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Abstract

Real-time signal processing applications are com-
monly designed using a dataflow software architecture.
Here we attempt to understand fundamental real-time
properties of such an architecture — the Navy’s coarse-
grain Processing Graph Method (PGM).

By applying recent results in real-time scheduling
theory to the subset of PGM employed by the ARPA
RASSP Synthetic Aperture Radar benchmark applica-
tion, we identify inherent real-time properties of nodes
m a PGM dataflow graph, and demonstrate how these
properties can be exploited to perform useful and impor-
tant system-level analyses such as schedulability anal-
ysis, end-to-end latency analysts, and memory require-
ments analysis. More importantly, we develop rela-
tionships between properties such as latency and buffer
bounds and show how one may be traded-off for the
other. Our results assume only the existence of a sim-
ple EDF scheduler and thus can be easily applied in
practice.

1 Introduction

Signal processing algorithms are often defined in the
literature using large grain dataflow graphs [12]: di-
rected graphs in which a node is a sequential program
that executes from start to finish in isolation (i.e., with-
out synchronization), and the graph edges depict the
flow of data from one node to the next. Thus, an edge
represents a producer/consumer relationship between
two nodes. Large grain dataflow provides a natural
description of signal processing applications with each
node representing a mathematical function to be per-
formed on an infinite stream of data that flows on the
arcs of the graph. The streams of input data are typ-
ically generated by sensors sampling the environment
at periodic rates and sending the samples to the sig-
nal processor via an external channel. The dataflow
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methodology allows one to easily understand the sig-
nal processing performed by depicting the structure of
the algorithm; any portion of the application can be
understood in the absence of the rest of the algorithm.

Embedded signal processing applications are natu-
rally defined using dataflow techniques. As real-time
applications, they require deterministic performance.
The signal processing graph must process data at the
rates of a set of external devices (e.g., sonobuoys, dip-
ping sonars, or radars) without the loss of data. Hence
signal processing applications, like other real-time sys-
tems, have a dual notion of correctness: logical and
temporal. It is not sufficient to only produce the cor-
rect output — e.g., the signature of a detected target;
embedded signal processing applications must produce
the correct output within the correct time interval —
e.g., detect the signature within 1 second.

Dataflow models implicitly define a temporal se-
mantics for a processing graph by specifying lower
bounds on when nodes may execute as a function of
the availability of data on input edges. However, most
models do not support the specification of either an
end-to-end latency constraint or an upper bound on
the time that may elapse between when a node be-
comes eligible to execute and the time the node either
commences or completes execution. Without one of
these specifications, we are left with:

e no schedulability or admission control test — How
does one determine if a set of nodes or a graph
“fits” on a processor?

e undetermined latency properties — How does one
determine if a graph meets its timing require-
ments?

e no upper bound on queue length — If latency is
not bounded, memory requirements for a graph
cannot be bounded and hence data loss may occur
if enough storage is not provided.

System engineers use such metrics to size hardware

and perform requirements verification. A cost trade-
off may be made on CPU utilization versus latency, or
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buffer space versus latency. High latency tolerances al-
low the use of a slower (and cheaper) CPU but may re-
quire more memory for increased buffer space. On the
other hand, tighter latency requirements may demand
a faster CPU (or lower utilization) but less memory.
In keeping costs in line, a system architect uses these
metrics to make fundamental design trade-offs.

Unfortunately, without the application of real-time
scheduling theory to dataflow methodologies and a pre-
cise execution model, system architects have not been
able to make these trade-offs in real-time dataflow sys-
tems. Even the Navy’s own dataflow methodology,
Processing Graph Method (PGM) [16], lacks real-time
analysis techniques to support making cost trade-offs
or to verify latency requirements. This is somewhat
surprising since PGM is used to develop real-time, em-
bedded, anti-submarine warfare (ASW) applications
for the AN/UYS-2A (the Navy’s standard signal pro-
cessor). PGM has also been used to create a real-time
Ka-band synthetic aperture radar (SAR) benchmark
application for ARPA’s Rapid Prototyping of Applica-
tion Specific Signal Processors (RASSP) project.

In this paper, we present a novel application of
real-time scheduling theory to the subset of PGM
used in the RASSP SAR benchmark application. Us-
ing the SAR application graph as a driving problem,
we identify inherent relationships existing in real-time
dataflow that have not been recognized in the litera-
ture. We present theorems that characterize the non-
trivial execution rates of every node in the dataflow
graph as a function of input rates by applying existing
real-time scheduling theory to the dataflow method-
ology. From scheduling theory, we get a scheduling
condition for preemptive earliest deadline first (EDF)
scheduling algorithms. If the scheduling condition re-
turns an affirmative result, the graph can be scheduled
(with a preemptive EDF algorithm) to meet specified
execution deadlines. We also show how to set the dead-
line parameters to bound end-to-end latency and mem-
ory requirements.

The rest of this paper is organized as follows. Our
results are related to other work in Section 2. Sec-
tion 3 presents a brief overview of the portion of PGM
used by the SAR graph, which is introduced in Sec-
tion 4. Section b presents node execution rates and a
schedulability condition for EDF scheduling. Section
6 addresses latency issues and Section 7 shows how to
bound the buffer requirements of an implementation of
a graph. We summarize our contributions in Section

8.
2 Related Work

This research was inspired by the analysis tech-
niques applied to three different dataflow models: the

dataflow graphs found in the Software Automation
for Real-Time Operations (SARTOR) project led by
Mok [14, 15], Lee and Messerschmitt’s Synchronous
Dataflow (SDF) graphs [12] supported by the Ptolemy
system [4], and the Real-Time Producer/Consumer
(RTP/C) paradigm of Jeffay [8]. Unfortunately, none
of these paradigms (or any other dataflow paradigms
from the literature) correctly model the execution of
PGM graphs.

The dataflow graphs of the SARTOR, project have
different (and incompatible) node execution rules from
PGM. As with the SARTOR project, our goal is to
demonstrate that we can apply real-time scheduling
results to real-life applications.

Like the RTP/C paradigm, we use the structure of
the graph to help specify execution rates of the pro-
cesses. However, our execution model is capable of
supporting much more sophisticated data flow mod-
els than RTP/C. Whereas RTP/C models processes as
sporadic tasks, our paradigm uses the Rate-Based Exe-
cution (RBE) process model of [10] to more accurately
predict processor demand. (The RBE process model
is a generalization of sporadic tasks and the Linear-
Bounded Arrival Process (LBAP) model employed by
the DASH system [1].) Unlike the RTP/C paradigm,
PGM supports And nodes (nodes that are eligible to
execute only when all of the input queues are over
threshold), which introduces different execution prop-
erties than those of the RTP/C paradigm.

The SDF graphs of Ptolemy utilize a subset of the
features supported by PGM. In addition to support-
ing a more general dataflow model, our research differs
from [12] in that we use dynamic, real-time, scheduling
techniques rather than creating static schedules.

Our latency analysis is related to the work of Gerber
et al. in guaranteeing end-to-end latency requirements
on a single processor [6]. Our work differs from [6] in
that we cannot assume a periodic task model and that
our node execution rates are derived from the input
data rate and the graph. Moreover, unlike [6], we do
not introduce new (additional) tasks for the purpose of
synchronization.

3 Dataflow Model

This section describes the features of PGM used in
the SAR graph. For a complete description of PGM,
see [16].

In PGM, a system is expressed as a directed graph
of large grain nodes (processing functions) and edges
(logical communication channels). The topology of the
graph defines the flow of data from an input source to
an output sink, defining a software architecture inde-
pendent of the hardware hosting the application. The
edges of a graph are typed First-In-First-Out (FIFO)



queues. The data type of the queue indicates the size
of each token (a data structure) transported from a
producer to a consumer. Tokens are appended to the
tail of the queue (by the producer) and read from the
head (by the consumer). The tail of a queue can be
attached to at most one node at any time. Likewise,
the head of a queue can be attached to at most one
node at any time.

There are three attributes associated with a queue:
a produce, threshold, and consume amount.! The pro-
duce amount specifies the number of tokens atomically
appended to the queue when the producing node com-
pletes execution. The threshold amount represents the
minimum number of tokens required to be present in
the queue before the node may process data from the
input queue. The consume amount is the number of
tokens dequeued (from the head of the queue) after the
processing function finishes execution. A queue is over
threshold if the number of enqueued tokens meets or
exceeds the threshold amount. Unlike many dataflow
paradigms, PGM allows non-unity produce, threshold,
and consume amounts as well as a consume amount
less than the threshold. The only restrictions on queue
attributes is that they must be non-negative values and
the consume amount must be less than or equal to the
threshold. For example, a queue may have a produce
of 2, a threshold of 5, and a consume of 3.

Although PGM supports general graphs consisting
of nodes with multiple input queues and variable pro-
duce and consume values, the SAR graph does not use
these features. Since our driving application has the
topology of a chain of nodes, for space consideration
we restrict our analysis to chains and simply note that
all of the results presented in this paper can be ex-
tended to general PGM graphs.

4 SAR Graph

This section introduces the SAR graph including a
brief description of the processing performed by each
node in the graph. This information is provided for
concreteness for the reader with a signal processing
background. The actual logical operation of the SAR
graph is immaterial to the results we derive and the
analyses we perform. The only essential properties of
the SAR graph are those that influence node execution:
the produce, consume, and threshold values for each
node. For a more detailed description of the processing
performed by the SAR benchmark, see [17].

The full SAR benchmark cannot execute in real-
time on a single processor. Therefore, the RASSP

'In PGM, a produce, threshold, or consume attributes is as-
sociated with a node port rather than the queue. For the subset
of PGM used by the SAR application, it is easier to associate
these attributes with the queue rather than the node.

project allocates a portions of the full SAR graph to
individual processors. The graph in Figure 1 is one
such allocation. This graph, called the “mini-SAR”,
was originally created to test tools developed by the
RASSP project. It performs the range and azimuth
compression processing in the formation of an image
that is one eighth the size of that formed by the full
SAR benchmark. Henceforth, we shall refer to the
mini-SAR graph as the SAR graph since an analysis
similar to what we develop shortly, could be performed
on each processor to analyze the full application.

The source node for the SAR graph (shown in Fig-
ure 1) is labeled YRange and represents a periodic ex-
ternal device that produces data for the graph. The
sink node, represents an external device that executes
whenever data is available on the Image queue. The
nodes and queues of this graph have mnemonic labels.
(For a generic chain, we would label the source node Ng
and the sink node N, 41. The output queue for node
N; would be labeled @);.) Produce, threshold, and con-
sume values are annotated below the queue. For ex-
ample, the produce, consume, and threshold values of
the queue labeled Range are all 118.

The top row of nodes in the SAR graph each operate
on one pulse of data at a time. The pulse delivered by
the external source, labeled YRange, has already been
converted to complex-valued data and consists of 118
range gate samples. The Zero Fill node pads the pulse
with zeroes to create a pulse length of 256 samples
in preparation for the FFT node. Before performing
the FFT, the data is passed through a Kaiser window
function, represented by the node Window Data, to
reduce sidelobe levels and perform bandpass filtering.
After being compressed in the range dimension by the
Range FFT node, the pulse is passed through the radar
cross section calibration filter performed by the RCS
Mult node.

Unlike the previous nodes in the SAR graph, which
require only one pulse of data before being eligible for
execution, the Corner Turn node requires 128 pulses
of data. A 2-D processing array is formed where each
row of the array contains one sample from the 128 dif-
ferent pulses and each column contains the 256 range
gates that form a pulse. The processing array con-
sists of two 64 x 256 frames (or sequences of pulses).
As a new frame is loaded in, the previous two frames
are “released” with the oldest frame being shifted out.
This processing is achieved with threshold and produce
values of 256 - 128 and a consume value of 256 - 64.

Convolution processing is performed on each row
of the 2-D matrix by the Azimuth FFT, Kernel Mult,
and Azimuth IFFT nodes. The Azimuth FFT node
performs a FFT on the signal, which has been aligned
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Figure 1: SAR Graph

in the azimuth dimension. Next the Kernel Mult node
multiplies each row of the matrix by a convolution ker-
nel. Before the SAR image 1s output to the Sink node,
an inverse FFT is performed by the Azimuth IFFT
node.

5 Execution Model

Real-time scheduling theory provides a framework
upon which we have developed an execution model
that supports bounding latency and memory usage for
PGM graphs. These bounds in turn can be used to
guarantee no data loss occurs during graph execution.
We also appeal to scheduling theory to provide guaran-
tees that these bounds will be met without the need to
check for violations during graph execution (assuming
the basic assumptions made during the analysis phase
are true at run-time).

This section introduces an execution paradigm and
analysis techniques that support the evaluation of real-
time properties for a graph. The first subsection ex-
plores fundamental execution relationships that exist
between producer/consumer nodes, independent of the
execution model. The remaining subsections address
node execution rates and the RBE task model. These
concepts are used to model an implementation of the
graph.

5.1 Node Executions

Before exploring the fundamental execution re-
lationships that exist between producer/consumer
nodes, we must first define the restrictions on node
In accordance with PGM, our execution
model requires all of the input queues to a node to be
over threshold before the node is eligible for execution.
Standard practice in implementing dataflow systems
([8, 12, 15]), though not part of the PGM specifica-
tion, is to disallow two overlapping executions of the
same node; we have adopted this restriction. PGM
also requires that data be read from an input queue

execution.

at the beginning of node execution, but data is con-
sumed after the node has produced data on its output
queues, which simply makes it clear that a node re-
quires simultaneous input and output buffer space. We
add the common real-time dataflow restriction that no
data loss can occur during graph execution. The fol-
lowing definitions provide a formal basis for discussing
the execution of nodes.

Definition 5.1. Node N; 1is eligible for execution
when all of its input queues are over threshold.

Definition 5.2. The execution of a node is wvalid if
and only if: (1) the node executes only when it is eligi-
ble for execution, no two executions of the same node
overlap, (2) each input queue has its data atomically
consumed after each output queue has its data atomi-
cally produced, and (3) data is produced at most once
on an output queue during each node execution.

Definition 5.3. The execution of a graph is valid if
and only if all of the nodes in the execution sequence
have valid executions and no data loss occurs.

We introduce the execution relationship that exists
between producer/consumer nodes using the two node
portion of a generic chain shown in Figure 2. Unlike
the SAR graph, Chain; of Figure 2 contains a queue
whose produce, threshold, and consume values are rel-
atively prime — this is done to illustrate the general
relationships between dataflow attributes and node ex-
ecution. N; produces 4 tokens every time it executes.
Niy1 has a threshold of 7 and consumes 3 after it ex-
ecutes. Consequently, N; must fire twice before Q; is
over threshold and N;;1 executes for the first time. Af-
ter Ny executes, it consumes only 3 tokens — leaving
5 tokens on ;. The third execution of N; produces 4
more tokens (for a total of 9 tokens on @;) and N;14
executes again, consuming 3 more tokens. The next
execution of N; results in 10 tokens on @;, and N;41 is
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Figure 2: Chain,

able to execute twice — leaving 4 tokens on J;, which
is the same number that were on ); after the first exe-
cution of N;. Hence, subsequent executions of N; and
Niy1 follow this same pattern.

The following lemma establishes the relationship for
the number of executions of N;;1 as a function of the
number of tokens produced by N;.

Lemma 5.1. Gwen r > 7; tokens on @i, N;p1 will
exvecule VZ—T’J + 1 times, consume (VZ—T’J + 1) - ¢

tokens, and leave v’ tokens on Q; where (1; — ¢;) <
< .

Proof:? The number of times Niy1 will execute is the
least natural number n such that r—(n-¢;) < 7;, which
implies n > (r — 1) /¢;. The smallest natural number

r—7;

satisfying this inequality is + 1. Since each ex-
ecution of N;;1 consumes ¢; tokens from @y, it imme-

diately follows that the number of tokens consumed is
({MJ + 1) -¢;. The number of tokens left on Q;, ',

¢
is at least (73 — ¢;) since if ¥ < 73 — ¢;, the last execu-
tion was not enabled. Furthermore, if r' > 7;, another
execution is enabled. Therefore, (1, — ¢;) < v < 7,

and the lemma holds. O

Lemma 5.1 establishes the execution relationship
that exists between producer/consumer nodes, but it
does not tell us the frequency with which the node will
execute — only how many times the consumer will ex-
ecute given some number of tokens generated by the
producer. The rate at which nodes execute is the sub-
ject of the next section.

5.2 Node Execution Rates

PGM does not explicitly define temporal properties
for the graph. However, the execution rate of every
node in a graph is defined by the graph topology, the
definition of nodes, the dataflow attributes, and the
rate at which the source node produces data. Thus,
given only the rate at which a source node delivers
data, the execution rates of all other nodes can be de-
rived. This fundamental property of real-time dataflow
is the basis of the results presented in this section.

2We thank the anonymous reviewer who suggested this proof
and the proof of Lemma 5.2.

Most real-time execution models define task execu-
tion to be pertodic or sporadic. Each time a task is
ready to execute, it is said to be released. A periodic
task is released exactly once every p time units (and p
is called the period of the task). At least p time units
separate every release of a sporadic task — no upper
bound is given on subsequent releases of a sporadic
task. Even when the source node of a PGM chain is
periodic, the execution of the other nodes in the graph
cannot be described as either periodic or sporadic. For
example, consider C'hain, of Figure 2. If N; executes
at times 0, y, 2y, ..., Nijy1 is eligible for one execution
at y and 2y, but twice at time 3y. For this instance
of the problem, we may be able to model N;;; as two
periodic or sporadic tasks (that interleave their exe-
cution), but this technique does not generalize. If the
consume value is b rather than 3, we get a very different
execution pattern. When the source is not periodic and
data arrives in bursts, which is common in many im-
plementations, even modeling a node as  invocations
of a (1,y) periodic or sporadic task is insufficient. An
execution paradigm that supports generic rates of the
form x executions in y time units is required to analyze
the execution of generic dataflow graphs.

We assume the strong synchrony hypothesis of [5] to
introduce the concept of node execution rates. Under
the synchrony hypothesis, we assume the graph exe-
cutes on an infinitely fast machine. Hence, each node
takes “no time” to execute and data passes from source
to sink node instantaneously. The synchrony hypoth-
esis lets us define rate executions in the absence of
scheduling algorithms and deadlines. Node execution
rates are defined as follows.

Definition 5.4. The time of the j** execution of node
N; is represented as 15 ;.

Definition 5.5. An execution rate is a pair (z,y). A
node N;, Vi > 0, executes at rate R; = (&;, ;) if, ¥j >
0, N; executes exactly x; times in all time intervals of
4y - (j—1),t+y -j) where t > T; ;.

Throughout this paper, we assume constant pro-
duce, threshold, and consume values with ¢; < 7. If
the produce and consume values for a node are not
constant, then the node’s maximum produce and min-
imum consume values can be used to determine the
maximum execution rate. We also assume a periodic
source. As implied by Theorem 5.3, a periodic source
1s not required for our analysis techniques. All lem-
mas and theorems in this paper can be generalized to
support the analysis of graphs that receive data from
source nodes specified by rates rather than periods.

Given a periodic source node, Ny, we present and
prove the execution rate for Ny, the second node in the



chain. Theorem 5.3 is a generalization of Lemma 5.2.
Its proof, and the proofs for all subsequent lemmas and
theorems, can be found in [7].

Lemma 5.2. Assuming the strong synchrony hypothe-
sis and no tokens on Qg prior to the beginning of graph
erecution, if Ry = (1,p) is the execution rate of Ng
with Ty 1 = 0, then Ry = (21,y1) is the execution rate

of N1 where 1 = and y; = o

___Po —f0_—.p
ged(po,co) ged(po,co) :

Proof: Let t > 13, and r be the number of to-
kens on Q¢ before any executions of Ny at time ¢t. By
Lemma 5.1, 79 — ¢p < r < 715. Since Ry = (1,p), a
total of pg - (co/gcd(po, co)) tokens are enqueued on Qg
over the interval [t,t + y1). Since each execution of
Ni removes ¢g tokens, z1 executions during the inter-
val [t,t + y1) will leave r tokens on Q. Furthermore,
no more executions could have occurred since the 1"
execution leaves r < 71y tokens on . Any fewer exe-
cutions would have left r > 7 tokens on @, and an-
other execution of Ny would have occurred. Therefore,
exactly #;41 executions take place in this interval.
Simple induction shows that N; will exe-

cute exactly m times in all intervals of

{t + (] - 1) ) gcd(pz,cl)) p, T+ gcd(pou,cu) 'P)a

Vj > 0 where t > T j,leaving r tokens on @)y at the
end of each interval. Therefore R; is a valid rate
specification for Nj. O

Theorem 5.3. Vi > 0: Assuming the strong syn-
chrony hypothesis and no tokens on @Q; prior to the
beginning of graph execution, if Ry = (xo,yo) is the
evecution rate of Ny, then the ereculion rate of N1

is Rit1 = (@41, Yit1) where xiq41 = m -x; and

Yi+1 = ged(piyeq) Yi.

Theorem 5.3 can be used to derive the execution rate
of every node in the SAR graph. For example, assum-
ing Ry Range = (1, y) is the execution rate of the source
node, the execution rates of the other nodes in the SAR,

graph are: Rzerorii = RwindowData = RRangeFFT =
RRCSMult = (1ay)a RCornerTurn = (1,64y), and
RazimuthPrr = BRierneMut = RazimuthiFFr =

(256, 64y). We will use these numbers later to develop
latency and buffer bounds.

5.3 RBE Task Model

Moving from the strong synchrony hypothesis to
an actual implementation, we need to implement the
graph as one or more tasks. A scheduling algorithm
and a schedulability test that will analytically deter-
mine whether or not a graph will meet its temporal
requirements are also necessary. We have already seen
that nodes are neither periodic nor sporadic, even when

the source is periodic, which eliminates most execu-
tion models from the literature. Nevertheless, 1t 1s ap-
pealing to implement each node as a task that is re-
leased when the input queue goes over threshold. If we
schedule the tasks using the preemptive earliest dead-
line first (EDF) scheduling algorithm, we can verify
the real-time requirements of the application using the
techniques Jeffay has developed for the Rate Based Ez-
ecution (RBE) model [10].

RBE is a general task model that consists of a col-
lection of independent processes specified by four pa-
rameters: (z,y,d,e). The pair (x,y) represents the
execution rate of a RBE task where x is the number
of executions expected in an interval of length y. The
response time parameter d specifies the maximum time
between release of the task and the completion of its
execution (i.e., d is the relative deadline). The pa-
rameter e is the maximum amount of processor time
required for one execution of the task.

In the RBE model, the j'* release of task 7} at time
t; ; is guaranteed to complete execution by time D;(j),
where

Di(j) = t; 5+ d; f1<j<uz
W)= max(tiyj—l—di,Di(j—xi)—l—yi) if j >y
(5.1)

The second line of the deadline assignment function
(5.1) ensures that no more than z; deadlines come due
in an interval of length y;, even when more than z;
releases of T; occur in an interval of length y;.

Jeffay established and proved the following feasibil-
ity condition for an RBE task set.

Theorem 5.4. Let T = {(x1,y1,dy,e1), ...

(Tny Yn,dn,en)} be a set of tasks. T will be fea-
sible if and only if

- L—d;+y

YL >0, L> Z (T—i_y

i=1

where f(a) = {

) rie (5.2)

la] ifa>0
0 ifa<0

In [10], Jeffay established sufficiency of (5.2) by
showing that the preemptive EDF scheduling algo-
rithm can schedule releases of the tasks in T without
a task missing a deadline if the task set satisfies (5.2).
For a PGM graph, (5.2) becomes a sufficient condition
(but not necessary) for preemptive EDF scheduling as
long as nodes execute only when their input queues
are over threshold (i.e., the tasks are released when
the node’s input queue is over threshold — thereby en-
suring precedence constraints are met). (5.2) is not a
necessary condition since it assumes that all z; releases



of a node may occur at the beginning of an interval of
length y;. For some nodes, such as N;y1 in Figure 2,
this 1s not possible.

Note that if the cumulative processor utilization for
a graph is strictly less than one (i.e., Y, % < 1)
then condition (5.2) can be evaluated efficiently (in
pseudo-polynomial time) using techniques developed

in [2] and applied in [3] and [11].

6 Latency

A signal processing engineer describes latency as
the time delay between the sampling of a signal and
the presentation of the processed signal to the output
device (which may be a screen, speaker, or another
computer). We use this definition with a clarification.
Since we can only measure time in units of the period
of the source, we consider the pg tokens delivered each
period by Ny to be “one sample”; each pulse in the
SAR graph constitutes one sample, which consists of
118 tokens. Hence, under the strong synchrony hy-
pothesis, latency is the delay between the enqueuing
of py tokens onto @y by the source node Ny and the
next enqueuing of p, tokens on @, by node N,.

Latency is a function of the scheduling algorithm.
It is the case for graph models, however, that latency
also has a structural component. The next section il-
lustrates this property.

6.1 Latency with the Strong Synchrony
Hypothesis

There is a pattern of executions that result in var-
ious latency values for the input signal. Consider the
execution of the SAR graph shown in Figure 3. In this
example, we assume the strong synchrony hypothesis
and each down arrow represents the release and instan-
taneous execution of a node. The minimum latency for
a sample is zero, which is the case for the 128" pulse
received by the SAR graph. As shown in Figure 3, the
128" pulse arrives at time 127yg and results in the ex-
ecution of every node in the graph. Pulses 192, 256,
320, 384, ... all have a latency of 0. The maximum
latency value, encountered by the first pulse, is 127yg.
The first signal received by the graph always encoun-
ters the maximum latency (assuming the queues have
no initial data). There is, however, another “maxi-
mum” latency that is of more interest, and that is the
maximum latency that occurs after the first execution
of every node in the graph. In the execution example
shown in Figure 3 for the SAR graph, this maximum la-
tency is encountered by pulses 129, 193, 257, 321, ...,
which have a latency of 63yy. Notice that there are 126
other unique latency values for this simple graph (e.g.,
the latency for pulse j+1 is (127 — j)yo).

The latency encountered by a sample of the signal

(under the strong synchrony hypothesis) is dependent
on the data flow attributes of the graph and the state of
the queues (i.e., the number of tokens on each queue of
the graph) when the sample arrives. We can determine
the magnitude of a sample’s latency by determining
how many more samples are required before node N,
executes. Lemma 6.1 fulfills this role.

Lemma 6.1. Given r; < 7 tokens on Qi Vk : i <
k < j, N; must evecute F(N;, N;) times to produce
enough data to put Q;_1 over threshold (and thus mak-
ing N; eligible for exvecution) where Vi, j : 0 <i< j <

n
Ti—Ts
P

"(F(N,+1,Nj)—1)~c,+7',—r,

ifi+1l=j
F(N;, N;) =

- ] ifitl<j

Evaluating F(Ng, Ny,) just before the " sample’s
arrival will tell us how many samples are required be-
fore N, will be eligible for execution. Hence, as im-
plied by Lemma 6.2, the latency the i'* sample will en-
counter is given by (F(Ny, Np)—1)-yo when F(Ng, Np,)
is evaluated just before the sample arrives. We sub-
tract one from F'(Ny, Ny,) before converting it to time
units since the latency interval begins after the sample
arrives.

Lemma 6.2. Given Ry = (1,p). When F(Ng, Ny,) is
evaluated just before the sample’s arrival,

Sample Latency = (F(No,Np)—1)-p (6.1)

Applying Lemma 6.2 to the SAR graph, we find the
same latency values identified at the beginning of this
subsection.

6.2 Latency in an Implementation

Scheduling an implementation of the graph results
in an upper and lower bound for each of the latency
values 1dentified with the strong synchrony hypothesis.
In other words, we get latency intervals rather than
precise latency values for a given sample.

The lower bound for a sample’s latency is a function
of the scheduling algorithm and, as shown in §6.1, the
graph attributes. The lower bound for the latency in-
terval is the latency value derived using (6.1) plus the
sum of the execution times for the nodes in the chain.
That is, a sample’s latency must be greater than or
equal to (F(No, Ny) — 1) -yo + Y i, €.

The upper bound for a sample’s latency is depen-
dent on the scheduling algorithm, dataflow attributes,
and deadline values. Generally, the deadline param-
eters are the only free variables in the function. To
determine a sample’s latency in an implementation of
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Figure 3: Latency for the SAR graph under strong synchrony hypothesis. Each down arrow represents the release
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Figure 4: Latency for the SAR graph. A light arrow represents a node’s release under the strong synchrony
hypothesis. A dark arrow represents the actual release time, and the node’s execution is represented by a box.

the graph, we need to provide a value for each d; in the
RBE task set. Realizing that d; affects latency, what
should it be? How does d; affect latency?

We start by observing that if, Vi : 1 <1< n,d; = y;
and the graph is not schedulable (i.e., (5.2) returns a
negative result) then the processor is overloaded since
(5.2) reduces to the Lui & Layland feasibility test [13]
and we get 1 < 3%, % We also observe that in-
creasing d; > y; will not improve latency and, as we
will show later, increases buffer requirements. Hence,
we will set d; = y; and see how this affects the upper

bound for latency values.

Figure 4 shows an execution of the SAR graph with
d; = y;. In this figure, the light arrows represent the
release time for N; under the strong synchrony hypoth-
esis and the dark arrows represent the actual release
time. We see from Figure 4 that task Zero Full is re-
leased at times 0, yo, 2yo, 3yo, - .., and the deadlines
corresponding to each release time is yg, 2yo, 3yo, - - -
since d; = y; = yo. Due to scheduling and execution
times, however, the task Window Data is not released

until times 0+ e1, yo +e1, 2yo + €1, 3yo+e1, ..., and
the corresponding deadlines are 0 4+ e1 + do = yg + €1,
2y0 + €1, 3yg + €1, ... . In this example, the first ex-
ecution of task Azimuth IFFT is released at time t,
which is after 128yy. Its deadline is ¢t 4+ 64yp, which is
after 192y,. Also note that the 256! execution of task
Azemuth IFFT completes execution by time 191y, —
well before its deadline.

The release times shown in Figure 4 for the tasks
Zero Full and Window Data are the earliest possible
release times. As we have noted, the task Azimuth
IFFT completes its 256" execution by time 191y, even
though the deadline for the first release of Azimuth
IFFT is not until ¢ + 64yy. This was no accident. All
of the first 256 executions of Azimuth IFFT will be
released and complete execution between 127y, and
191yg. To see this, we must look at the earliest pos-
sible release time for the first execution of Azimuth
IFPT and the schedulability condition (5.2). From
Lemma 6.2, we know that the first release of task Az-
tmuth IFFT cannot occur before 127yy. An affirmative



result from (5.2) means that there exists enough pro-
cessor capacity for nodes Ny thru Ni, 1 < ¢ < k < n,
to execute Z—’: -x; times during an interval of length yy.
This means that 64 executions of Zero Fill, Window
Data, Range FFT, and RCS Mult; 1 execution of Cor-
ner Turn; and 256 executions of Azimuth FFT, Kernel
Mult, and Azimuth IFFT will all complete execution
within 64yg time units even when they are all released
at the same instant (i.e., when Zero Fill is first re-
leased). We will exploit this fact, similarly to the way
Jeffay did in [9], to bound a sample’s latency.

We can use the release point derived with the strong
synchrony hypothesis and add d; to get the time at
which N; will have completed execution — even if this
time is less than the actual release time plus d;. The-
orem 6.3 uses this fact to provide a lower and upper
bound for any sample’s latency.

Theorem 6.3. Given Ry = (1,p) and a schedulable
graph m which Vi : 1 <1 < n 2 d; < dig1, a sam-
ple’s latency under EDF scheduling with deadline as-
signment function (5.1) is bounded such that

(F(No,N,)—=1)-p+ Z e; < Sample Latency
i=1

< (F(No,Na) = 1) p +d,

where IF'(Ny, Ny) is evaluated just before the sample’s
arrival.

Theorem 6.3 tells us that if a graph is schedulable by
(5.2), task N; will complete execution within d; time
units of the release time calculated under the strong
synchrony hypothesis. Therefore, if we let the released
task N; wnherit the release time of its predecessor in
the dataflow graph (i.e., N;_1) and calculate its dead-
line by adding d; to this logical release time, we get a
deadline equal to the time that Theorem 6.3 states the
task will have finished executing. Since the first node
of a chain receives data from an external device, it has
no release time to inherit and its logical release time is
the same as its actual release time. Consider the exe-
cution diagram of Figure 4. Zero Fullis first released at
time 0. The first actual release of Window Data occurs
after Zero Fill completes execution, at time ey, and its
deadline is set to yg+e1. The logical release of Window
Data, however, occurs at time 0 since this is the release
time inherited from Zero Data. (It is also the release
time derived under the strong synchrony hypothesis.)
Using the logical release time, we get a deadline of yq
for Zero Data, which is the time Theorem 6.3 gave as
the upper bound for when the task will finish execu-
tion if the task set is schedulable. Similarly, we get a
logical release time of 127yy and a deadline of 191yg
for the first execution of Azimuth IFFT.

As long as the scheduler ensures that a task only ex-
ecutes when its input queue is over threshold, it does
not matter if N; ;1 executes before N;. When the RBE
task set is specified such that d; < d;41, a release of
Niy1 will never be assigned a deadline earlier than a
release of N;, even when logical release times are used.
Moreover, the latency bound of Theorem 6.3 holds
even when a release of N;y1 executes before a release
of N;, which may occur when both are assigned the
same deadline. The EDF scheduling algorithm does
not specify how to break ties. Hence, a variant of EDF
may break ties based on topological sorting rather than
actual release times, which may result in N; 1 execut-
ing before N; when d; = d; 1. Although latency is not
affected by the tie breaking algorithm, buffer bounds
are. We address this issue in §7.

6.3 Reducing Latency Further

If the latency bounds derived using d; = y; do not
meet the application’s latency requirements, we can
evaluate the latency with smaller deadlines. Aslong as
we keep d; < d;+1, Theorem 6.3 can be used to evalu-
ate new latency bounds. A simple technique to reduce
the maximum latency any signal will encounter (for a
graph executing on a uniprocessor) is to iteratively de-
crease the maximum deadline(s) to the maximum y;
such that y; < max{d;} in the graph. For example,
after a positive result from (5.2) with d,, = y,, we
would set d, = y,_1, assuming y,_1 < Y, otherwise
we would set dp—1 = dp, = ypn—2. When (5.2) finally
returns a negative result we have found a “breaking
point”. We can either use the deadlines from the pre-
vious iteration or find the “breaking point” (for this
technique), which lies between the deadline values used
in the last two iterations.

7 Bounding Buffers

This sections gives bounds for the buffer require-
ments of chains executed under the RBE model with
release inheritance, as described in the previous sec-
tion. We use logical release times rather than actual
release times so that deadline ties are created during
execution. These ties can then be broken based on
topology to reduce the buffer requirements from what
they would be if the ties were broken arbitrarily.

Since Np 41 represents an external device and is not
scheduled, we cannot give an upper bound on ,,. One
may assume the device takes data as it 1s produced
and bound the buffer space for @, with p,. Or as-
suming double buffering techniques (common in I/0
interfaces), one might bound the buffer space as 2p,.
In either case, the bound is platform specific.

The most tokens ; can hold without being over



threshold is represented by r; where3

otherwise

i —ged(pi, i) if 3k om =k - ged(py, i)
r; = .
LmJ -ged(ps, ;)

After @); goes over threshold, the number of tokens
that can accumulate on the queue is a function of
dataflow attributes, deadlines, and the scheduling al-
gorithm.

We have derived buffer bounds for preemptive EDF
scheduling and two variations of EDF: Breadth-First
EDF (BF-EDF) and Depth-First EDF (DF-EDF). The
names for these EDF variants becomes apparent when
one looks at a possible scheduling graph, which is used
to break deadline ties. A scheduling graph is a topo-
logically sorted graph of vertices representing releases
of RBE tasks with the same deadline. The graph is
sorted with respect to the dataflow graph and all jobs
in the graph have the same deadline. Consider the
scheduling graph in Figure 5 — a possible snapshot

Figure 5: A scheduling graph.

of the ready queue for the SAR graph after Pulse 128
has been processed by the Corner Turn node. The
BF-EDF scheduling algorithm performs a breadth-first
search of eligible jobs, beginning at the left most side
of each level. Hence, the BF-EDF algorithm would se-
lect the Azimuth FFT task followed by the left most
release of Kernel Mult. Using the labels a, b, ¢, d, and
e to refer to the tasks releases in Figure 5, BF-EDF
would schedule them in order: a, b, ¢, d, d’, ¢ and
e* where d’ represents the new release of Kernel Mult
caused by the execution of Azimuth FFT and e* repre-
sents the new releases of Azimuth IFFT, which result
from executions of Kernel Mult. The DF-EDF schedul-
ing algorithm performs a depth-first search of eligible
jobs by traversing down the left most side of the tree

3We thank Sanjoy Baruah for the inspiration that led to the
tight bound represented by r;.

until it reaches a leaf. In this case, DF-EDF would se-
lect the Azimuth IFFT task to execute followed by the
left most release of Kernel Mult. A DF-EDF schedule,
starting with the schedule graph of Figure 5, would be
e, b, e, c e, d e, awhere ¢, ¢’ and ¢ are new
releases of Azimuth IFFT caused by the executions of
Kernel Mult.

7.1 Buffer Bounds with BF-EDF

The BF-EDF scheduling algorithm is an EDF algo-
rithm in which deadline ties are broken by performing
a breadth-first search of the scheduling graph. Under
BF-EDF scheduling, the input queue to Azimuth IFFT
would accumulate data from 256 executions of Kernel
Mult before Azimuth IFFT would execute.

The function Bppr(Q;), which assumes release time
inheritance, returns the maximum number of tokens
the i*" queue will ever hold when the graph is scheduled
with either BF-EDF or the canonical EDF scheduling
algorithm.

Bpr(Q:) =
([¢1 - po) + 7o
([ i pi) + 7
if(i>0 A di+1>di A y0<di+1<yi)
\/(i>0 A diy1>di A di<yi§di+1)
(L] i pi) + 1
if(i>0 A diy1>di A yigdi<di+1)
({—BBF(Q"I)_T’_IJ + 1) -p; +7; otherwise

Ci—1

bl

ife=0

The last expression in Bpp(Q;) handles the cases
when d; = d; 41 (which creates deadline ties) or d;j41 <
yo (which means Ny through N;;; all complete their
executions before the next produce by Ng) by working
“back up the chain”.

Since EDF does not specify how ties are broken, we
would need to sum Bpp(Q;) over all of the queues in
the chain to bound a graph’s simultaneous buffer re-
quirements. With BF-EDF, however, we know that,
¥j > ¢ > 1, any release of N; will execute before a
release of N; when N; and N; both have the same
deadline. When N; executes, it reads data from Q;_;
and writes data to ); — using both queues simulta-
neously. By the time N;y; executes, however, (Q;_;
will be under threshold and will hold at most r;_;
tokens. Much of the space that was used by Q;_;
when N; was executing can be reclaimed and used by
Qi+1 to hold the data produced by N;yi. Therefore
the total buffer space required for (;—1 and @Q;41 is
max(Bpp(Qi—1)—7i—1, BBr(Qit1)—Tit1)+ri—1+7i41-
Theorem 7.1 divides the queues into two disjoint sets
and uses this technique to bound the total buffer space
required by the chain.



Theorem 7.1. For the BF-EDF scheduling algorithm
with release time inheritance and diy1 > d;, Vi : 0 <
t < n, the mazimum buffer space required is < (3, where

n—1
5=BBF(Q0)+Z7%
=1
+max{Bpr(Qr) — 1 | VE=2{:i>0 A k<n}
+max{Bpr(Qr) — 1 | Yk =2i—1:i>0 A k<n}

7.2 Buffer Bounds with DF-EDF

The DF-EDF scheduling algorithm is an EDF algo-
rithm in which deadline ties are broken by perform-
ing a depth-first search of the scheduling graph. The
DF-EDF schedule, starting with the schedule graph of
Figure 5,is e, b, €', ¢, ", d, ¢, a and the input queue
to Azimuth IFFT only accumulates data from one exe-
cution of Kernel Mult before it executes. The function
Bpr(Qi) returns the maximum number of tokens @;
will ever hold when the graph is scheduled with re-
lease inheritance and DF-EDF. For some applications,
breaking deadline ties with a depth-first search of the
scheduling graph rather than a breadth-first search re-
sults in a lower upper bound on buffer requirements
for the graph.

Bpr(Qi) =

([¢1 - po) + 70
([dy—l] X pi) T
if(i>0 A di+1>di A y0<di+1<yi)
\/(i>0/\di+1>di A di<yi§di+1)
(L%J X pi) T
fe>0 A dig1>di ANy <dy <dig

Q—BDF(Q’_I)_T’_IJ + 1) “pi i

Ci—1
ifi>0 A di+1 >d; AN Yo Zdi+1

otherwise

ife=0

pi+ 75

Theorem 7.2. For DF-EDF scheduling with release
time wnheritance and d;1 > di, Vo : 0 < 7 < n, the
maximum buffer space required is less than or equal to
>iso Bor(Q:).
7.3 Buffer Bounds for the SAR graph
Table 1 shows the values returned from Bpp(Q;)
and Bpp(Q;) for each queue in the SAR graph with
d; = y;. These values were used to derive the maximum
buffer space required to execute the graph when release
time inheritance is used in conjunction with EDF, BF-
EDF, and DF-EDF scheduling: 148,086; 81, 782; and
82, 806 respectively. Using d; = y; in the SAR graph,
BF-EDF scheduling yields the lowest memory bound.

Queue | Bpr(Qi) | Bpr(Q:)
Range 118 118
Fill 256 256
Window 256 256
RFFT 256 256
RCS 48, 896 48, 896
Azimuth | 32,768 32,768
AFFT 32,768 128
Mult 32,768 128

Table 1: Maximum buffer space required per queue
evaluated with Bpp(Q;) and Bpr(Q;).

It remains an open questions as to whether BF-EDF
scheduling actually uses the least memory. We believe
DF-EDF scheduling will actually use the least memory
for the SAR graph, but we do not yet have a tight
bound for DF-EDF scheduling of general chains.

8 Summary

In most “real-time” dataflow methodologies, system
engineers are unable to analyze the real-time proper-
ties of dataflow graphs like those created using PGM.
We have shown that this is not an intrinsic property
of the methodologies, and that by applying scheduling
theory to a PGM graph, we can determine exact node
execution rates, which are dictated by the input data
rate and the dataflow attributes of the graph. We have
also shown how to bound latency and buffer require-
ments for an implementation of the graph scheduled
with the preemptive EDF algorithm (and variations
thereof) under the RBE task model.

Given a graph, the only free parameters we have to
affect the latency or buffer bounds of the application
are deadlines. If the latency requirement of the appli-
cation 1s less than the latency value from the strong
synchrony hypothesis (i.e., (F(Ng, Np) — 1) - yo), then
the given graph will never meet its latency require-
ment. If the latency requirement is greater than the
strong synchrony hypothesis bound but less than the
lower bound (F(Ng, N,,) — 1) - yo + i, ei, changing
deadlines will not help the graph meet its latency re-
quirement; a faster CPU is required.

If the latency requirement is greater than this lower
bound but less than the upper bound (F(Ny, Np) —
1) - yo + dp, (where d; < diy1,1 < @ < n) then one
can attempt to follow the procedures outlined in §6.3
to reduce latency to the desired bound. Should this
technique fail, the system engineer may need to make
cost trade-offs. For example, if the deadline assign-
ment technique outlined in §6.3 failed to yield satis-
factory latency bounds before the schedulability test
returned a negative result, the system engineer can de-



cide whether to use a faster processor, or add memory
to increase buffering. It is clear that the first choice
resolves the latency problem, assuming a fast enough
CPU exists. It may not be clear, however, that adding
memory can reduce latency. Suppose the deadlines
have been reduced such that the first & nodes in the
chain all have deadlines equal to their rate interval (i.e.,
di = y;,¥i: 1 < i< k) and the last (n — k) nodes
have deadline values of di, but the latency bound is
still too high and lowering the deadline parameters for
the last (n — k) nodes yields a negative result from
(5.2). We may be able to reduce the latency bound
further by setting all of the deadline parameters to
LatencyRequirement — (F(Ny, Ny) — 1) - yo. This in-
creases the buffer requirements of the first k£ nodes, but
may produce enough slack in the schedule such that the
graph is now schedulable even though the deadline pa-
rameters of the last (n — k) nodes have been reduced to
achieve the desired latency bound. Should the graph
become schedulable with these new deadline parame-
ters but require too much memory, the system engineer
can make cost trade-offs: more memory, faster CPU,
or relaxed requirements.

Since our driving application has the topology of a
chain, for space consideration we have restricted our
analysis to chains and note that the results presented
in this paper can be extended to general PGM graphs.
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