caches,” Real-Time
Systems, vol. 18, no. 2, pp. 217–247, May 2000. [Online]. Available:
https://doi.org/10.1023/A:1008145215849

[17] C. Cullmann, “Cache persistence analysis: Theory and practice,” ACM
Trans. Embedded Comput. Syst., vol. 12, no. 1s, pp. 40:1–40:25, 2013.
[Online]. Available: https://doi.org/10.1145/2435227.2435236

[18] Z. Zhang and X. D. Koutsoukos, “Improving the precision of abstract
interpretation based cache persistence analysis,” in Proceedings of the
16th ACM SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems, Portland, OR, USA, June 18-19,
2015, ser. LCTES 2015, 2015, pp. 10:1–10:10. [Online]. Available:
https://doi.org/10.1145/2670529.2754967

[19] J. Reineke, “The semantic foundations and a landscape of cache-
persistence analyses,” Leibniz Trans. Embed. Syst., vol. 5, no. 1,
pp. 03:1–03:52, 2018. [Online]. Available: https://doi.org/10.4230/
LITES-v005-i001-a003

[20] R. van Engelen, “Symbolic evaluation of chains of recurrences for loop
optimization,” Computer Science Dept., Florida State University, Tech.
Rep. TR-000102, 2000.

[21] F. Martin, M. H. Alt, R. Wilhelm, and C. Ferdinand, “Analysis
of loops,” in Compiler Construction, 7th International Conference,
CC’98, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 -
April 4, 1998, Proceedings, ser. Lecture Notes in Computer Science,
K. Koskimies, Ed., vol. 1383. Springer, 1998, pp. 80–94. [Online].
Available: https://doi.org/10.1007/BFb0026424

[22] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpretation
based static analyzers,” in Programming Languages and Systems, 14th
European Symposium on Programming,ESOP 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings, 2005, pp. 5–20.
[Online]. Available: https://doi.org/10.1007/978-3-540-31987-0_2

[23] S. Wegener, “Computing same block relations for relational cache
analysis,” in 12th International Workshop on Worst-Case Execution
Time Analysis, WCET 2012, July 10, 2012, Pisa, Italy, ser.
OASIcs, T. Vardanega, Ed., vol. 23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2012, pp. 25–37. [Online]. Available:
https://doi.org/10.4230/OASIcs.WCET.2012.25

[24] D. A. Schmidt, “Trace-based abstract interpretation of operational se-
mantics,” LISP Symb. Comput., vol. 10, no. 3, pp. 237–271, 1998.

[25] S. Hahn, “Towards relational cache analysis,” Bachelor’s Thesis,
Saarland University, 2011. [Online]. Available: http://embedded.cs.
uni-sb.de/publications/RelCanaBSC2011.pdf

[26] ——, “On static execution-time analysis,” PhD Thesis, Saarland
University, 2018. [Online]. Available: https://publikationen.sulb.
uni-saarland.de/bitstream/20.500.11880/27440/1/dissertation.pdf

[27] S. Hahn, M. Jacobs, N. Hölscher, K. Chen, J. Chen, and J. Reineke,
“LLVMTA: an LLVM-based WCET analysis tool,” in 20th International
Workshop on Worst-Case Execution Time Analysis, WCET 2022, July
5, 2022, Modena, Italy, ser. OASIcs, C. Ballabriga, Ed., vol. 103.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 2:1–2:17.
[Online]. Available: https://doi.org/10.4230/OASIcs.WCET.2022.2

[28] ——, “LLVMTA: an LLVM-based WCET analysis tool,” https://gitlab.
cs.uni-saarland.de/reineke/llvmta, 2022.

[29] L.-N. Pouchet, U. Bondugula, and T. Yuki, “Polybench v4.2.1.”
[Online]. Available: https://sourceforge.net/projects/polybench/

[30] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on
static cache analysis for real-time systems,” Leibniz Trans. Embed.
Syst., vol. 3, no. 1, pp. 05:1–05:48, 2016. [Online]. Available:
https://doi.org/10.4230/LITES-v003-i001-a005

[31] R. Sen and Y. N. Srikant, “WCET estimation for executables in
the presence of data caches,” in Proceedings of the 7th ACM &
IEEE International conference on Embedded software, EMSOFT 2007,
September 30 - October 3, 2007, Salzburg, Austria, C. M. Kirsch
and R. Wilhelm, Eds. ACM, 2007, pp. 203–212. [Online]. Available:
https://doi.org/10.1145/1289927.1289960

[32] D. Grund and J. Reineke, “Abstract interpretation of FIFO replacement,”
in Static Analysis, 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings, ser. Lecture
Notes in Computer Science, J. Palsberg and Z. Su, Eds., vol.
5673. Springer, 2009, pp. 120–136. [Online]. Available: https:
//doi.org/10.1007/978-3-642-03237-0_10

[33] ——, “Precise and efficient FIFO-replacement analysis based on
static phase detection,” in 22nd Euromicro Conference on Real-
Time Systems, ECRTS 2010, Brussels, Belgium, July 6-9, 2010.
IEEE Computer Society, 2010, pp. 155–164. [Online]. Available:
https://doi.org/10.1109/ECRTS.2010.8

https://doi.org/10.1145/1347375.1347389
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://doi.acm.org/10.1145/2756550
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://doi.org/10.1145/3238147.3240485
https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Analysis/ScalarEvolution.h
https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Analysis/ScalarEvolution.h
https://llvm.org/devmtg/2018-04/slides/Absar-ScalarEvolution.pdf
https://llvm.org/devmtg/2018-04/slides/Absar-ScalarEvolution.pdf
https://doi.org/10.1145/190347.190423
https://doi.org/10.1007/3-540-45306-7_9
https://d-nb.info/953983706
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.1007/978-3-319-63390-9_2
https://doi.org/10.1007/978-3-319-63390-9_2
https://doi.org/10.1145/3290367
https://doi.org/10.1109/RTSS46320.2019.00049
https://doi.org/10.1023/A:1008145215849
https://doi.org/10.1145/2435227.2435236
https://doi.org/10.1145/2670529.2754967
https://doi.org/10.4230/LITES-v005-i001-a003
https://doi.org/10.4230/LITES-v005-i001-a003
https://doi.org/10.1007/BFb0026424
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.4230/OASIcs.WCET.2012.25
http://embedded.cs.uni-sb.de/publications/RelCanaBSC2011.pdf
http://embedded.cs.uni-sb.de/publications/RelCanaBSC2011.pdf
https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/27440/1/dissertation.pdf
https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/27440/1/dissertation.pdf
https://doi.org/10.4230/OASIcs.WCET.2022.2
https://gitlab.cs.uni-saarland.de/reineke/llvmta
https://gitlab.cs.uni-saarland.de/reineke/llvmta
https://sourceforge.net/projects/polybench/
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1145/1289927.1289960
https://doi.org/10.1007/978-3-642-03237-0_10
https://doi.org/10.1007/978-3-642-03237-0_10
https://doi.org/10.1109/ECRTS.2010.8

[34] ——, “Toward precise PLRU cache analysis,” in 10th International
Workshop on Worst-Case Execution Time Analysis, WCET 2010, July 6,
2010, Brussels, Belgium, ser. OASICS, B. Lisper, Ed., vol. 15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010, pp. 23–35.
[Online]. Available: https://doi.org/10.4230/OASIcs.WCET.2010.23

[35] S. Chattopadhyay and A. Roychoudhury, “Scalable and precise
refinement of cache timing analysis via path-sensitive verification,”
Real Time Syst., vol. 49, no. 4, pp. 517–562, 2013. [Online]. Available:
https://doi.org/10.1007/s11241-013-9178-0

[36] F. Brandner and C. Noûs, “Precise and efficient analysis of
context-sensitive cache conflict sets,” in 28th International Conference
on Real Time Networks and Systems, RTNS 2020, Paris, France,
June 10, 2020, L. Cucu-Grosjean, R. Medina, S. Altmeyer, and
J. Scharbarg, Eds. ACM, 2020, pp. 44–55. [Online]. Available:
https://doi.org/10.1145/3394810.3394811

[37] ——, “Precise, efficient, and context-sensitive cache analysis,” Real
Time Syst., vol. 58, no. 1, pp. 36–84, 2022. [Online]. Available:
https://doi.org/10.1007/s11241-021-09372-5

[38] S. Kim, S. L. Min, and R. Ha, “Efficient worst case timing
analysis of data caching,” in 2nd IEEE Real-Time Technology and
Applications Symposium, RTAS ’96, Boston, MA, USA, June 10-12,
1996. IEEE Computer Society, 1996, pp. 230–240. [Online]. Available:
https://doi.org/10.1109/RTTAS.1996.509540

[39] R. T. White, C. A. Healy, D. B. Whalley, F. Mueller, and
M. G. Harmon, “Timing analysis for data caches and set-associative
caches,” in 3rd IEEE Real-Time Technology and Applications
Symposium, RTAS ’97, Montreal, Canada, June 9-11, 1997. IEEE
Computer Society, 1997, pp. 192–202. [Online]. Available: https:
//doi.org/10.1109/RTTAS.1997.601358

[40] B. K. Huynh, L. Ju, and A. Roychoudhury, “Scope-aware data cache
analysis for WCET estimation,” in 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2011, Chicago, Illinois,
USA, 11-14 April 2011. IEEE Computer Society, 2011, pp. 203–212.
[Online]. Available: https://doi.org/10.1109/RTAS.2011.27

[41] N. Guan, X. Yang, M. Lv, and W. Yi, “FIFO cache analysis for WCET
estimation: a quantitative approach,” in Design, Automation and Test in
Europe, DATE 13, Grenoble, France, March 18-22, 2013, E. Macii,
Ed. EDA Consortium San Jose, CA, USA / ACM DL, 2013, pp.
296–301. [Online]. Available: https://doi.org/10.7873/DATE.2013.073

[42] N. Guan, M. Lv, W. Yi, and G. Yu, “WCET analysis with MRU cache:
Challenging LRU for predictability,” ACM Trans. Embed. Comput.
Syst., vol. 13, no. 4s, pp. 123:1–123:26, Apr. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2584655

[43] P. Sotin, Q. Vermande, and H. Cassé, “Data cache analysis by
counting integer points,” in RTNS’2021: 29th International Conference
on Real-Time Networks and Systems, Nantes, France, April 7-9, 2021,
A. Queudet, I. Bate, and G. Lipari, Eds. ACM, 2021, pp. 112–122.
[Online]. Available: https://doi.org/10.1145/3453417.3453424

[44] S. Hahn and D. Grund, “Relational cache analysis for static
timing analysis,” in 24th Euromicro Conference on Real-Time
Systems, ECRTS 2012, Pisa, Italy, July 11-13, 2012, R. Davis, Ed.
IEEE Computer Society, 2012, pp. 102–111. [Online]. Available:
https://doi.org/10.1109/ECRTS.2012.14

[45] A. I. Barvinok, “A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed,” in 34th Annual
Symposium on Foundations of Computer Science, Palo Alto, California,
USA, 3-5 November 1993. IEEE Computer Society, 1993, pp. 566–572.
[Online]. Available: https://doi.org/10.1109/SFCS.1993.366830

[46] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: An
analytical representation of cache misses,” in Proceedings of the 11th
international conference on Supercomputing, ICS 1997, Vienna, Austria,
July 7-11, 1997, S. J. Wallach and H. P. Zima, Eds. ACM, 1997, pp.
317–324. [Online]. Available: https://doi.org/10.1145/263580.263657

[47] ——, “Cache miss equations: A compiler framework for analyzing
and tuning memory behavior,” ACM Trans. Program. Lang. Syst.,
vol. 21, no. 4, p. 703–746, Jul. 1999. [Online]. Available: https:
//doi.org/10.1145/325478.325479

[48] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck, “Exact
analysis of the cache behavior of nested loops,” in Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001,
M. Burke and M. L. Soffa, Eds. ACM, 2001, pp. 286–297. [Online].
Available: https://doi.org/10.1145/378795.378859

[49] X. Vera and J. Xue, “Let’s study whole-program cache behaviour
analytically,” in Proceedings of the Eighth International Symposium
on High-Performance Computer Architecture (HPCA’02), Boston,
Massachusettes, USA, February 2-6, 2002. IEEE Computer Society,
2002, pp. 175–186. [Online]. Available: https://doi.org/10.1109/HPCA.
2002.995708

[50] X. Vera, N. Bermudo, J. Llosa, and A. González, “A fast and accurate
framework to analyze and optimize cache memory behavior,” ACM
Trans. Program. Lang. Syst., vol. 26, no. 2, pp. 263–300, 2004.
[Online]. Available: https://doi.org/10.1145/973097.973099

[51] C. Cascaval and D. A. Padua, “Estimating cache misses and locality
using stack distances,” in Proceedings of the 17th Annual International
Conference on Supercomputing, ser. ICS ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 150–159. [Online].
Available: https://doi.org/10.1145/782814.782836

[52] K. Beyls and E. H. D’Hollander, “Generating cache hints for improved
program efficiency,” J. Syst. Archit., vol. 51, no. 4, pp. 223–250, 2005.
[Online]. Available: https://doi.org/10.1016/j.sysarc.2004.09.004

[53] W. Bao, S. Krishnamoorthy, L. Pouchet, and P. Sadayappan, “Analytical
modeling of cache behavior for affine programs,” Proc. ACM Program.
Lang., vol. 2, no. POPL, pp. 32:1–32:26, 2018. [Online]. Available:
https://doi.org/10.1145/3158120

[54] T. Gysi, T. Grosser, L. Brandner, and T. Hoefler, “A fast analytical
model of fully associative caches,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
K. S. McKinley and K. Fisher, Eds. ACM, 2019, pp. 816–829.
[Online]. Available: https://doi.org/10.1145/3314221.3314606

[55] C. Morelli and J. Reineke, “Warping cache simulation of polyhedral
programs,” in PLDI ’22: 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, R. Jhala and I. Dillig, Eds. ACM, 2022, pp.
316–331. [Online]. Available: https://doi.org/10.1145/3519939.3523714

https://doi.org/10.4230/OASIcs.WCET.2010.23
https://doi.org/10.1007/s11241-013-9178-0
https://doi.org/10.1145/3394810.3394811
https://doi.org/10.1007/s11241-021-09372-5
https://doi.org/10.1109/RTTAS.1996.509540
https://doi.org/10.1109/RTTAS.1997.601358
https://doi.org/10.1109/RTTAS.1997.601358
https://doi.org/10.1109/RTAS.2011.27
https://doi.org/10.7873/DATE.2013.073
http://doi.acm.org/10.1145/2584655
https://doi.org/10.1145/3453417.3453424
https://doi.org/10.1109/ECRTS.2012.14
https://doi.org/10.1109/SFCS.1993.366830
https://doi.org/10.1145/263580.263657
https://doi.org/10.1145/325478.325479
https://doi.org/10.1145/325478.325479
https://doi.org/10.1145/378795.378859
https://doi.org/10.1109/HPCA.2002.995708
https://doi.org/10.1109/HPCA.2002.995708
https://doi.org/10.1145/973097.973099
https://doi.org/10.1145/782814.782836
https://doi.org/10.1016/j.sysarc.2004.09.004
https://doi.org/10.1145/3158120
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3519939.3523714

APPENDIX A
PROOFS

Lemma 1 (Join Correctness). For all σ̂1, σ̂2 ∈ ̂SymCache:

γ(σ̂1) ∪ γ(σ̂2) ⊆ γ(σ̂1 ⊔ σ̂2)

Proof. Let σ̂1, σ̂2 ∈ ̂SymCache, and (σp, σc) ∈ γ(σ̂1)∪γ(σ̂2).
We assume without loss of generality that (σp, σc) ∈ γ(σ̂1).
By definition of the concretization function, we have:

∀e ∈ dom(σ̂1) : σc(block(JeKσp
)) ≤ σ̂1(e)

Thus, for any e ∈ dom(σ̂1) ∩ dom(σ̂2), we have:

σc(block(JeKσp)) ≤ σ̂1(e)

≤ max(σ̂1(e), σ̂2(e))

≤ (σ̂1 ⊔ σ̂2)(e)

Thus, (σp, σc) ∈ γ(σ̂1 ⊔ σ̂2).

Lemma 2 (Unknown Access Transformer Correctness). For
all σ̂ ∈ ̂SymCache, we have:

update(γ(σ̂),X) ⊆ γ(̂updateX(σ̂))

Proof. Let σ̂ ∈ ̂SymCache . Let (σ′
p, σ

′
c) ∈ update(γ(σ̂),X).

We will show that (σ′
p, σ

′
c) ∈ γ(̂updateX(σ̂)).

Let (σp, σc) ∈ γ(σ̂) and b ∈ B such that (σ′
p, σ

′
c) =

update((σp, σc), b). We know that ∀e ∈ dom(σ̂) :
σc(block(JeKσp)) ≤ σ̂(e), and we want to prove that ∀e ∈
dom(σ̂′).σ′

c(block(JeKσ′
p
)) ≤ σ̂′, where σ̂′ = ̂updateX(σ̂).

Let e ∈ dom(σ̂′) = dom(σ̂). Expanding all definitions, we
have σ′

c(block(JeKσ′
p
)) ≤ σc(block(JeKσp)) + 1 ≤ σ̂(e) + 1 ≤

σ̂′(e).
Thus (σ′

p, σ
′
c) ∈ γ(σ̂′), finishing the proof.

Lemma 3 (MCR Access Transformer Correctness). For all
σ̂ ∈ ̂SymCache and e ∈ A, we have:

update(γ(σ̂), e) ⊆ γ(̂updateA\{X}(σ̂, e))

Proof. Let σ̂ ∈ ̂SymCache, e ∈ M (LoopVar) and (σp, σc) ∈
γ(σ̂). We will show that
(σp, updateLRU (σc, block(JeKσp

))) ∈ γ(̂updateA\{X}(σ̂, e)).
To ease reading, we introduce the following notations:

• b = block(JeKσp
), the block e maps to.

• σ̂′ = ̂updateA\{X}(σ̂, e), the successor of σ̂ after the
update.

• σ′
c = updateLRU (σc, b), the successor of σc.

We then want to prove that: (σp, σ
′
c) ∈ γ(σ̂′), i.e. ∀e′ :

σ′
c(block(Je′Kσp

)) ≤ σ̂′(e′).
Let e′ ∈ dom(σ̂)∪{e}. Noting b′ = block(Je′Kσp

), we want
to show that σ′

c(b
′) ≤ σ̂′(e′). This is done by reasoning by

case distinction, looking at how σ̂′(e′) is obtained from σ̂(e′).
• Assume alias(e, e′) ⊑ sb: By correctness of alias , we

have: b = b′, which by definition of updateLRU leads
to σ′

c(b
′) = 0. We thus have σ′

c(b
′) ≤ σ̂′(e′). This case

covers in particular the condition e = e′. In the remaining
cases, we will thus assume that e ̸= e′, and thus that
e′ ∈ dom(σ̂).

• Suppose alias(e, e′) ⊑ sb+ds: Again, by correctness of
alias , we have either b = b′ or set(b) ̸= set(b′). If b =
b′, we are back to the previous case and σ′

c(b
′) = 0 ≤

σ̂′(e′). Otherwise, set(b) ̸= set(b′), and by definition
of updateLRU we obtain σ′

c(b
′) = σc(b

′). However, we
have σc(b

′) ≤ σ̂(e′) because (σp, σc) ∈ γ(σ̂) and e′ ∈
dom(σ̂). In addition, by case hypothesis, and definition of

̂updateA\{X}, we have: σ̂′(e′) = σ̂(e′). Combining these
inequalities together we obtain:

σ′
c(b

′) = σc(b
′) ≤ σ̂(e′) = σ̂′(e′)

• Otherwise, assume σ̂(e) ≤ σ̂(e′): By ̂updateA\{X} and
γ, we get σ̂′(e′) = σ̂(e′) ≥ σc(b

′). We then do one
additional case distinction:
– If σc(b) ≤ σc(b

′), by updateLRU we obtain:

σ′
c(b

′) = σc(b
′) ≤ σ̂(e′) = σ̂′(e′)

– Else σc(b
′) < σc(b). We thus have:

σ′
c(b

′) ≤ σc(b
′) + 1 ≤ σc(b) ≤ σ̂(e) ≤ σ̂(e′) = σ̂′(e′)

Both subcases thus lead to σ′
c(b

′) ≤ σ̂′(e′) as required.
• Otherwise, suppose σ̂(e′) + 1 < k : By definition of

̂updateA\{X}, we have σ̂′(e′) = σ̂(e′) + 1. Considering
all cases in updateLRU , observe that σ′

c(b
′) ≤ σc(b

′)+1,
and so

σ′
c(b

′) ≤ σc(b
′) + 1 ≤ σ̂(e′) + 1 = σ̂′(e′)

• Finally, assume none of the conditions above apply: By
definition ̂updateA\{X}, we have σ̂′(e′) = ∞ and so
trivially σ′

c(b
′) ≤ σ̂′(e′).

This finishes the proof. In all cases, we have σ′
c(b

′) ≤ σ̂′(e′)
proving that (σp, σ

′
c) ∈ γ(σ̂′), and thus:

update(γ(σ̂), e) ⊆ γ(̂updateA\{X}(σ̂, e))

Lemma 4 (Statement Transformer Correctness). For all σ̂ ∈
̂SymCache and s ∈ S, we have:

update(γ(σ̂), s) ⊆ γ(̂updateS(σ̂, s))

Proof. Let σ̂ ∈ ̂SymCache , s ∈ S and
(σ′

p, σ
′
c) ∈ update(γ(σ̂), s)). We will show that

(σ′
p, σ

′
c) ∈ γ(̂updateS(σ̂, s)). In the remaining, we will

note σ̂′ = ûpdate(σ̂, s).
By definition of update , σ′

p ̸= ⊥p and there exists
(σp, σc) ∈ γ(σ̂) such that (σ′

p, σ
′
c) = update((σp, σc), s).

From this, we deduce σ′
c = σc. and σ′

p = updateS(σp, s).
We want to show that for any e′ ∈ dom(σ̂′),

σc(block(Je′Kσ′
p
)) ≤ σ̂′(e′).

Let e′ ∈ dom(σ̂′). We proceed by case distinction on the
value of s:

• If s = entry i for some i: Because e′ ∈ dom(σ̂′), we
have i /∈ e′ and thus Je′Kσ′

p
= Je′Kσp[i 7→0] = Je′Kσp

. On
the other side, we have: σ̂′(e) = σ̂(e). Inserting these

equalities in the definition of (σp, σc) ∈ γ(σ̂), we obtain
the desired inequality: σc(block(Je′Kσ′

p
)) ≤ σ̂′(e′).

• If s = backedgei for some i: By definition of ̂updateS ,
there is an e such that e′ = Sh(e, i) and σ̂′(e′) = σ̂(e).
We thus have:

σc(block(Je′Kσ′
p
)) = σc(block(JSh(e, i)Kσp[i7→σp(i)+1]))

= σc(block(JeKσp))

≤ σ̂(e)

≤ σ̂′(e′)

• If s = assumei,expr for some i and expr ∈
MCR(LoopVar \ {i}): By defintion of ̂updateS , we
know there is an e such that e′ = Sub(e, i, expr) ̸= fail
and σ̂′(e′) = σ̂(e). We already deduced that σ′

p ̸= ⊥p,
which now implies that σ′

p = σp and σp(i) = JexprKσp

We thus have:

σc(block(Je′Kσ′
p
)) = σc(block(JSub(e, i, expr)Kσp))

= σc(block(JeKσp[i 7→JexprKσp]
))

= σc(block(JeKσp[i 7→σp(i)]))

= σc(block(JeKσp
))

≤ σ̂(e)

≤ σ̂′(e′)

In every case, it thus holds that σc(block(Je′Kσ′
p
)) ≤ σ̂′(e′),

proving that (σ′
p, σ

′
c) ∈ γ(σ̂′) as desired.

Lemma 5 (Concrete Domain Completeness). The set D =
P((LoopVar → N)×(B → N)), where B is the set of memory
blocks accessed by the program, is a complete lattice.

Proof. D being a powerset,
⋃
S and

⋂
S are obvious least

upper and greatest lower bound for any subset S of D.

Lemma 6 (Abstract Domain Completeness). The set
̂SymCache = M (LoopVar) ↪→ {0, . . . , k − 1,∞} is a

complete lattice.

Proof. Let S ⊆ ̂SymCache . Consider
⊔
S = λe ∈⋂

σ̂∈S dom(σ̂).max({σ̂(e), σ̂ ∈ S}).
⊔
S is well defined even

for an infinite subset S because {0, . . . , k−1,∞} being finite,
{σ̂(e), σ̂ ∈ S} always admit a maximum.

⊔
S belongs to

̂SymCache and the upper-bound property ∀σ̂ ∈ S : σ̂ ⊑
⊔
S

is obvious. One can show in a similar way that
d
S =

λe.min({σ̂(e), σ̂ ∈ S}) is a lower bound in ̂SymCache for
any subset S of ̂SymCache , making it a complete lattice.

Theorem 1 (Analysis Correctness). For all v ∈ V , we have:

RC(v) ⊆ γ(R̂(v))

Proof. The semantics RC and R̂ can be rewritten as the least
fixpoints of the following functions:

F (R) = λv.R0 ∪
⋃

(u,d,v)∈E

update(R(u), d)

F̂ (R̂) = λv.R̂0(v) ⊔
⊔

(u,d,v)∈E

ûpdate(R̂(u), d)

where

R0(v) =

{
{(λi.0, σc) | σc ∈ Σc} if v = v0

∅ otherwise

R̂0(v0) = ∅

This is well-defined because the Knaster-Tarski fixpoint the-
orem guarantees the existence of these fixpoints. Indeed, F
and F̂ are monotone by construction, and Lemmas 5 and 6
ensures that our concrete and abstract domains are complete
lattice. In addition, the Knaster-Tarski theorem ensures that
RC = lfp(F) =

⋂
Red(F) =

⋂
{R | R ⊇ F (R)} (the same

relation holds for R̂ and F̂ but we will not need it).
From Lemmas 2 and 3 and 4 about the correctness of

statement and access transformers, one can trivially derive that
for any σ̂:

update(γ(σ̂, d) ⊆ γ(ûpdate(σ̂, d))

We thus have:

F (γ(R̂)) = λv.R0∪⋃
(u,d,v)∈E

update(γ(R̂(u)), d)

⊆ λv.R0 ∪
⋃

(u,d,v)∈E

γ(ûpdate(R̂(u), d))

⊆ λv.R0 ∪ γ

 ⊔
(u,d,v)∈E

ûpdate(R̂(u), d)


⊆ λv.γ(R̂0) ∪ γ

 ⊔
(u,d,v)∈E

ûpdate(R̂(u), d)


⊆ λv.γ

R̂0 ⊔
⊔

(u,d,v)∈E

ûpdate(R̂(u), d)


⊆ γ(F̂ (R̂))

Finally, we get the following inequalities:

R̂ = lfp(F̂) ⇒ F̂ (R̂) = R̂

⇒ γ(F̂ (R̂)) = γ(R̂)

⇒ F (γ(R̂)) ⊆ γ(R̂)

⇒ γ(R̂) ∈ Red(F)

⇒ γ(R̂) ⊇ lfp(F) = RC

APPENDIX B
DEFINITION OF eval mod

This section provides a formal definition of the eval mod function used in the submission. The role of eval mod is to
evaluate an expression in a context that provides partial information about the current loop iteration. Thus, the return value of
eval mod needs to represent partially known values, which is done using the following enumeration:

• Exact(n) when the evaluated expression is known to be exactly n in the given context.
• Mod(n, k) when only the residue modulo k is known to be n.
• Unknown when no information can be derived in the given context.
We overload arithmetic operations (with bop ∈ {+,−,×}) to operate on this partial knowledge as follows:

a1 bop a2 =



Exact(n1 bop n2) if a1 = Exact(n1) ∧ a2 = Exact(n2)

Mod((n1 bop n2) mod k2, k2) if a1 = Exact(n1) ∧ a2 = Mod(n2, k2)

Mod((n1 bop n2) mod k1, k1) if a1 = Mod(n1, k1) ∧ a2 = Exact(n2)

Mod((n1 bop n2) mod gcd(k1, k2), gcd(k1, k2)) if a1 = Mod(n1, k1) ∧ a2 = Mod(n2, k2)∧
gcd(k1, k2) > 1

Unknown otherwise

We then define an auxiliary function evalAux mod as follows:

evalAux mod (n, ctx , S) := Exact(n)

evalAux mod (e1 bop e2, ctx , S) := evalAux mod (e1, ctx , S) bop evalAux mod (e2, ctx , S)

evalAux mod ({e1,+, e2}i, ctx , S) :=



Unknown if i ∈ S

evalAux mod (e1, ctx , S)+ if i /∈ S ∧ ctx (i) = peeln
evalAux mod (e2, ctx , S ∪ {i})× Exact(n)

evalAux mod (e1, ctx , S)+ if i /∈ S ∧ ctx (i) = unrolln

evalAux mod (e2, ctx , S ∪ {i})×
Mod(MaxPeel + n,MaxUnroll)

The function eval mod is then defined as eval mod (e, ctx) = evalAux mod (e, ctx , {}). The auxiliary function evalAux mod

is recursive, and evaluates an expression by first evaluating its subexpressions in a bottom-up manner. The set S, initially
empty, is used to track down the set of induction variables already met along the evaluation path in the top-down direction. Its
role is to detect the evaluation of expressions of degree greater than 2 for a given induction variable, and return Unknown in
this case. Indeed, the provided formula would be invalid for such expressions when the loop induction variable is not exactly
known. Consider {1,+, {2,+, 1}x}x as an example of such an expression, which represents (x+1)(x+2)

2 , and assume x is only
known to be equal to 1 modulo 2. x = 1 would lead to (x+1)(x+2)

2 = 3, but x = 3 would lead to (x+1)(x+2)
2 = 10, which has

a different residue modulo 2. Note that the tracking of loop-induction variables to avoid this case is simple but incomplete: it
is possible that evalAux mod returns Unknown in cases in which it would be possible to extract better information. However,
in practice, most expressions are linear and thus evalAux mod almost always succeeds.

	Introduction
	Background
	Caches
	Control-Flow Graphs as a Program Representation
	Ferdinand's May and Must Cache Analysis

	Illustrative Example
	Intuitive Cache Analysis
	Traditional Cache Analysis
	Symbolic Control-Flow Graphs and Cache Analysis

	Symbolic Control-Flow Graphs
	Multivariate Chains of Recurrences
	Symbolic Control-Flow Graphs
	Semantics of Symbolic Control-Flow Graphs

	Symbolic Data Cache Analysis
	Abstract Domain
	Abstract Transformers
	Analysis Correctness and Termination

	Loop Peeling and Unrolling
	Context-Sensitive Analysis
	Refining Alias Relations using Context Information

	Implementation
	Experimental Evaluation
	Behavior of the Symbolic Analysis on Illustrative Example
	Accuracy of the Symbolic Analysis
	Scalability Evaluation
	Impact of the Cache Geometry

	Related Work
	Conclusions and Future Work
	References
	Appendix A: Proofs
	Appendix B: Definition of eval-5mumod5mu-

