
Verifiable Embedded Real-Time Application Framework

Shang-Wei Lin†, Kuo-Cheng Chiang, and Pao-Ann Hsiung‡

Department of Computer Science and Information Engineering
National Chung Cheng University

†linsw@cs.ccu.edu.tw, ‡hpa@computer.org

Abstract

Currently available application frameworks that
target at the automatic design of real-time embedded
software are poor in integrating functional and non-
functional requirements for real-time embedded sys-
tems. In this work, we present the internal architecture
and design flow of a newly proposed framework called
Verifiable Embedded Real-Time Application Frame-
work (VERTAF), which integrates three techniques
namely software component-based reuse, formal syn-
thesis, and formal verification. Component reuse is
based on a formal UML real-time embedded object
model. Formal synthesis employs quasi-static and
quasi-dynamic scheduling with multi-layer portable
efficient code generation, which can output either
RTOS-specific application code or automatically-
generated real-time executive with application code.
Formal verification integrates a model checker ker-
nel from SGM, by adapting it for embedded soft-
ware. Application examples developed using VERTAF
demonstrate significantly reduced relative design ef-
fort as compared to design without VERTAF, which
also shows how high-level reuse of software compo-
nents combined with automatic synthesis and verifi-
cation increase design productivity.

1. Introduction

With the advancement of technology, the demand
for new and complicated features of embedded sys-
tems are getting more and more strong, which makes
the correctness of embedded systems very difficult to
verify. However, guaranteeing the correctness of em-
bedded systems is getting more and more important
because embedded systems are becoming more and
more pervasive. Currently, the design of real-time em-
bedded software is supported partially by modelers,
code generators, analyzers, schedulers, and frame-
works [2, 6, 8, 9, 10, 11, 12, 13, 15, 14, 16, 5, 21, 22,
23, 24, 25, 28, 29]. Nevertheless, the technology for
a completely integrated design and verification envi-
ronment is still relatively immature. Furthermore, the

methodologies for design and for verification are also
poorly integrated relying mainly on the experiences of
embedded software engineers.

This work demonstrates how the integration of
software engineering techniques such as software
component reuse, formal software synthesis tech-
niques such as scheduling and code generation, and
formal verification techniques such as model check-
ing can be realized in the form of an integrated design
environment targeted at the acceleration of embedded
real-time software construction.

Several issues are encountered in the development
of an integrated design framework. First and fore-
most, we need to decide upon an architecture for the
framework. Since our goal is to integrate reuse, syn-
thesis, and verification, we need to have greater con-
trol on how the final generated application will be
structured, thus we have chosen to implement it as an
object-oriented application framework [18], which is
a “semi-complete” application, where users fill in ap-
plication specific objects and functionalities. A ma-
jor feature is “inversion of control”, that is the frame-
work decides on the control flow of the generated ap-
plication, rather than the designer. Other issues en-
countered in architecting an application framework
for real-time embedded software are as follows.

1. To allow software component reuse, how do we
define the syntax and semantics of a reusable
component? How can a designer uniformly and
guidedly specify the requirements of a system
to be designed? How can the existing reusable
components with the user-specified components
be integrated into a feasible working system?

2. What is the control-data flow of the automatic de-
sign and verification process? When do we verify
and when do we schedule?

3. What kinds of model can be used for each design
phase, such as scheduling and verification?

4. What methods are to be used for scheduling and
for verification? How do we automate the pro-
cess? What kinds of abstraction are to be em-
ployed when system complexity is beyond our
handling capabilities?

5. How do we generate portable code that not only
crosses real-time operating systems (RTOS) but
also hardware platforms. What is the structure of
the generated code?

Briefly, our solutions to the above issues can be
summarized as follows.

1. Software Component Reuse and Integration: A
subset of the Unified Modeling Language (UML)
[20] is used with minimal restrictions for auto-
matic design and analysis. Precise syntax and
formal semantics are associated with each kind
of UML diagram. Guidelines are provided so
that requirement specifications are more error-
free and synthesizable.

2. Control Flow: A specific control flow is embed-
ded within the framework, where scheduling is
first performed and then verification because the
complexity of verification can be greatly reduced
after scheduling [9].

3. System Models: For scheduling, we use variants
of Petri Nets (PN) [11, 12] and for verification,
we use Extended Timed Automata (ETA) [1, 12],
both of which are automatically generated from
user-specified UML models that follow our re-
strictions and guidelines.

4. Design Automation: For synthesis, we employ
quasi-static and quasi-dynamic scheduling meth-
ods [11, 12] that generate program schedules
for a single processor. For verification, we em-
ploy symbolic model checking [3, 4, 19] that
generates a counterexample in the original user-
specified UML models whenever verification
fails for a system under design. The whole de-
sign process is automated through the automatic
generation of respective input models, invocation
of appropriate scheduling and verification ker-
nels, and generating reports or useful diagnos-
tics.

5. Portable Efficient Multi-Layered Code: For
portability, a multi-layered approach is adopted
in code generation. To account for performance
degradation due to multiple layers, system-
specific optimization and flattening are then ap-
plied to the portable code. System dependent and
independent parts of the code are distinctly seg-
regated for this purpose.

In summary, this work illustrates how an appli-
cation framework may integrate all the above pro-
posed design and verification solutions. Our imple-
mentation has resulted in a Verifiable Embedded Real-
Time Application Framework (VERTAF) whose fea-
tures include formal modeling of real-time embedded

systems through well-defined UML semantics, for-
mal synthesis that guarantees satisfaction of tempo-
ral as well as spatial constraints, formal verification
that checks if a system satisfies user-given properties
or system-defined generic properties, and code gener-
ation that produces efficient portable code.

This paper is organized as follows. The design and
verification flow are described in Section 2. Section 3
presents an application result. Section 4 gives the con-
clusion of this paper.

2. Design and Verification Flow in
VERTAF

Before going into the component-based architec-
ture of VERTAF, we first introduce the design and
verification flow. As shown in Figure 1, VERTAF
provides solutions to the various issues introduced in
Section 1.

In Figure 1, the control and data flows of VERTAF
are represented by solid and dotted arrows, respec-
tively. Software synthesis is defined as a two-phase
process: a machine-independent software construc-
tion phase and a machine-dependent software imple-
mentation phase. This separation helps us to plug-
in different target languages, middleware, real-time
operating systems, and hardware device configura-
tions. We call the two phases as front-end and back-
end phases. The front-end phase is further divided
into three sub-phases, namely UML modeling phase,
real-time embedded software scheduling phase, and
formal verification phase. There are two sub-phases
in the back-end phase, namely component mapping
phase and code generation phase. We will now present
the details of each phase in the rest of this sec-
tion illustrated by a running example called Entrance
Guard System with Mobile and Ubiquitous Control
(EGSMUC). EGSMUC is a real-time embedded sys-
tem that controls any entrance with a programmable
electronic lock installed. Two ways of control ac-
cesses are allowed: (a) registered users can be au-
thenticated locally at the entrance itself, and (b) guest
users may obtain a remote authentication through
master acknowledgment. Here, a master could be
the owner of the building to which the entrance sys-
tem is protecting and he or she can have mobile and
ubiquitous control access to EGSMUC. The master
can grant entry access to the guest user irrespective
of how he or she is connected to EGSMUC (mobile
access) and also irrespective of where he or she is lo-
cated (ubiquitous access). We will model EGSMUC
and VERTAF will automatically synthesize and verify
the code for the system.

2.1 UML Modeling

UML [20] is one of the most popular modeling
and design languages in the industry. After scrutiny

UML Model

Extended Timed

Automata

Generation

Real-Time

Petri-net Generation

Schedulable

Scheduler

Generation

Yes

No

No

Class Diagram

with

Deployments

Timed

Statecharts

Extended

Sequence

Diagrams

Display un-

schedulability

information

Display counter-

example in UML

model

Front End

Back End

Yes

Model Check

Specification

satisfied

Schedule

Component

Mapping

Code Generation

Embedded

Real-Time

Software

Figure 1. Design and Verification Flow of VERTAF

of all diagrams in UML, in order to minimize the in-
formation redundancy we have chosen three diagrams
for a user to input as system specification models,
namely class diagram, sequence diagram, and state-
chart. UML is a generic language and its specializa-
tions are always required for targeting at any specific
application domain. In VERTAF, the three UML di-
agrams are both restricted as well as enhanced along
with guidelines for designers to follow in specifying
synthesizable and verifiable system models (just as
synthesizable HDL code for hardware designs).

The three UML diagrams extended for real-time
embedded software specification are as follows.

• Class Diagrams with Deployment: A deploy-
ment relation is used for specifying a hardware
object on which a software object is deployed.
There are two types of methods, namely event-
triggered and time-triggered that are used to
model real-time behavior.

• Timed Statecharts: UML statecharts are ex-
tended with real-time clocks that can be reset and
values checked as state transition triggers.

• Extended Sequence Diagrams: UML sequence
diagrams are extended with control structures
such as concurrency, conflict, and composition,
which aid in formalizing their semantics and in
mapping them to formal Petri net models that are
used for scheduling.

For our running EGSMUC example, the system
class diagram with deployment is shown in Figure 2,
a timed statechart for the system controller class is
shown in Figure 3, and an extended sequence diagram
for one of the use cases dealing with guest entry and
master acknowledgment is shown in Figure 4.

UML is well-known for its informal and general-
purpose semantics. The enhancements described
above are an effort at formalizing semantics precise-
ness such that there is little ambiguity in user-specified

Input

CheckerDBMS

Display

Controller

-GetData1

-SendData1

-GetResult1

-SendResult1

Actuator

1

-Control1

-Display

1

1

1

-SendData 1

+reset() : bool

+init() : bool

+write() : bool

+clear() : bool

LCD

+reset() : bool

+init() : bool

+read() : int

Keypad

+reset() : bool

+init() : bool

+write() : bool

LED

+reset() : bool

+init() : bool

+soundAlarm() : bool

+stop() : bool

+read() : unsigned char*

+write() : bool

Audio

1

-DisplayData1

-control

11-control

1 1

1
1

1 1

+reset() : bool

+init() : bool

+read() : unsigned char*

+write() : bool

FlashRom

1

1

1

1

1

1

1

1

1

1

MediaCenter

GetData

SendData

+ImgEncode()

+ImgDecode()

+VidEncode()

+VidDecode()

DSP

1

1

+reset() : bool

+init() : bool

Network Adapter

1

1

Web Server

1

1

-GetData1

-SendData1

Camera

1

1

Figure 2. Class Diagram with Deployment for EGSMUC

models that are input to VERTAF. Furthermore, de-
sign guidelines are provided to a user such that the
goal of correct-by-construction can be achieved.

The set of UML diagrams input by a user, in-
cluding a class diagram with deployments, a timed
statechart corresponding to each class, and a set of
extended sequence diagrams, constitutes the require-
ments for the real-time embedded software to be de-
signed and verified by VERTAF.

2.2 Real-Time Embedded Software
Scheduling

There are two issues in real-time embedded soft-
ware scheduling, namely how are memory constraints
satisfied and how are temporal specifications such as
deadlines satisfied. Based on whether the system un-
der design has an RTOS specified or not, two different
scheduling algorithms are applied to solve the above
two issues.

• Without RTOS: Quasi-dynamic scheduling
(QDS) [11, 12] is applied, which requires
Real-Time Petri Nets (RTPN) as system specifi-

cation models. QDS prepares the system to be
generated as a single real-time executive kernel
with a scheduler.

• With RTOS: Extended quasi-static scheduling
(EQSS) [26] with real-time scheduling [17] is ap-
plied, which requires Complex Choice Petri Nets
(CCPN) and set of independent real-time tasks as
system specification models, respectively. EQSS
prepares the system to be generated as a set
of multiple threads that can be scheduled and
dispatched by a supported RTOS such as Mi-
croC/OS II or ARM Linux.

In order to apply the above scheduling algorithms,
we need to map the user-specified UML models into
Petri nets, RTPN or CCPN. By applying the map-
ping procedure, all user-specified sequence diagrams
are translated and combined into a compact set of Petri
nets. All kinds of temporal constraints that appear in
the sequence diagrams are translated into guard con-
straints on arcs in the generated Petri nets. This set
of RTPN or CCPN is then input to QDS or EQSS, re-
spectively, for scheduling. Details on the scheduling

Record

Read

[result == PWD_ERROR

&& ~ALARM_ON

]

[Error_count < MAX_ERROR] / Controller_Send_Input_SIG

Open_Door

[result == PWD_OK

&& ~ALARM_ON]

Show_MSG

Checker_Send_Controller_SIG

[result == ID_ERROR

&& ~ALARM_ON] / Controller_Send_Input_SIG

Start_Alarm

/ Controller_Send_Input_SIG

Close_Door
after: Door_TO

/ Controller_Send_Input_SIG

[Error_conut

>= MAX_ERROR]

[result == supervisor]

Stop_Alarm

Control

Selection

[ALARM_ON

&&

select == 1]
Request_ID

[select == 2 && ~ALARM_ON]

Read_PW

Store

after: Selection_TO

[(ALARM_ON && select == 2) || (~ALARM_ON && select == 1)]

[ALARM_ON

&& result != supervisor] / Controller_Send_Input_SIG

Select:

1. Stop alarm

2. Create a new ID

3. Exit

Clear

/ Controller_Send_Input_SIG

[select==3]

Figure 3. Timed Statechart for Controller in EGSMUC

procedures can be found in [11, 12], and [26].
For systems without RTOS, we need to automati-

cally generate a scheduler that controls the system ac-
cording to the set of transition sequences generated
by QDS. In VERTAF, a scheduler is constructed as
a separate class that observes and controls the status
of each object in the system. Temporal constraints are
monitored by the scheduler class using a global clock.
Further, for verification purposes, an extended timed
automaton is also generated by following the set of
transition sequences.

For our running EGSMUC example, a single Petri
net is generated from the user-specified set of state-
charts, which is then scheduled using QDS. In this
example, scheduling is required only for the timers
associated with the actuator, the controller, and the in-
put object. After QDS, we found that EGSMUC is
schedulable.

2.3 Formal Verification

VERTAF employs the popular model checking
paradigm for formal verification of real-time em-
bedded software. In VERTAF, formal ETA models
are generated automatically from user-specified UML
models by a flattening scheme that transforms each
statechart into a set of one or more ETA, which are

merged, along with the scheduler ETA generated in
the scheduling phase, into a state-graph. The ver-
ification kernel used in VERTAF is adapted from
State Graph Manipulators (SGM) [28], which is a
high-level model checker for real-time systems that
operate on state-graph representations of system be-
havior through manipulators, including a state-graph
merger, several state-space reduction techniques, a
dead state checker, and a TCTL model checker. There
are two classes of system properties that can be ver-
ified in VERTAF: (1) system-defined properties in-
cluding dead states, deadlocks, livelocks, and syntac-
tical errors, and (2) user-defined properties specified
in the Object Constraint Language (OCL) as defined
by OMG in its UML specifications. All of these prop-
erties are automatically translated into TCTL specifi-
cations for verification by SGM.

Automation in formal verification of user-specified
UML models of real-time embedded software is
achieved in VERTAF by the following implementa-
tion mechanisms.

1. User-specified timed statecharts are automati-
cally mapped to a set of ETA.

2. User-specified extended sequence diagrams are
automatically mapped to a set of Petri nets that

Top Package::GUEST

Input

Idle

Init

Push Call Bell

Checker

CallBellMode

sendChecker(pwd)

DBMS

sendDBMS(pwd)

MediaCenter

sendChecker(result)

ModifyGuestPWD

sendInput(result)

WaitMaster

sendMediaCenter(request)

sendImage

MasterOK

sendInput(result)

SendChecker

Modify

Top Package::Master

AskMaster

SIG_MasterAgree

Idle

Display

*[4] : SendByte(' * ')

[Input_TO] : Modify_TIMEOUT

{TIMEOUT < Input_TO}

Figure 4. An Extended Sequence Diagram for EGSMUC

are scheduled and then a scheduler ETA is auto-
matically generated.

3. Using the state-graph merge manipulator in
SGM, all the ETA resulting from the above two
steps are merged into a single state-graph repre-
senting the global system behavior.

4. User-specified OCL properties and system-
defined properties are automatically translated
into TCTL specification formulas.

5. The system state-graph and the TCTL formulas
obtained in the previous two steps are then input
to SGM for model checking.

6. When a property is not satisfied, SGM generates
a counterexample, which is then automatically
translated into a UML sequence diagram repre-
senting an erratic trace behavior of the system.

Design complexity is a major issue in formal ver-
ification, which leads to unmanageable and exponen-
tially large state-spaces. Both engineering paradigms
and scientific techniques are applied in VERTAF to
handle the state-space size explosion issue. The ap-
plied techniques include Model Construction Guide-
lines, Architectural Abstractions [7, 25, 27, 30],

Functional Abstractions, and State-Space Reductions.
These abstraction techniques are applied to a user-
specified UML model as follows. While constructing
the UML models, users not following the guidelines
are warned of the possible intricacies. Upon comple-
tion of model construction, first Petri net models are
generated, which are then scheduled to produce feasi-
ble system schedules that are represented by a sched-
uler ETA. Then, for each ETA generated from the stat-
echarts, its assumptions and guarantees are generated.
The guarantees of an ETA are verified by first merg-
ing the ETA with functional abstractions of the other
ETA in the system and then reducing the state-spaces
of the merged state-graph using SGM reduction ma-
nipulators. We can see that not only is verification
automated but abstraction techniques such as AGR
and state-space reductions are also automatically per-
formed, which makes VERTAF scalable to large ap-
plications.

For our running EGSMUC example, the ETA for
each statechart were generated and then merged with
the scheduler ETA. There are eight other ETA in this
system example. All ETA were input to SGM and
AGR was applied. Reduction techniques were then
applied to each state-graph obtained from AGR. OCL

constraints were then translated into TCTL and veri-
fied by the SGM model checker kernel.

2.4 Component Mapping

This is the first phase in the back-end design of
VERTAF and starts to be more hardware dependent.
All hardware classes specified in the deployments of
the class diagram are those supported by VERTAF and
thus belong to some existing class libraries. The com-
ponent mapping phase then becomes simply the con-
figuration of the hardware system and operating sys-
tem through the automatic generation of configuration
files, make files, header files, and dependency files.
The corresponding hardware class API will be linked
in during compilation.

The main issue in this phase occurs when a soft-
ware class is not deployed on any hardware compo-
nent or not deployed on any specific hardware device
type, for example the type of microcontroller to be
used is not specified. Currently, VERTAF adopts an
interactive approach whereby the designer is warned
of this lack of information and he/she is requested to
choose from a list of available compatible device types
for the deployment. An automatic solution to this is-
sue is not feasible because estimates are not easy with-
out further information about the non-deployed soft-
ware classes.

Another issue in this phase is the possible conflicts
among hardware devices specified in a class diagram
such as interrupts, memory address ranges, I/O ports,
and bus-related characteristics such as device priori-
ties. Users are also warned in case of such conflicts.

For our running EGSMUC example, all software
classes in the class diagram given in Figure 2 are de-
ployed on one or more hardware or software classes
supported by VERTAF.

2.5 Code Generation

There are basically three issues in this phase in-
cluding hardware portability, software portability, and
temporal correctness. We adopt a multi-tier approach
for code generation: an operating system layer, a
middleware layer, and an application with scheduler
layer, which solves the above three issues, respec-
tively. Currently supported underlying hardware plat-
forms include dual core ARM-DSP based, single core
ARM, StrongARM, or 8051 based, and Lego RCX-
based Mindstorm systems. For hardware abstraction,
VERTAF supports MicroHAL and the embedded ver-
sion of POSIX. For operating systems, VERTAF
supports MontaVista Linux, MicroC/OS, Embedded
Linux, and eCOS. For middleware, VERTAF is cur-
rently based on the Quantum Framework [21]. For
scheduler, VERTAF creates a custom ActiveObject
according to the Quantum API. Included in the sched-
uler is a temporal monitor that checks if any tempo-

Hardware Platform

(TI DaVinci)

Processor : ARM9

MontaVista Linux

(OS)

Quantum Framework

(Middleware)

Scheduler Application

Hardware Platform

(TI DaVinci)

DSP : TMS6646DSP

DSP/BIOS

Real-time Kernel

Figure 5. Multi-Tier Code Architecture

ral constraints are violated. A sample configuration
is shown in Figure 5, where the multi-tier approach
decouples application code from the operating system
through the middleware and from the hardware plat-
form through the operating system layer.

Each ETA that is generated either from UML stat-
echarts or from the scheduled Petri nets (sequence
diagrams) is implemented as an ActiveObject in the
Quantum Framework. The user-defined classes along
with data and methods are incorporated into the cor-
responding ActiveObject. The final program is a set
of concurrent threads, one of which is a scheduler that
can control the other objects by sending messages to
them after observing their states. For systems without
an OS, the scheduler also takes the role of a real-time
executive kernel.

For our running example, the final application code
consisted of 7 activeobjects derived from the state-
charts and 1 activeobject representing the scheduler.
Makefiles were generated for linking in the API of the
8 hardware classes and configuration files were gener-
ated for the ARM-DSP dual microprocessor platform
called DaVinci from Texas Instruments with Mon-
taVista Linux as its operating system on the ARM
processor and DSP/BIOS real-time kernel as the op-
erating system on the DSP TMS6646DSP processor.
There were totally 2,754 lines of C code for the full
EGSMUC system, out of which the system designers
had to write only around 170 lines of C code, which is
only 6.2% of the full system code.

3. Application Results

For the running example EGSMUC, we now an-
alyze why VERTAF is capable of generating a sig-
nificant part of the system implementation code, thus
alleviating the designer from the tedious and error-
prone task of manual coding. Due to its applica-
tion framework architecture, VERTAF supports soft-
ware components that are commonly found in mo-
bile, ubiquitous, real-time, and embedded application
domains. We classify the components supported by
VERTAF into four classes, namely, storage and I/O
devices, communication interfaces, multimedia pro-
cessing units, and control and management interfaces.

Guest Entry

Request

Master Ack

Media

Center

Master (Web Browser)

Httpd

(Web Server)
Socket

Web Page /

Java Applet

Message /

Image Streaming

QF ActiveObject

Image Processing Interface

Input

Camera DSP

Image

capturing

Image

processing

Figure 6. Code Structure for Media Cen-
ter in EGSMUC

To implement mobile and ubiquitous control ac-
cess in a real-time embedded system, a user normally,
without VERTAF, would have to install a web server,
write multimedia processing code, write network
code, and integrate everything together, along with
application-specific context awareness or publish-
subscribe middlewares. With VERTAF, most of these
tedious work are not required as long as the user con-
figures the correct components from the framework
for use in his or her application.

Figure 4 gave the sequence diagram that a user
needs to specify in order for VERTAF to generate cor-
responding code. The architecture of the code gen-
erated by VERTAF is shown in Figure 6, where QF
ActiveObject is an active object from the Quantum
Framework. The code consists of three parts, namely
a web server, a QF activeobject, and an image process-
ing interface. The web server allows a master to con-
nect to EGSMUC using a web browser that can run
Java applets. The applet opens a socket connection be-
tween the media center and the client machine of the
master. The image of the guest requesting entrance is
captured and processed through the image processing
interface. When a master acknowledges, the guest is
notified through the input class. The control and data
flows of the media center are automatically generated
by VERTAF and the user has to merely specify the se-
quence diagrams as shown in Figure 4 and deploy the
related classes to hardware or software components in
the class diagram as shown in Figure 2. This is exactly
the reason why VERTAF can save a lot of coding and

design efforts.
Figure 7 shows the entire flow from the designing

phase to the implementation of the EGSMUC system
running on the TI DaVinci board. The scheduled and
verified code generated by VERTAF is then uploaded
into the TI DaVinci board. The bottom of the fig-
ure shows the demo of the EGSMUC system. When
a guest requests for entrance, the master can get the
image of the guest captured by the camera on the TI
DaVinci board via the internet with a mobile device
such as a PDA to grant the permission. With the per-
mission of the master, the guest can key in the pass-
word using the remote controller, and the door will be
opened.

There were totally 16 objects in the final applica-
tion generated by VERTAF, out of which the user or
designer had to only model 7 classes. The remain-
ing 9 classes included components from all the four
categories as described at the start of Section 3. Em-
pirical results obtained from comparing two different
implementations of the EGSMUC system, one using
VERTAF, and one without using VERTAF, showed
that not only the user written code reduced to 6.2%
and the number of objects reduced to 44%, but the
total time required to develop the application also re-
duced by more than 60%. The average learning time
for each designer using VERTAF was approximately
0.1 day. The experimental and empirical results all
show that VERTAF is beneficial to designers of real-
time embedded software with mobile and ubiquitous
control access.

4. Conclusion

An object-oriented component-based application
framework, called VERTAF, was proposed for the de-
velopment of real-time embedded system applications
with mobile and ubiquitous control access. It was a re-
sult of the integration of three different technologies:
software component reuse, formal synthesis, and for-
mal verification. Starting from user-specified UML
models, automation was provided in model transfor-
mations, scheduling, verification, and code genera-
tion. VERTAF can be easily extended since new
specification languages, scheduling algorithms, etc.
can easily be integrated into it. Future extensions
will include support for share-driven scheduling algo-
rithms. More applications will also be developed us-
ing VERTAF. VERTAF will be enhanced in the future
by considering more advanced features of real-time
applications, such as: network delay, network proto-
cols, and on-line task scheduling. Performance related
features such as context switch time and rate, external
events handling, I/O timing, mode changes, transient
overloading, and setup time will also be incorporated
into VERTAF in the future.

UML MODELS

Automatic

Code-generation and

Verification

VERTAF GUI

TI DaVinci and

Peripherals Ethernet

Camera

Remote Controller

LCD Monitor

Web Interface

4

3

2
1

Scheduled and Verified Code

for EGSMUC Generated by

VERTAF

Door Opened

Figure 7. A Demo Flow of EGSMUC

References

[1] R. Alur and D. Dill. Automata for modeling real-time
systems. Theoretical Computer Science, 126(2):183–
236, April 1994.

[2] T. Amnell, E. Fersman, L. Mokrushin, P. Petterson,
and W. Yi. TIMES: a tool for schedulability analy-
sis and code generation of real-time systems. In Pro-
ceedings of the 1st International Workshop on For-
mal Modeling and Analysis of Timed Systems (FOR-
MATS), September 2003.

[3] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching time tem-
poral logic. In Proceedings of the Logics of Pro-
grams Workshop, volume 131 of LNCS, pages 52–71.
Springer Verlag, 1981.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, 1999.

[5] D. de Niz and R. Rajkumar. Time Weaver: A
software-through-models framework for embedded
real-time systems. In Proceedings of the International
Workshop on Languages, Compilers, and Tools for
Embedded Systems, pages 133–143, June 2003.

[6] B. Douglass. Doing Hard Time: Developing Real-
Time Systems with UML, Objects, Frameworks, and
Patterns. Addison Wesley Longman, Inc., Reading,
MA, USA, November 1999.

[7] T. Henzinger, S. Qadeer, and S. Rajamani. Decompos-
ing refinement proofs using assume-guarantee reason-
ing. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’00),
pages 245–252, 2000.

[8] P. Hsiung. RTFrame: An object-oriented application
framework for real-time applications. In Proceed-
ings of the 27th International Conference on Tech-
nology of Object-Oriented Languages and Systems
(TOOLS’98), pages 138–147. IEEE Computer Soci-
ety Press, September 1998.

[9] P. Hsiung. Embedded software verification in
hardware-software codesign. Journal of Systems Ar-
chitecture - the Euromicro Journal, 46(15):1435–
1450, November 2000.

[10] P. Hsiung and S. Cheng. Automating formal modular
verification of asynchronous real-time embedded sys-
tems. In Proceedings of the 16th International Con-
ference on VLSI Design, (VLSI’2003), pages 249–254.
IEEE CS Press, January 2003.

[11] P. Hsiung and C. Lin. Synthesis of real-time em-
bedded software with local and global deadlines. In
Proceedings of the 1st ACM/IEEE/IFIP International
Conference on Hardware-Software Codesign and Sys-
tem Synthesis (CODES+ISSS’2003), pages 114–119.
ACM Press, October 2003.

[12] P. Hsiung, C. Lin, and T. Lee. Quasi-dynamic
scheduling for the synthesis of real-time embedded
software with local and global deadlines. In Proceed-
ings of the 9th International Conference on Real-Time
and Embedded Computing Systems and Applications
(RTCSA’2003), February 2003.

[13] A. Knapp, S. Merz, and C. Rauh. Model checking
timed UML state machines and collaboration. In Pro-
ceedings of the 7th International Symposium on For-
mal Techniques in Real-Time and Fault-Tolerant Sys-
tems, volume 2469 of LNCS, pages 395–414. Springer
Verlag, September 2002.

[14] S. Kodase, S. Wang, and K. Shin. Transforming struc-
tural model to runtime model of embedded software
with real-time constraints. In Proceedings of Design,
Automation and Test in Europe Conference, pages
170–175, March 2003.

[15] T. Kuan, W. See, and S. Chen. An object-oriented
real-time framework and development environment.
In Proceedings OOPSLA’95 Workshop #18, 1995.

[16] L. Lavazza. A methodology for formalizing con-
cepts underlying the DESS notation. EUREKA-ITEA
project (http://www.dess-itea.org), D 1.7.4, December
2001.

[17] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard-real time environment.
Journal of the Association for Computing Machinery,
20:46–61, January 1973.

[18] F. M. and D. Schmidt. Object-oriented application
frameworks. Communications of the ACM, Special Is-
sue on Object-Oriented Application Frameworks, 40,
October 1997.

[19] J. Queille and J. Sifakis. Specification and verification
of concurrent systems in CESAR. In Proceedings of
the International Symposium on Programming, vol-
ume 137 of LNCS, pages 337–351. Springer Verlag,
1982.

[20] J. Rumbaugh, G. Booch, and I. Jacobson. The UML
Reference Guide. Addison Wesley Longman, 1999.

[21] M. Samek. Practical Statecharts in C/C++ Quantum
Programming for Embedded Systems. CMP Books,
2002.

[22] D. Schmidt. Applying design patterns and frame-
works to develop object-oriented communication soft-
ware. In P. Salus, editor, Handbook of Programming
Languages, volume I. MacMillan Computer Publish-
ing, 1997.

[23] W. See and S. Chen. Object-oriented real-time system
framework, chapter 16, pages 327–338. John Wiley,
2000.

[24] B. Selic, G. Gullekan, and P. Ward. Real-time Object
Oriented Modeling. John Wiley and Sons, Inc., 1994.

[25] T. Shen. Assume-guarantee based formal verifica-
tion of hierarchical software designs. Master’s the-
sis, Dept. of CSIE, National Chung Cheng University,
July 2003.

[26] F. Su and P. Hsiung. Extended quasi-static scheduling
for formal synthesis and code generation of embedded
software. In Proceedings of the 10th IEEE/ACM Inter-
national Symposium on Hardware/Software Codesign
(CODES’02), pages 211–216. ACM Press, May 2002.

[27] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 2002.

[28] F. Wang and P. Hsiung. Efficient and user-friendly
verification. IEEE Transactions on Computers,
51(1):61–83, January 2002.

[29] S. Wang, S. Kodase, and K. Shin. Automating embed-
ded software construction and analysis with design
models. In Proceedings of International Conference
of Euro-uRapid, December 2002.

[30] M. Zulkernine and R. Seviora. Assume-guarantee su-
pervisor for concurrent systems. In Proceedings of
the 15th International Parallel and Distributed Pro-
cessing Symposium, pages 1552–1560, April 2001.

