
Predictable Communication Protocol Processing
in Real-Time Mach

Chen Lee, Katsuhiko Yoshida*, Cliff Mercer and Ragunathan Rajkumar
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

{clee,ky2d,cwm,raj+}@cs.cmu.edu

*Visiting Scientist, Nippon Steel Corporation

Abstract

Scheduling of many different kinds of activities takes place
in distributed real-time and multimedia systems. It includes
scheduling of computations, window services, filesystem
management, I/O services and communication protocol
processing. In this paper, we investigate the problem of
scheduling communication protocol processing in real-time
systems. Communication protocol processing takes a rela-
tively substantial amount of time and if not structured cor-
rectly, unpredictable priority inversion and undesirable
timing behavior can result to applications communicating
with other processors but are otherwise scheduled correctly.
We describe the protocol processing architecture in the RT-
Mach operating system, which allows the timing of
protocol processing to be under strict application control.
An added benefit is also obtained in the form of higher
performance. This scheduling architecture is consistent
with the other RT-Mach scheduling mechanisms including
fixed priority scheduling and processor reservation. The
benefits of this protocol architecture are demonstrated both
under synthetic workloads and in a realistic distributed
videoconferencing system we have implemented in RT-
Mach. End-to-end delays for both audio and video are as
predicted even with other threads competing for the CPU
and the network.1

1. Introduction
Distributed real-time and multimedia applications must
communicate and coordinate across machine boundaries.
Such communications may use a wide range of network
communication protocols including UDP/IP, TCP/IP and
XTP. Despite the advent of high-bandwidth networks like
ATM, Fast Ethernet, Ethernet switching etc., network
bandwidth is often considered to be the most serious bot-
tleneck for such network communications. This is certainly
true when a large number of nodes use the same network
link(s) and each node has to have a chunk of the com-
munication bandwidth. On the other hand, protocol stacks
such as UDP/IP and XTP/IP also consume a considerable
amount of CPU processing time. When multiple real-time

1This work was supported in part by the Office of Naval Research,
Naval Research and Development Center, Northrop-Grumman, Philips
Labs and Nippon Steel Corporation.

tasks need to use the network from the same node, as is
often the case in distributed real-time and multimedia con-
texts, the question of how these protocol stacks are struc-
tured and processed becomes a critical question for main-
taining predictable timing behavior. Some specific ques-
tions that arise are:

• Sender-Related Questions: If two or more real-time
tasks try to send out network packets, what is the level
of resource-sharing involved? In general, how are send-
ing of packets by different tasks scheduled?

• Receiver-Related Questions: If one or more real-time
tasks receive packets from the network, are they
processed in FIFO or priority order? In general, how are
their protocol processing activities scheduled on net-
work packet reception?

• Network-Related Questions: How is network bandwidth
allocated and managed?

Most, if not all, commercial protocol stack implementations
use a FIFO queueing mechanism. This is clearly detrimen-
tal to real-time behavior particularly when extensive sup-
port has been added and used to schedule the real-time
computations on the CPU. In addition, protocol stacks are
often implemented in the kernel, leading to large critical
sections when networks packets arrive or depart. Finally,
packet arrivals are processed with high (kernel) priority
even if the packets are intended for low priority tasks to
ensure that as few packets as possible are lost.

In this paper, we address the sender-related and receiver-
related questions by defining the requirements of a real-
time protocol processing architecture that is "aware" of
real-time requirements of tasks sending and receiving net-
work packets. An implementation of an architecture that
meets these requirements has been carried out on RT-Mach.
We discuss this implementation and evaluate its real-time
characteristics under synthetic workloads as well as in the
context of a video-conferencing system built on Real-Time
Mach.

1.1. An Overview of Real-Time Mach
We now provide a brief overview of the capabilities of
Real-Time Mach so as to provide some insight into how the
various components of the operating environment fit
together with the protocol processing architecture.

The RT-Mach microkernel supports a wide range of CPU
scheduling policies including a fixed priority scheduling
policy, earliest deadline first policy and a round-robin
policy. One of these policies can be chosen dynamically.
RT-Mach also supports a novel scheduling scheme based
on processor reservation which serves as a temporal protec-
tion barrier between real-time tasks analogous to address
space protection between processes [9]. Each processor
reserve comprises of a requested rate of usage, currently
specified as C units of computation time every T units of
time. Transparent to user applications, a reserve is assigned
by the kernel a rate-monotonic priority based upon this re-
quested usage, and the processor is still scheduled on the
basis of fixed priorities2. The reservation scheme includes
an admission control policy to prevent overload and a
mechanism to accurately measure computation time con-
sumed by programs. In addition to measuring computation
time usage, the reservation mechanism enforces computa-
tion time limits reserved by an application thread. Hence, a
program which attempts to use more computation time than
its processor allocation cannot interfere with the timing be-
havior of other programs. This is in contrast to pure
priority-driven scheduling policies where overruns by
higher priority processes can hurt lower priority processes.

In addition to its flexible and novel scheduling policies,
RT-Mach supports a real-time inter-process communication
mechanism based on priority inheritance (for priority-
driven scheduling policies) and reservation propagation (for
the reservation-driven scheduling policy). Virtual memory
pages (including code, data and/or future allocation) of real-
time tasks can be wired down to obtain predictable memory
accesses. High-resolution clocks and timers with a resolu-
tion of up to 250 ns are supported. An X11-server which
supports reserve propagation and shared memory com-
munication is also available. Simpler applications can use a
display screen library to access the display frame buffers.
A real-time shell (RTS) along with a network protocol serv-
er (NPS) provide a compact run-time environment for con-
structing distributed real-time systems. Video and audio
capabilities are also supported to aid in the development of
distributed multimedia applications. A complete 4.3 BSD-
based environment is available for program development.
In additoin, a 4.4 BSD-Lites server has been ported to the
RT-Mach microkernel by the Helsinki University of Tech-
nology.

In this paper, we use both the fixed priority scheduling
policy (due to its popular use and support by current stan-
dards such as POSIX and Ada95) and the RT-Mach proces-
sor reservation policy (due to its better enforcement and
abstraction properties) in conjunction with the protocol
processing structure.

2This can be easily extended to dynamic priority models such as earliest
deadline scheduling due to the transparent nature of the reserve interface
seen by applications.

1.2. Organization of the Paper
The rest of this paper is organized as follows. Section 2
discusses some choices for different protocol processing
software structures and how they impact the timing be-
havior of applications. In Section 3, we give a more
detailed description of the scheduling structure that we have
implemented in RT-Mach, focusing on the features of this
mechanism that enable application-level timing control
over packet scheduling. In Section 4, we present perfor-
mance numbers from synthetic workloads which
demonstrate the predictable behavior we can achieve. This
evaluation focuses on the use of the RT-Mach processor
reservation scheme with the real-time protocol processing
architecture. In Section 5, we describe a practical 2-way
video-conferencing system which transmits duplex audio
and video streams. This application has both heavy CPU
processing, stringent protocol processing and end-to-end
delay requirements, and is an ideal testbed for testing the
protocol processing structure described in Sections 2 and 3.
The evaluation of this section focuses on fixed-priority
scheduling alone. In Section 6, we present our concluding
remarks.

2. Real-Time Processing of Communication
Protocols

In this section, we look at several different approaches to
protocol processing software design, and we identify and
discuss the advantages and disadvantages of these ap-
proaches.

Most implementations of protocol stacks use a FIFO queue-
ing scheme to process network packets. Hence, even if the
processes and threads are scheduled according to real-time
scheduling principles, priority inversion exists in the
protocol stack. Preemptability is typically very limited as
well since many protocol stack implementations are in the
kernel and therefore execute at kernel priorities. By apply-
ing the known principles of real-time scheduling, protocol
processing can be structured in various ways:
1. Prioritized Processing: This represents a deceptively

simple change and requires only changing the queues
from FIFO into priority-based ones. However, this can
cause problems on both the sending side and the
receiving side. The software structure used for
protocol processing in the operating system determines
the degree of priority inversion and thus the level of
predictability. At one extreme, the 4.3 BSD operating
system uses ‘‘software interrupt’’ processing for ex-
ecuting protocols for incoming network packets [6].
This gives protocol processing higher priority than any
schedulable activity in the system, higher than any sys-
tem or user processes. Thus, packet protocol process-
ing acts as a kernelized monitor. For fast response to
network packets and for high throughput, this is a good
design choice, but the problem is that a deluge of low
priority data packets can effectively take over the
processor for an extended period of time, regardless of
the importance of any of the schedulable activities.
The system is thus vulnerable to unbounded priority
inversion. Sending of large packets by lower priority
threads will be processed at kernel priorities causing

problems but to a lesser degree since the maximum
number of lower priority sends (and hence blocking)
will be limited to a single send.

2. Shared Communication Protocol Server: One
reasonable alternative is to bring the protocol stack
into a separate server (particularly in a microkernel
architecture). We can then treat the protocol stack as a
shared resource, and then apply the priority inheritance
protocol or priority ceiling protocol to it. Problems
similar as in approach (1) are possible but to a lesser
degree since the priority of the server is under applica-
tion control.

3. Processing Using Prioritized Threads: To prevent
the kind of priority inversion from approach (1), it is
necessary to associate priorities with packets so that
they can be queued and serviced in priority order.
This enables preemption of the processing of one low
priority packet in favor of a higher priority packet,
especially if the computation time required for
protocol processing is significantly more than that re-
quired for a (thread) context switch. One approach,
used in the ARTS real-time kernel, has preemptible
threads to shepherd packets through the protocol
software [14]. Each thread handles a different packet
priority class, and the priority of the thread matched
the priority of the packets it handles. For predictable
performance, the protocol processing software should
be sensitive to packet priority as well as the priority of
other activities running on the processor. This ap-
proach provides fast response to high priority packets
and prevents low priority network activities from inter-
fering with high priority work on the processor. This
is similar to the method used in the x-kernel [2], but
unlike the x-kernel threads, ARTS protocol processing
threads are preemptive.

4. Application-Level Protocol Processing: A fourth al-
ternative that we actually chose for use in RT-Mach is
to make the protocol stack into a library that resides in
application space (in each process). In such a design,
individual threads can still preempt one another based
on their priorities. As a result, communication
protocol processing becomes a local extension of the
communicating threads and can be treated as fully
preemptive blocks of computation across processes. In
a microkernel setting as in RT-Mach, the protocol
stack actually can move from the Unix server (which
runs as a privileged process on top of the microkernel)
to the application level, and additional performance
benefits can be accrued since the path is now {kernel
to application process} instead of {kernel to Unix to
application process}.

2.1. Application-Level Protocol Processing
Coordination between processor scheduling and network
packet handling is very important for end-to-end predic-
tability in distributed multimedia systems. Many systems
use the notion of priority to support predictability, and one
major issue is how priority inversions affect the perfor-
mance of more important activities. Priority inversion oc-
curs when a higher priority activity is forced to wait for a
lower priority activity to execute [13, 11]. For example, a
priority inversion occurs when a high priority packet goes
into a FIFO queue behind a low priority packet. Priority
inversion can be a major cause of unpredictable behavior in
real-time communication systems [15].

Several principles guide the design of predictable protocol
processing software [8]:

1. use packet priority for queueing,
2. schedule protocol processing against other system ac-

tivities using packet priority,
3. use a preemptive control structure to reduce inter-

ference and priority inversion,
4. partition resources such as protocol data structures to

reduce interference among priority classes, and
5. limit the context switching overhead of the preemptive

control structure.

The multi-threaded protocol software mentioned above en-
hances the predictability of protocol processing, but at the
expense of additional context switching. A protocol
processing mechanism implemented for the Mach operating
system [7] is amenable to the application of these prin-
ciples. This user-level library implementation of TCP/IP
and UDP/IP was originally done to speed up the fast path in
the Mach networking code by reducing the number of IPC’s
and context switches required to send and receive packets.
This design also happens to satisfy our principles for pre-
dictable network communication, and with the resource
management functionality provided by our reservation
mechanism, we achieve predictable end-to-end perfor-
mance.

3. A Protocol Software Structure for
Predictable Real-Time Scheduling

3.1. OS Enforcement and Predictability
To support a predictable communications service, the
operating system must cooperate with the network in
scheduling networking activities. Two common approaches
to building predictable systems are (1) relatively static real-
time scheduling for guaranteed service and (2) statistical
multiplexing techniques for (mostly) good service and high
utilization. Static real-time scheduling approaches typically
use priority-driven policies with off-line priority assign-
ments and analyses. They are often based on careful
measurement and control of the execution times of each
software component in the system. Such approaches are
less appropriate for the dynamic, flexible, easy-to-use en-
vironment that can be used for both real-time and mul-
timedia environments. Statistical multiplexing, on the other
hand, is flexible and better suited to a dynamic environ-
ment, but this method requires a fairly large number of
activities to realize the benefits of statistical sharing. Many
modern operating systems are designed to run only a few
concurrent programs on a single microprocessor. On per-
sonal workstations, only a few concurrent programs are ac-
tive at a single time, and on multiprocessors, it is common
to think more in terms of allocating processors to applica-
tions rather than multiplexing applications on single proces-
sors. With so few activities being scheduled, statistical
multiplexing does not offer the predictability it might when
the numbers are larger.

Our approach is to strike a compromise between static real-
time systems and statistical multiplexing. Since resources

are to be shared among only a few activities, we cannot
depend on statistical assurances that the resources will be
available when they are needed. In RT-Mach, one can use
a resource reservation mechanism to ensure resource
availability. The reservation mechanism does not preclude
resources from being multiplexed among several activities,
as long as the resource can be scheduled in such a way that
it is available to the reservation holder during the interval of
time it is reserved. Some resources are difficult to schedule
in this way. Physical pages, for example, cannot easily be
multiplexed since the ‘‘context switch’’ to copy out data
from a page and copy in new data is quite time-consuming.
This argues for physical pages being allocated directly
rather than being multiplexed, and reservation in this case
means that the physical resources are tied up when reserved
and cannot be used by other activities. We call this type of
reservation a dedicated reservation. Processors, however,
can be multiplexed fairly easily; the context switch time is
not as large. So reservation for processors means that the
processor resource, measured in terms of computation time,
must be available at the time the reservation holder needs it,
and this type of reservation does not preclude the resource
being used by other activities, including background ac-
tivities. We can think of this as a reservation of capacity
rather than a reservation of a discrete resource, and we call
it a scheduled reservation.

Since reserving discrete resources is a relatively straightfor-
ward proposition, we have focused more on how a reser-
vation mechanism for the processor would work. The
processor reservation mechanism has four parts: an inter-
face to specify reservation requests, an admission control
policy, a scheduling algorithm, and a mechanism to enforce
reservations. A more complete description of the design
and implementation of this reservation system can be found
elsewhere [10].

Suppose instead of processor reservation, a fixed priority
scheduling policy is used. In this case, the protocol
processing structure can be identical to that with processor
reservation, except that priorities must be assigned ap-
propriately by the application(s). In addition, each applica-
tion must not exceed its specified execution times (for
timing guarantees given to lower priority tasks to hold
true). In other words, enforcement is absent or is up to the
application. With the processor reservation model, if
shorter period tasks (and hence higher fixed priority tasks
using rate-monotonic priority assignment) execute longer
than their specified times, the kernel can suspend them or
lower their priorities until the current reservation period
expires.

3.2. Mach 3.0 Networking
Networking in the context of the Mach 3.0 UX server [1] is
accomplished by calling the 4.3 BSD networking primitives
which are handled by the UX server. The UX server inter-
acts directly with the network device drivers to send and
receive packets. As shown in Figure 3-1, this makes the

UX server a single point of contention for all activities that
are using the network. Unfortunately, the networking code
inside the UX server does not support priorities nor does it
have well-defined real-time properties. In sum, this
software does not satisfy our requirements for prioritization
and preemptibility in predictable protocol processing
software.

Network
Application

Network
Application

Network
Application

Unix
Server

Inteface

Real-Time Mach

Network

Figure 3-1: Networking with the Unix Server on RT-Mach

Another problem with networking under the UX server of
Mach 3.0 is that the interprocess communication (IPC) re-
quired between the application and the UX server and be-
tween the UX server and the network device drivers adds
overhead to network communication. This decreases
throughput and increases latency. To alleviate these
problems, Maeda and Bershad created a library implemen-
tation of TCP/IP and UDP/IP sockets [7]. Their library
handles the protocol processing for sending and receiving
packets and interacts with the network packet filter [17] and
network device drivers directly. The library can be linked
in with applications that use the networking calls, so each
application can do its own protocol processing in its own
scheduling domain (i.e. within its own threads). The library
only interacts with the UX server to create and destroy
connections and for a few other control operations. The
fast path for sending and receiving packets is confined to
the library itself (and the device drivers). Figure 3-2 il-
lustrates this networking software structure.

The socket library implementation has multiple threads, in-
ternal to the library. Specifically, the threads involved in
the protocol processing structure are
1. All socket send operations use the caller’s
application thread.

2. A network_thread receives from the kernel network
interface all network packets destined to this applica-
tion process. All socket receive operations by the ap-
plication obtain packets received by the
network_thread.

3. A network_proxy_thread receives messages sent
by Unix (for use by system calls such as "select" which
peek at both socket and file descriptors maintained by
the Unix server).

4. A timeout thread is used for timeouts.

Network
Application

Network
Application

Network
Application

Unix
Server

Inteface

Real-Time Mach

Network

LIB

LIB

LIB

Figure 3-2: Networking with the Socket Library

5. A pc_sample thread is used for sampling the PC at
roughly periodic intervals for profiling purposes.

The socket library libsockets of Maeda and Bershad
yields much better performance in terms of throughput and
delay than the UX server sockets implementation [7].
Coincidentally, this implementation also satisfies our re-
quirements for effective scheduling of protocol processing.
By including the code in a user library, the computation is
done by the user thread for sending packets and by the
network_thread for receiving packets from the network.
It is also preemptible since it runs in user mode and shares
nothing with other threads in other applications.

3.3. A Real-Time Socket Library with Processor
Reservation

We have modified the socket library of Maeda and Bershad
to conform to the real-time scheduling model of RT-Mach
and to obtain the predictability properties described earlier
in this section. Since libsockets enables the protocol
processing computation to be scheduled as an application-
level activity, which can be made preemptible, we can also
effectively apply the processor capacity reservation system
to programs which do socket-based communication. Com-
pared with a UX server socket implementation, the library
partitions the data structures and control paths of all of the
networking activities and places them in independent ad-
dress spaces where they do not interfere with each other. In
the UX server, these different activities are forced to share
the same queues without the benefit of a priority ordering
scheme. In addition, when UX is also used for protocol
processing, other UX activities such as file I/O,
asynchronous signals, etc. also handled by UX can also
interfere with protocol processing. As a result, packets can
be delayed as a result of other operating system activities
that are not even related to networking.

In our real-time version of the socket library named
libsockets-rt, these components cannot interfere with
each other, and the reservation (or other real-time schedul-

ing) mechanism is free to make decisions about which ap-
plications should receive how much computation time and
when. The control exercised by the reservation (or real-
time) scheduler is not impeded by additional constraints
brought on by the sharing of data structures and threads of
control.

Conceptually, this socket library structure is not unlike the
independently derived design of the real-time
publisher/subscriber (RT/PS) inter-process communication
model described in [12]. During initialization, both struc-
tures talk to a common server (UX for libsockets and
the ipc-server for the RT/PS model). The steady-state
operations of sending in the socket libary are analogous to
steady-state publishing in the RT/PS IPC model. The
network_thread receiving network packets is slightly
different from (but arguably conceptually similar to) the
delivery_manager in the RT/PS model.3

The following changes are necessary to convert the
libsockets structure to have controllable and predictable
real-time properties in libsockets-rt under the RT-
Mach reservation policy.

• All threads within libsockets must become real-time
threads4 so that their scheduling attributes can be ap-
propriately controlled.

• For all socket send operations, the calling application
thread’s processor reservation applies by default under
the reservation scheduling policy and no changes are
required.

• The network_thread must be assigned a processor
reservation based on the burstiness and frequency of
packets expected from the network. A simple option is
to inherit the reservation of the parent thread which in-
itializes libsockets-rt. A more complex implemen-
tation allows the application to specify a different
reserve for use by this thread alone.

• The other threads must be assigned an appropriately
small reservation (relatively small computation times
with relatively long periods in general).

3The differences between the structures of the socket library and the
RT/PS model seem to arise from the fact that the "socket library" only
manages local sends and receptions (between the network interface and an
application thread), while the RT/PS model deals with transparent com-
munications between processes split across machines. In the latter, mul-
tiple copies delivered to the same machine are optimized by sending only
one copy to a delivery_manager which is then locally sent to all
the local recipients. Due to this distributed communications model, in
RT/PS, the various ipc-servers also need to coordinate with one
another. The other major difference in timing semantics is that the RT/PS
model has a notification thread which is real-time in nature,
while the network_proxy_thread which is more limited in
semantic scope and not real-time in nature.

4In RT-Mach, real-time and non-real-time threads can co-exist, with the
real-time threads always having higher priority than the non-real-time
threads.

3.4. libsockets-rt with Fixed-Priority Processing
RT-Mach also supports the traditional fixed-priority
scheduling scheme and it is desirable that libsockets-rt
support this policy too. The changes to libsockets that
are required are identical to the changes to support proces-
sor reservation except that instead of binding reserves to
threads, fixed priorities are assigned to them by the applica-
tion.

4. Performance Evaluation with Processor
Reserves and libsockets-rt

In this section, we evaluate the use of libsockets-rt in
the context of the processor capacity reserves supported by
RT-Mach. The tests in this section use four different con-
figurations of the RT Mach 3.0 system running on Gateway
2000 i486-66MHz machines. We show the behavior of
several task sets using both sockets implemented in the
Unix server running on RT-Mach and libsockets-rt un-
der both time-sharing and reservation scheduling policies.

In each of the system configurations, we run several task
sets. In the first, we have a single thread which is periodi-
cally transmitting several UDP packets (10 packets every
40 ms); this is the activity that is intended to be predictable.
This thread has no (substantial) competition from other ap-
plication programs (other than those normally running un-
der Mach 3.0/UX). We measure the processor usage of this
thread which correlates with the number of packets sent,
and that is the information that appears in the graphs. In the
subsequent task sets, we measure the usage of the same
packet transmitting thread, but we introduce competition in
the form of several additional non-real-time threads which
are doing various kinds of operations. In the second task
set, the competition is comprised of 5 compute-bound
threads. In the third, the 5 competing threads are making
standard I/O calls (stdio) - each stdio call causes IPC mes-
sages to be sent back and forth between the application and
the UX server. Finally, in the fourth task set, there is a
competing low-priority thread sending 10 UDP packets
every 40 ms. In the fifth task set, all of these competitive
elements are combined.
1. Predictable transmitter with no competition.
2. Predictable transmitter with arithmetic competition

(compute-bound).
3. Predictable transmitter with input/output(stdio) com-

petition.
4. Predictable transmitter with background networking

competition.
5. Predictable transmitter with all of the above competi-

tion.

We refer to the predictable transmitter as the Net App. We
find that the behavior of Net App is affectead in different
ways, depending on the competition, the CPU scheduling
policy and the protocol processing architecture and policies
used.

4.1. RT Mach/UX server under time-sharing
In this experiment, we use RT Mach 3.0 with the Unix
server providing the networking service to applications.
The scheduling policy is Mach time-sharing.

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(c) (d)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(e)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
U

sa
ge�

Time (s)

Thread 1

Figure 4-1: Measured Behavior under RT-Mach with
Unix sockets, Mach Time-Sharing Policy

In Figure 4-1(a) we see the usage (fraction of the processor
capacity) of the Net App in isolation. Part (b) of the figure
shows the effect of interference from the compute-bound
threads. The time-sharing scheduling policy allocates long
durations of time to the competition. In Part (c), we see
that the stdio competition looks much the same. Part (d)
shows that the UDP competition is not very strenuous in
terms of computation time, and so the behavior of the Net
App is fairly predictable, but when we combine all of the
types of competition in Part (e), we see that the resulting
interference makes the Net App’s behavior unpredictable.
The interference is substantial; there are periods of up to 1
second where the computation time the Net App receives is
virtually nil. This is caused by the fact that the Mach time-
sharing scheduling algorithm tends to give large durations
of computation time to compute-bound programs. Also, the
Net App’s message processing is done by the UX server
which has to do I/O processing for the Stdio Apps and
additional message processing for the Bg network applica-
tion as well.

4.2. RT Mach/libsockets-rt under Time-Sharing
The tasks in this experiment use libsockets-rt and the
scheduling policy

used is Mach time-sharing.

Figure 4-2(a) shows the Net App in isolation. In parts (b)
and (c), we can see that the Net App is sensitive to inter-

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(c) (d)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(e)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

Figure 4-2: Measured Behavior under RT-Mach with
libsockets-rt and Mach Time-Sharing

ference from the arithmetic and stdio competition, but it
suffers only a little interference from the Bg Net App in
part (d). For part (e) where the competition is a mixture of
all three types of activity, the interference is severe. Much
of this interference comes from the time-sharing scheduling
policy sometimes giving preference to the compute-bound
threads and sometimes to the I/O-bound threads.

4.3. RT Mach/UX server with Reserves
The tasks in this experiment use the Unix server for net-
work services and the RT-Mach reservation scheduling
policy. The point is to demonstrate that simply using reser-
vation scheduling does not solve the problem; the protocol
processing architecture plays an important role in achieving
predictable behavior.

Figure 4-3(a) shows the Net App in isolation, and the be-
havior is very regular and predictable. The behavior is also
(fairly) predictable with arithmetic competition (b), stdio
competition (c), and background network competition (d).
The combination of these types of competition in Figure
4-3(e), however, reveals the effect of the interaction be-
tween the main Net App, the Stdio Apps, and the Bg Net
App which all share the UX server. Since UX services all
of these applications and since it does not have priorities
internally, these clients interfere with each other. We can
see this reflected in the performance of the Net App which
is very erratic. This experiment shows that reservation
scheduling is not enough to ensure predictability when
resources such as the UX server are being shared.

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(c) (d)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(e)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

Figure 4-3: Measured Behavior under RT-Mach with
UX sockets, RT-Mach Reservations

4.4. RT Mach 3.0/libsockets-rt with reservation
scheduling

This final task set uses RT-Mach reservation scheduling
and uses libsockets-rt. Thus, it has all the desirable
features we discussed in Sections 2 and 3.

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(c) (d)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

(e)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

U
sa

ge�

Time (s)

Thread 1

Figure 4-4: Measured Behavior under RT-Mach with
libsockets-rt, RT-Mach Reservations

In Figure 4-4(a), we see the Net App in isolation. Parts (b),
(c), and (d) show that the Net App suffers little or no inter-
ference from arithmetic competition alone, from stdio com-

petition alone, or background network competition alone.
And in Figure 4-4(e), we see that even in the case where all
of the various types of competition are combined, this sys-
tem configuration provides very predictable behavior for
the real-time Net App. Although the usage varies a little in
this case, the variations are not nearly as damaging as the
variations in the previous experiments. These slight varia-
tions are due to the unavoidable sharing of low-level system
resources such as network interrupt handlers.

5. A Video-Conferencing System with Fixed
Priority Scheduling and libsockets-rt

We have extended RT-Phone [5], an audio-conferencing
system built on RT-Mach, to support real-time duplex
transfer of video as well, yielding a video-conferencing sys-
tem. The parties involved in the video conference run on
two Intel Pentium 120-MHz PCs with two Pro-Audio
Spectrum 16 sound cards for full duplex audio capabilities,
and a Matrox Meteor video frame-grabber each. A high-
resolution timer card on each machine yields timestamps
and time information up to a resolution of 1 µsecond. In
this paper, we focus on the protocol processing on the
CPUs running RT-Mach and the actual network delays are
considered to be small. The two nodes are connected using
a dedicated 10Mbps ethernet. The focus of our experiments
is protocol processing and how it affects the end-to-end
delay of different real-time streams (audio and video).
Hence, we explicitly do not consider synchronization of
audio and video streams in the following discussions. For
an interesting discussion of audio/video synchronization in
an uncontrolled network context, the reader is referred to
the work by Jeffay et al. [4]. They have studied the
problem of audio/video synchronization in an uncontrolled
network.

Audio
Send

Audio
Receive

Audio
Server

Real-Time Mach

Audio device driver

HardwarePAS 1 PAS 2

Audio
Server

To network From network

RT-Phone

Video
Send

Video
Receive

To network From network

Video device driver

Display

Figure 5-1: RT-Phone Video-Conferencing Support

The configuration of the RT-Phone video-conferencing sys-
tem is illustrated in Figure 5-1. It is in many ways similar

to traditional teleconferencing applications (for example,
PictureTel, "CU/see-me" on the Mac, [3, 16]) but it is also
quite different in many other ways. For example, a distinct
user-level audio server process hides the details of the
system’s sound card by providing a higher level interface
similar to the AudioFile utility. Processor reserves or fixed
priority scheduling is used to provide guaranteed timing
behavior.

5.1. The Audio End-To-End Delay
The processing pipeline of the audio data from one side to
the other side is presented in Figure 5-2. As indicated, let
the period Taudio represent the time it takes for the sound
card to fill its internal buffer and interrupt the CPU. The
size of this internal buffer, referred to as an "audio frame"
in [4], is application-selectable. Successive interrupts with
new blocks of audio data arrive every Taudio time-units
apart. We assume that the processing and sending of the
audio data need to be completed by the arrival of the next
block of audio data. In other words, the deadline for
processing and sending is Taudio. Similarly, on the receiv-
ing side, we assume that the audio data after reception must
be passed to the audio card for output to the speaker within
a duration of Taudio time-units.

Stage 1 Stage 2
Stage 3

Stage 4 Stage 5

Processor 1 Processor 2

T Network
Delayaudio Taudio Taudio Taudio

Stage 1: Audio buffering delay specified for hardware
Stage 2: Audio data block processing and sending.
Stage 3: Network contention and propagation.
Stage 4: Audio data reception and processing.
Stage 5: Output played back on speaker.

Figure 5-2: The Audio Processing Pipeline

Consider an audio sample obtained by the hardware at the
beginning of stage 1. This sample will be played back at
the receiver’s speaker at the beginning of Stage 5. Hence,
the worst-case end-to-end delay for audio is given by
3Taudio + dnetwork_audio, where dnetwork_audio is the worst-
case network delay encountered by the audio stream. The
deadlines for Stage 2 (the sender) and Stage 4 (the receiver)
can be shortened (if need be) to yield correspondingly
smaller end-to-end delays constrained by schedulability
considerations.

5.2. The Video End-To-End Delay
The pipeline of the video data is presented in Figure 5-3.
The audio capture takes Taudio units of time to capture
Taudio units of sound. In contrast, the time to capture a
single video frame is smaller than the period at which the
frames are displayed. Hence, on the sender side, we cap-
ture, process and transmit the video frames every Tvideo
time-units. On the receiver side, we require that the video
receiver receiver, process and update the display every
Tvideo time-units.

Stage 1
Stage 2

Stage 3

Processor 1 Processor 2

T Network
Delayvideo Tvideo

Stage 1: Video frame grab, processing and sending.
Stage 2: Network contention and propagation.
Stage 3: Video frame reception and display.

Figure 5-3: The Video Processing Pipeline

Hence, the worst-case end-to-end delay for each video
stream is given by 2Tvideo + dnetwork_video, where
dnetwork_video is the worst-case network delay encountered
by the video stream. The deadlines for both the sender and
the receiver can be shortened to yield a smaller end-to-end
delay.

The video sender, video receiver, audio sender and audio
receiver on each machine use libsockets-rt and there-
fore their protocol processing is under control of RT-Mach
scheduling policies.

5.3. Performance Measurements
We conducted several experiments using RT-Phone with
the following objectives:

• Check how well libsockets-rt prioritizes the
protocol processing delays of different real-time ac-
tivities within RT-Mach.

• Measure the jitter that is visible at the receiving ends of
video and audio. If jitter is excessive, period enforce-
ment would become necessary.

For the audio streams, we used a value of 16 ms for Taudio
with audio sampling rates of 8 KHz, 16 KHz and 24 KHz
respectively at a sample size of 8 bits per sample. For the
video streams, we used 250 ms, 125 ms and 83.3 ms for
Tvideo (corresponding to 4, 8 and 12 frames per second).
The frame size is 80x80 pixels at 8 bits/pixel. At this frame
rate and resolution, each video stream consumes up to 614
Kbps, and each audio stream consumes up to 192 Kbps (for
a net aggregate network bandwidth of up to 1.4 Mbps).

Audio
Sampling

Rate

Video
Frame

Rate (fps)

No libsockets-rt With libsockets-rt

No competi-
tion (ms)

W/ Compe-
tition (ms)

No Compe-
tition (ms)

W/ Compe-
tition (ms)

8 KHz 4 fps 34 83 26 26

8 fps 41 87 26 30

12 fps 38 115 26 26

16 KHz 4 fps 41 71 23 23

8 fps 38 83 26 26

12 fps 41 105 26 26

24KHz 4 fps 41 60 26 23

8 fps 49 86 26 23

12 fps 45 113 26 26

Table 5-1: The Audio End-To-End Delay with
varying frame rate and audio sampling rates.

The end-to-end delay variation of the audio stream is listed
in Table 5-1 with and without libsockets-rt is used and
with and without competition from a low priority network
application and a medium priority arithmetic application.
As can be seen, the worst-case end-to-end delay for the
audio stream is much below the worst-case end-to-end
delay of 3Taudio when libsockets is used independent of
the presence of lower priority competition. This is due to
the fact that we assign rate-monotonic priorities to these
streams, there are no higher priority streams and
libsockets-rt provides a near-ideal environment. The fact
that libsockets-rt completely insulates a real-time net-
working application from other the needs of other network-
ing applications also indicates that almost all of the net-
working overhead is in the protocol stack and not in the raw
device interface (which is still in a common non-
preemptive shared kernel in RT-Mach). In contrast, if
libsockets-rt is not used, and there is no competition,
the end-to-end delay is comparable but slightly larger than
that with libsockets. But in the presence of competition,
the end-to-end delay significantly increases the audio end-
to-end delay by a factor of greater than 4. This confirms
that priority inversion arising from FIFO queueing in the
UX server takes a serious toll on end-to-end delays.

Audio
Sampling

Rate

Video Frame
Rate in fps

(period)

No libsockets-rt With libsockets-rt

No competi-
tion (ms)

W/ Compe-
tition (ms)

No Compe-
tition (ms)

W/ Compe-
tition (ms)

8 KHz 4 (250 ms) 21 30 24 26

8 (125 ms) 24 40 24 27

12 (83.3 ms) 26 50 23 26

16 KHz 4 (250 ms) 26 32 26 26

8 (125 ms) 25 40 26 25

12 (83.3 ms) 25 50 26 25

24KHz 4 (250 ms) 26 30 25 25

8 (125 ms) 23 40 25 27

12 (83.3 ms) 25 51 23 25

Table 5-2: The Video End-To-End Delay with varying
video frame rates and audio sampling rates.

The end-to-end delay variation of the video stream is
plotted in Table 5-2. Almost identical results as obtained
for audio are obtained in this case in that the video end-to-
end delay is much better than its worst-case latency5 and is
not affected by the presence of lower priority competition.
With libsockets-rt, the video streams experience some
jitter with a standard deviation of around 6 ms. Without
libsockets-rt, the jitter has a standard deviation ranging
from 14 ms to 25 ms due to the unpredictability of conflicts.

5The measured video end-to-end latency did not include display time
and the actual delay should be correspondingly longer.

6. Conclusion
The two major system components essential for ensuring
end-to-end predictability in distributed real-time and mul-
timedia applications are the protocol processing software
structure and network bandwidth management. The
protocol processing software structure must exhibit the fea-
tures necessary for good real-time performance: prioritized
scheduling and preemptibility. We have implemented a
protocol processing structure in RT-Mach that satisfies
these requirements. The structure can be used equally well
with a fixed priority policy or RT-Mach’s processor reser-
vation scheduling policy. Under the fixed priority schedul-
ing policy, it is up to the application to ensure that higher
priority tasks do not overuse the CPU. Under the processor
reservation model, the kernel can monitor and enforce the
maximum usage of all threads including the threads inter-
acting with the network interface. These schemes address
the need for the CPU scheduling policies to coordinate with
scheduable protocol structures to obtain predictable end-to-
end delays.

While the performance figures we obtain for both synthetic
workloads and realistic multimedia applications look very
promising, we continue to evaluate the performance of the
network protocol processing structure under different kinds
of network load scenarios, scheduling policies and other
protocol implementations. For completeness, the protocol
processing structures must also be integrated with the
schemes used for allocating and using network bandwidth.
Future work will also address this issue.

Acknowledgements
This paper is partly based on the Technical Report, "Pre-
dictable Operating System Protocol Processing", CMU-
CS-94-165, by C. Mercer, J. Zelenka and R. Rajkumar. We
also like to thank Chris Maeda for help with his socket
library and Jim Zelenka for his initial port of the library to
RT-Mach.

References

1. D. Golub, R. W. Dean, A. Forin and R. F. Rashid. Unix
as an Application Program. Proceedings of Summer 1990
USENIX Conference, June, 1990, pp. .

2. Hutchinson, N. C. and Peterson, L. L. "The x-Kernel:
An Architecture for Implementing Network Protocols".
IEEE Transactions on Software Engineering 17, 1 (Jan.
1991), 64-76.

3. K. Jeffay, D. L. Stone and F. D. Smith. Kernel Support
for Live Digital Audio and Video. Proceedings of the
Second International Workshop on Network and Operating
System Support for Digital Audio and Video, Nov., 1991,
pp. 10-21.

4. K. Jeffay and D. L. Stone. Adaptive, Best-Effort
Delivery of Digital Audio and Video Across Packet-
Switched Networks. Video Abstract in the Proceedings of
ACM Multimedia 94, Oct, 1994.

5. Lee, C., Rajkumar, R. and Mercer, C. W. "Experiences
with Processor Reservation and Dynamic QOS in Real-
Time Mach". Multimedia Japan (March 1996).

6. Leffler, S. J. and McKusick, M. K. and Karels, M. J. and
Quarterman, J. S. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley, 1989.

7. C. Maeda and B. N. Bershad. Protocol Service Decom-
position for High-Performance Networking. Proceedings of
the Fourteenth ACM Symposium on Operating Systems
Principles, Dec., 1993, pp. 244-255.

8. C. W. Mercer and H. Tokuda. An Evaluation of Priority
Consistency in Protocol Architectures. Proceedings of the
IEEE 16th Conference on Local Computer Networks, Oct.,
1991, pp. 386-398.

9. C. W. Mercer and R. Rajkumar and J. Zelenka. Tem-
poral Protection in Real-Time Operating Systems.
Proceedings of the 11th IEEE Workshop on Real-Time
Operating Systems and Software, May, 1994, pp. 79-83.

10. C. W. Mercer and S. Savage and H. Tokuda. Processor
Capacity Reserves: Operating System Support for Mul-
timedia Applications. Proceedings of the IEEE Inter-
national Conference on Multimedia Computing and Sys-
tems (ICMCS), May, 1994, pp. 90-99.

11. R. Rajkumar. Synchronization in Real-Time Systems:
A Priority Inheritance Approach. Kluwer Academic
Publishers, 1991.

12. Rajkumar, R., Gagliardi, M. and Sha, L. "The Real-
Time Publisher/Subscriber Communication for Inter-
Process Communication in Distributed Real-Time Sys-
tems". The First IEEE Real-time Technology and Applica-
tions Symposium (May 1995).

13. Sha, L. and Goodenough, J. B. "Real-Time Scheduling
Theory and Ada". Computer (May 1990).

14. Tokuda, H. and Mercer, C. W. "ARTS: A Distributed
Real-Time Kernel". ACM Operating Systems Review 23, 3
(July 1989), 29-53.

15. Tokuda, H., Mercer, C. W., Ishikawa, Y. and Marchok,
T. E. Priority Inversions in Real-Time Communication.
Proceedings of 10th IEEE Real-Time Systems Symposium,
Dec., 1989.

16. H. M. Vin, P. T. Zellweger, D. C. Swinehart and
P. V. Rangan. "Multimedia Conferencing in the Ether-
phone Environment". IEEE Computer 24, 10 (Oct. 1991),
69-79.

17. M. Yuhara, B. N. Bershad, C Maeda and J. E. B. Moss.
Efficient Packet Demultiplexing for Multiple Endpoints and
Large Messages. Proceedings of the 1994 Winter USENIX
Conference, Jan., 1994, pp. .

Table of Contents
1. Introduction 0

1.1. An Overview of Real-Time Mach 0
1.2. Organization of the Paper 1

2. Real-Time Processing of Communication Protocols 1
2.1. Application-Level Protocol Processing 2

3. A Protocol Software Structure for Predictable Real-Time Scheduling 2
3.1. OS Enforcement and Predictability 2
3.2. Mach 3.0 Networking 3
3.3. A Real-Time Socket Library with Processor Reservation 4
3.4. libsockets-rt with Fixed-Priority Processing 5

4. Performance Evaluation with Processor Reserves and libsockets-rt 5
4.1. RT Mach/UX server under time-sharing 5
4.2. RT Mach/libsockets-rt under Time-Sharing 5
4.3. RT Mach/UX server with Reserves 6
4.4. RT Mach 3.0/libsockets-rt with reservation scheduling 6

5. A Video-Conferencing System with Fixed Priority Scheduling and libsockets-rt 7
5.1. The Audio End-To-End Delay 7
5.2. The Video End-To-End Delay 7
5.3. Performance Measurements 8

6. Conclusion 9
Acknowledgements 9
References 9

List of Figures
Figure 3-1: Networking with the Unix Server on RT-Mach 3
Figure 3-2: Networking with the Socket Library 4
Figure 4-1: Measured Behavior under RT-Mach with Unix sockets, Mach Time-Sharing Policy 5
Figure 4-2: Measured Behavior under RT-Mach with libsockets-rt and Mach Time-Sharing 6
Figure 4-3: Measured Behavior under RT-Mach with UX sockets, RT-Mach Reservations 6
Figure 4-4: Measured Behavior under RT-Mach with libsockets-rt, RT-Mach Reservations 6
Figure 5-1: RT-Phone Video-Conferencing Support 7
Figure 5-2: The Audio Processing Pipeline 7
Figure 5-3: The Video Processing Pipeline 8

List of Tables
Table 5-1: The Audio End-To-End Delay with varying frame rate and audio sampling rates. 8
Table 5-2: The Video End-To-End Delay with varying video frame rates and audio sampling 8

rates.

