
Asynchronous Event Handling and Real- time Threads in the

Real-time Specification for Java*

A.J. Wellings and A. Burns
Department of Computer Science, University of York, YOlO 5DD, U .K.

Email: {andy, burns}@cs.york.ac.uk

Abstract

This paper discusses the role and implementation of

asynchronous event handlers in the Real-time speci-

fication for Java (RTSJ). For non-blocking handlers,
an implementation model whereby all heap-using han-

dlers are serviced by a single thread and all no-heap

handlers are serviced by another server thread is pro-

posed and schedulability analysis is derived. The

model is shown to have bounded priority inversion.

General multiple-server models are needed for non-

blocking handlers but the support in the RTSJ is crit-

icised as lacking in configurability. A solution is pro-

posed which allow the number of servers to be spec-

ified, and the allocation of handlers to servers to be

controlled. ."!It:; t:;A"t:;L!laL UUJt:;l;"" aLt:; LLLaLLy aLLU LJl~Jl l;UJlLruJ

algorithms are simple and non blocking, and

1 Introd uction

One of the main reasons for a real-time programming
language to support concurrency is to facilitate the
modelling of parallelism in the real world (Burns and
Wellings, 2001). For example, within embedded sys-
tem design, the controllers for real world objects such
as conveyor belts, engines and robots are represented
as threads in the program. The interaction between
the real world objects and their controllers can be
either time triggered or event triggered. In a time
triggered systems, the controller is activated periodi-
cally. It senses the environment in order to determin-
ing the status of the real-time object it is controlling.
Based on its findings, it writes to actuators which
are able to affect the behaviour of the object. For ex-
ample, a robot controller may determine the position
of a robot via a sensor and decide that it must cut
the power to a motor thereby bringing the robot to
a halt. In an event triggered system, sensors in the
environment are activated when the real world object
enters into certain states. The events are signalled to

.Java is a trademark of Sun Microsystems.

the controller via interrupts. For example, a robot
may trip a switch when it reaches a certain position.
This is a signal to the controller that the power to
the motor should be turn off, thereby bringing the
robot to a halt.

The system designer often has a choice on whether
to implement the control algorithm as a time trig-
gered or event triggered one. Event triggered systems
are often more flexible whereas time triggered system
are more predictable (Kopetz, 1997; Burns, 2002). In
either case, the controller is usually represented as a
thread. However, there are occasions where this is
not appropriate. These include (Ousterhout, 2002;
van Renesse, 1998) when:

-+1.~ ~.,+~--~1 ~1.:--+~ 3 ,-1.-:- ---,--l.,

.the external objects are inter-related and their
collective control requires significant communi-
cation and synchronization between the con-
trollers.

In the former case, using a thread per controller leads
to a proliferation of threads along with the associated
per thread overhead. In the latter case, complex com-
munication and synchronization protocols are needed
which can be difficult to design correctly and may
lead to deadlock or unbounded blocking.

An alternative to thread-based programming is
event-based programming. Each event has an asso-
ciated handler. When events occur, they are queued
and a server thread takes an event from the queue
and executes its associated handler to completion.
When the handler has finished, the server takes an-
other event from the queue, executes the handler and
so on. The execution of the handlers may generate
further events. With this model, there is only one
thread -the server thread. There is no need for ex-
plicit communication between the handlers as they
can simply read and write from shared objects with-

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

out contention. The disadvantage of controlling all
external objects by event handlers include:

.it is difficult to have tight deadlines associated
with event handlers as a long-lived or blocking
handler must terminate before the server can ex-
ecute any newly arrived high-priority handlers;

.it is difficult to execute the handlers on a multi-
processor system as the handlers assume no con-
tention for shared resources.

One of the main examples often quoted as requiring
an event-handling system is the implementation of a
graphical user interface. For example, standard Java
supports threads but its Swing and A WT toolkits are
event based.

In an attempt to provide the flexibility of threads
and the efficiency of event handling, the Real- Time
Specification for Java (RTSJ) (Bollella et al., 2000)
has introduced the notion of real-time asynchronous
events and associated handlers. However, the spec-
ification is silent on how these events can be imple-
mented and how their timing requirements can be
guaranteed. As the RTSJ is likely to become a stan-
dard implementation language for real-time applica-
tions, a detailed assessment of its facilities is timely.
The goal of this paper is to explore how RTSJ real-
time events can be implemented and integrated with
the scheduling of real-time threads. In section 2, and
overview of the RTSJ event handling model is pre-
sented. The only scheduling policy required by RTSJ
is priority-based scheduling; section 3, therefore, con-
siders a priority-based implementation of event han-
dlers. Section 4 then develops the response time anal-
ysis for this implementation model. Section 5 extends
the model by considering multiple servers and bound
event handlers. Finally, conclusions are presented in
Section 6.

2 The Event Handling Model

Objects which are to be scheduled in RTSJ must im-
plement the Schedulable interface and specify:

.their memory requirements via the class
MemoryParameters -not considered in this pa-
per;

.their timing requirements via the class
ReleaseParameters;

.their scheduling requirements via the class
Scheduling Parameters;

The ReleaseParameters class is a base abstract class
and gives the general parameters that all schedula-
ble objects need. A schedulable object can have a
deadline and a cost associated with each time it is
released for execution, along with handlers for their
overrun. The cost is the amount of execution time
that a scheduler should give to the object. If the ob-
ject is still executing when either its deadline or its
cost expires, an associated event handler is scheduled.
It should be noted that the RTSJ does not require
an implementation to support execution-time moni-
toring. However, it does require it to detect missed
deadlines. Of course, a program can indicate that it
is not concerned with a missed deadline by passing a
null handler. Subclasses of the ReleaseParameters
class support periodic, aperiodic and sporadic release

parameters.
The Scheduling Parameters is a null abstract

class. It has subclasses for the definition of prior-
ity parameters and important parameters. All RTSJ
implementations are required to support at least 28
unique real-time priority levels. However, there is
no defined values for the importance parameters.
The only scheduler that the RTSJ requires is a pre-
emptive priority-based one.

Essentially there are two types of schedulable ob-
jects: real-time threads and asynchronous event han-
dlers. Each AsyncEvent can have one or more han-
dlers. When the event occurs {indicated by a call to
the fire method), all the handlers associated with
the event are scheduled for execution according to
their Scheduling Parameters. Note that the firing
of an event can also be associated with the occur-
rence of an implementation-dependent external ac-
tion by using the bindTo method. Subclasses of the
AsyncEvent class provide time-triggered events. Fig-
ure 1 illustrates the event class hierarchy.

Each handler is scheduled once for each outstand-
ing event firing. However, the handler can modify the
number of outstanding events by using the methods
in the AsyncEventHandler class.

Although an event handler is a schedulable entity
{i.e. at some point it must be executed by a thread),
the intention of the RTSJ is that it will not suffer
the same overhead as an application thread. Conse-
quently, it cannot be assumed that there is a sepa-
rate implementation thread for each handler, as more
than one handler may be associated with a partic-
ular implementation thread. If a dedicated thread
is required, the BoundAsyncEventHandler should be
used. However, other event handlers may also be
associated with that thread. Figure 2 illustrates
the event handler class and its relationship to other
classes.

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

Figure 1: Event class in RTSJ

3 Implemention Issues

The key challenge in implementing event handlers is
to limit the number of threads without jeopardising
the schedulability of the overall system. Further-
more, the RTSJ requires pre-emptive priority-based
scheduling of all schedulable objects. If interpreted
strictly, this requires a high priority event handler to
pre-empt a low priority event handler. This severely
limits the freedom of the implementation and, ar-
guably, removes one of the motivations for an event
handling paradigm (i.e. that communicating han-
dlers are non-pre-emptible and, therefore, do not re-
quire synchronization).

This section considers only sporadic and periodic
events handlers; aperiodic event handlers can be im-
plemented using standard aperiodic server technol-
ogy such as sporadic servers or deferrable servers
(Lehoczkyet al., 1987). From a scheduling perspec-
tive, each of these handlers has an inter-arrival time,
a deadline and a priority. Here it is assumed that
the priorities have been set by the programmer, per-
haps using a deadline monotonic priority assignment
algorithm (Leung and Whitehead, 1982).

At one extreme of the possible implementation
strategies is the approach which allocates a dis-
tinct thread (real-time or no-heap real-time, depend-
ing on the handler) for each handler and schedules
the threads in competition with application-defined
threads. Whilst this is simple to implement and is
adequate for systems with a small number of events,
it is expensive for a large number of events.

At the other extreme, a single server real-time
thread could be used to execute all event handlers.
This approach is illustrated in Figure 3.

There are two main issues associated with this ap-

proach:

I. the order of the event handler queue

2. the priority of the server

To enable effective schedulability analysis, the event
handler queue should be priority ordered. Note that
for event firing, zero, one or more handlers may be
added to the queue. The handlers might have differ-
ent priorities. It is also necessary to check that the
inter-arrival time of the release of the handlers has
not been violated; however, this is not the concern of
this paper .

The priority of the server needs to reflect the pri-
ority of the handler it is executing. Hence, the
server's priority must be dynamically changed. Fur-
thermore, as an executing low priority handler is
not pre-emptible by a high priority handler (in this
model), it is necessary to implement a priority inher-
itance algorithm in order to get usable bounds for
the priority inversion. The priority of the server can,
therefore, be defined to be the maximum of the pri-
ority of the handler it is currently executing and the
priority of the handler at the front of the event han-
dler queue*. Note that although the priority of the
server is changing, it is still essentially a fixed priority
system albeit with priority inheritance-

* A similar approach can be used if EDF scheduling is em-
ployed instead of priority-based scheduling.

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

Figure 2: Event handler class in RTSJ

Unfortunately, there are some significant disadvan- 4 Response Time Analysis
tages with this approach.

.For fixed priority systems, response time analysis can1. Potentially Unbounded Priority InversIOn b d t d t .
h th th t fth d te use o e ermme weer e se o rea s mee

The server causes priority inversion. A high pri- their deadlines (Audsley et al., 1993). Table I gives
ority event handler will not be executed imme- a standard set of notations used for analysing these
diately. Instead it is blocked until the server fin- systems. The response time equation for an arbitrary
ishes executing the current handler. Priority in- thread i is given below;
heritance allows this blocking to be bounded (see
Section 4) but only if the handlers themselves ~ = Ci + Bi + Ii
do not block (e.g., issue a sleep or wait method
call). Multiple servers are needed to avoid this that is,
problem (see Section 5).

2. No-Heap Event Handlers Ri = Ci + Bi + .L. r ~ 1 Cj (I)

The RTSJ allows real-time threads and asyn- JEhp(.)
chronous event handlers to indicate that they. .

.11 t h Th . bl whIch can be solved by constructmg a recurrence re-
WI no access eap memory. IS ena es I . h .

atIons Ip;them to safely pre-empt the garbage collector .
The single server model presented above will fail rR~ 1when there is a mixture of heap and no-heap R?+l = Ci + Bi + L -1: Cj (2)

event handlers. For example, the server execut- jEhp(i) J
ing an event handler which uses the heap can
inherit a no-heap event handler's priority. How- the recurrence iteration starts with R? equal to Ci.
ever, the thread is a real-time thread and, there- This equation needs to be modified to capture the
fore, can still be pre-empted by the garbage col- model of event handling presented in Section 3 (for
lector. Consequently, the no-heap handler will simplicity the analysis is shown for just one real-time
be delayed when garbage collection occurs. The server, i.e. there is no mixture of heap and no-heap
solution to this problem (when handler do not handlers, and there are no delays from garbage collec-
block) is to have two server threads (a real-time tion). Furthermore, the analysis assumes that event
thread and a no-heap real-time thread) and two handlers do not suspend themselves.
priority ordered queues (one for real-time han- The approach is to model each event handler as
dlers and one for no-heap handlers). an individual thread with its own computation time,~

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

~ "

JEvent Handler Queue "'-"

Handler Server

Figure 3: Handling events via a single server

I Notation I ~~scription- --I
Worst-case blocking time for the thread (if applicable)
Worst-case computation time (WCET) of the thread
Deadline of the thread

I The interference time the thread suffers from higher priority threads

I Number of threads in the system
I Priority assigned to the thread (if applicable)

Worst-case response time of the thread
Minimum time between thread releases {e.g. thread perIod)

hp(i) I The set of threads with priority higher than thread i

Table 1: Standard notation

~

however, the non-pre-emptible nature of their execu-
tion has to be taken into account. Consider the re-
sponse time of an arbitrary thread/handler. Its inter-
ference occurs from high priority threads plus higher
priority event handling. There is also an added com-
ponent from the non-pre-emptive time of the server .
This is the maximum of all low priority event han-
dlers. Even for threads, this non pre-emption time
must be included even though they do execute pre-
emptively. To illustrate this consider a thread that
pre-empts a lower priority handler. Then let a high
priority hander be released. It will pre-empt the
thread but it cannot execute until the lower prior-
ity handler has completed. Priority inheritance raises
the priority of the original handler so that it does ex-
ecute before the thread. Hence the execution time of
lower priority handlers must be included for threads

as well as other handlers.

Ii = LjEhpt(i) r !J;; 1 aj +

L,Ehph(i) r !Jj!; 1 a, + maxkElph ak (3)

where hpt(i) is the set of threads whose priority is
higher than thread/handler i and hph(i) is the set of
handlers whose priority is higher than thread/handler
i. lph(i) is the set of handlers whose priority is lower
than or equal to thread/handler i. Hence, the worst-
case non-pre-emption time is the maximum of all the
low priority handlers.

The above is an adequate conservative model and
provides a reasonable tight bound on the response
time for non-blocking handlers if the execution time
of handlers is reasonable short. A tighter result is ob-
tained by noting that a handler cannot be pre-empted
by a higher priority handler once it has started ex-

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

r R~ l~ + Bi + EjEhPt(i) ~

i~ !!:t G, + maxkE'ph Gk
i T,

R'F1 -
.-

L,Ehph(i) r

Ri =

r R~ lL,Ehph(i) ~

r Ro Ci + Bi + }:::;jEhpt(i) ~

C/ + maxkE/ph Ck

-

ecuting (although it can be pre-empted by a higher higher priority handlers will arrive and pre-empt T .
priority thread). To account for this we must first Each of these will result in two context switches
calculate the worst case response time (Rt}.) for exe- and hence the handler under consideration will suffer
cuting the first 'tick' (~)of the handler: these overheads. If there are no application threads

with priorities interleaved with the handler priorities
Cj + then it may be that a reduced overhead load can be

used in the analysis -but this will depend on the
(4) particular characteristics of the application.

Events are usually associated with interrupts and
This is solved using the recurrence method. The full hence placing the event handlers in the queue can
response time is now obtained by a minor change to be considered to be performed at the highest prior-
this equation (note no more interference is obtained ity. Furthermore, as the queue must be protected,
from the handlers). the server must access it at the highest priority and

ceiling priority inheritance used. The additional in-
Cj + terference these interrupt handlers have on each ap-

plication threads is given by:
(5)

L
r Ri

to solve this, the recurrence equation starts with the kEr Tk

value Rf" .
where r is the set of handlers, IH is the cost of

.handling the interrupt (and returning to the running4.1 ModellIng Overheads thread, having entered the associated handlers into

Equations (3) and (5) have two main limitations the queue and, if necessary, raising the priority of
the server). It can also include the cost of taking the

1. they does not take into account context switch associated event handlers out of the queue.
times, and therefore, part of the motivation for This representation assumes that all interrupt han-
event handlers is lost dlers give rise to the same cost; if this is not the case

then IH must be defined for each k.2. they does not model the time taken to put/take
the event handlers into/from the queue.

With normal pre-emptive scheduling of threads,
it is usual to account for the overheads of context
switching by adding to the execution time of each
thread the cost of switching to, and the cost of switch-
ing from, the thread. Although the scheduling analy-
sis assumes that the worst case occurs when all higher
priority threads are released together, once context
switches are incorporated, the worst case actually oc-
curs when each higher priority thread pre-empts the
thread under consideration.

With the non-pre-emptive handler model described
above it would appear that less context switches will
occur (as all handlers are being executed by the
same thread). Indeed the average number of con-
text switches will be much lower than one would ob-
serve if each handler had its own thread. However in
the worst case, the single thread model behaves no
better than the multi-thread approacht. To under-
stand this, consider a handler of priority p with an
application thread T of priority p + 1. Clearly T runs
before the handler; but during its execution other

tThere is some reduction in overhead due to non-pre-
emption, but this is already taken care of in equation(5).

Multiple Servers and Bound

Event Handlers

5

The RTSJ allows an implementation of asynchronous
event handlers to use more than one server thread and
for there to be a dynamic association of handlers to
threads. A possible model is depicted in Figure 4:

This general model has two main drawbacks:

.related handlers must now assume that there
may be some contention for shared software re-
sources

.the worst-case response times of the handlers is
not dramatically improved as no knowledge of
handler to server allocation can be assumed. The
non-pre-emption time, say for a three server sys-
tem, is the minimum of the three maximum val-
ues of the lower priority event handlers. To avoid
this priority inversion, a new server thread could
be created every time the priority of the handler
at the head of the queue is greater that the pri-
orities of the current servers. However, this more
dynamic approach is more difficult to analyse.

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

O-D--D-{]
/\ ""

Event Handler Queue

(Priority Ordered) \
~ 'x;~INextHandlerexecuteHandler

end loop

\ "~

Figure 4: Handling events via multiple servers

The main advantages of this approach over the single
server one is that:

.it has a better mapping for a multiprocessor sys-
tem

.if a handler blocks waiting for 1/0 (or calls the
sleep or wait methods), other handlers may still
be served. However, if all handlers block, signif-
icant priority inversion still occurs.

Bound asynchronous event handlers extend this
model by requiring that the same server always exe-
cutes the handler. The argument for this is to reduce
the latency on allocating a server. However, in the
general case this would appear to have negligible ben-
efit. Of course, in the extreme case where only one
handler is bound to a particular handler, the model
is equivalent to having an explicit real-time thread.

5.1 Multiple Queues and Multiple

Handlers

A more flexible model can be obtained by having mul-
tiple queues of executable handlers, as depicted in
Figure 5. Here, the scheduler is responsible for de-
ciding which handler should be placed in which queue
according to any feasibility analysis it can perform.
One possibility is to have a queue per priority level

(Dibble, 2002) where each queue has an associated
server. If the handlers do not block, the analysis
model is quite simple but pessimistic. To analyse the
response time of a particular handler, it must be as-
sumed that all other handlers at the same priority
level are ahead of it in the queue. Again, to cir-
cumvent unbounded priority inversion when the han-
dlers block, it is necessary to dynamically create new
servers (or take them from a pool) as, and when, nec-
essary.

The main disadvantage of this approach is that the
application's programmer is not aware of the map-
ping; and consequently it must still assume that there
may be contention for shared resources between han-
dlers. Thrthermore, the model would seem to violate
the requirements for bound event handlers.

5.2 Obtaining More Control on Event

Handling Implementations

In order to obtain the full benefit of asynchronous
event handling, the programmer needs to be able to
exercise more control over the allocation of handlers
to server threads. One way of achieving this is to
allow the programmer to specify the maximum num-
ber of server threads for bound event handlers. Each
server thread can then be given an id. For example,
consider an addition to the RealtimeSystem class

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

"---""
\

~
J D--0--0-0 1":INextHand ~er executeHandler

end loop

~~~

package javax.realtime;
public class RealtimeSystem

~

public int getNoBoundEHServers ( ) ;
public void setNoBoundEHServers (

int num) ;

~~

}

Servers are numbered from O ..
getNoBoundEHServers() -1. The construc-
tors for a BoundEventHandler can then be modified
to take an optional parameter indicating which
server to use. This allows the programmer to ensure
that, for example:

.handlers in separate servers do not need to syn-
chronized their actions;

.handlers with tight deadlines can be kept sepa-
rate from handlers with long execution time;

.handlers which block can be allocated to indi-
vidual threads;

.heap and no-heap handlers can be bound to sep-
arate threads.

Analysis on how to find the minimum number of
handlers and how to map deadline requirements to
these handlers can be obtained by apply the approach

~/
~ Event Handier Queue "'--/

Figure 5: Handling events via multiple queues and multiple servers

used in standard pre-emptive scheduling in defining
non-pre-emption groups -see (Wang and Saksena,
1999; Davis et al., 2000; Saksena and Wang, 2000).

6 Conclusions

This paper has considered the rationale for, and
the implementation of, sporadic and periodic asyn-
chronous event handlers in the Real- Time Specifi-
cation for Java. Although there are no restrictions
placed on the structure or content of event han-
dlers, to obtain their full benefit, the code of han-
dlers should be kept as short as possible and should
not block. This is because event handlers are im-
plemented by server threads and one high-priority
handler allocated to a server cannot pre-empt an ex-
ecuting low-priority handler allocated to the same
server. Consequently, to avoid unbounded priority
inversion, servers must be created dynamically (or al-
located from a pool). Ideally, handlers which require
significant computation time, or which block, should
release sporadic threads which can be scheduled in a
true pre-emptive manner.

An implementation model whereby all heap-using
handlers are serviced by a single thread and all no-
heap handlers are serviced by another server thread
has been proposed and schedulability analysis has
been derived. A general multiple-server model has
been criticised as lacking in configurability and a so-

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) 
0-7695-1739-0/02 $17.00 © 2002 IEEE 



lution has been proposed which allows Burns, A. and Wellings, A. J. (2001). Real-Time
Systems and Programming Languages:, 3rd edn,
Addison Wesley.1. the number of servers to be specified, and

2. the allocation of bound handlers to servers to be
controlled.

Such an approach has the following advantages:

.handlers in separate servers can be organised so
that they do not need to synchronized their ac-
tions -thus allowing one of main benefits from
event-based systems;

.handlers with tight deadlines can be kept sepa-
rate from handlers with long execution time;

.handlers which block can be allocated to indi-
vidual threads;

.heap and no-heap handlers can be bound to sep-
arate threadR-

These advantages have to be traded against the
priority inversion that is inevitably introduced when
more than one handler of different priority is allo-
cated to a single server thread. Such an approach
might be formalised in the RTSJ as a new scheduler
which allows the non-pre-emptive scheduling of event
handlers.

Ousterhout, J. (2002). Why threads
are a bad idea (for most purposes),
http: / /www.home. pacbell. net/ ouster /threads. ppt,
Sun Microsystems Laboratories.

7 Acknow ledgements

The authors gratefully acknowledge the comments of
Greg Bollella, Peter Dibble and Doug Locke on an
earlier version of this paper .

References

Audsley, N. et al. (1993). Applying new scheduling
theory to static priority pre-emptive scheduling,
Software Engineering Journal 8(5): 284-292.

Bollella, G., Brosgol, B., Dibble, P., Furr, S.,
Gosling, J., Hardin, D. and Turnbull, M. (2000).
The Real- Time Specification for Java, Addison-

Wesley.

Burns, A. (2002). Real-time systems, Encyclopedia
of Physical Science and Technology, Volume 14,
Academic Press, pp. 45-54.

Davis, R., Merriam, N. and Tracey, N. (2000). How
embedded applications using an rtos can stay
within on-chip memory limits, Proceedings for
the Work in Progress and Industrial Experience
Sessions, 12th EuroMicro Conference on Real-
Time Systems, Royal Institute of Technology,
Technical Report Number TRITA-MMK 2000,
pp. 43-50.

Dibble, P. (2002). Real-time Java platform program-
ming, Sun Microsystems Press.

Kopetz, H. (1997). Real-Time Systems: Design Prin-
ciples for Distributed Embedded Applications,
Kluwer International Series in Engineering and
Computer Science.

Lehoczky, J. P., Sha, L. and Strosnider, J. K. (1987).
Enhanced aperiodic responsiveness in a hard
real-time environment, Proceedings of the IEEE
Real-Time Systems Symposium, pp. 261-270.

Leung, J. and Whitehead, J. (1982). On the complex-
ity of fixed-priority scheduling of periodic, real-
time tasks, Performance Evaluation (Nether-
lands) 2(4): 237-250.

Saksena, M. and Wang, Y. (2000). Scalable real-time

design using premption thresholds, Proceedings
of the 21st IEEE Real-Time Systems Sympo-
sium, IEEE, pp. 25-34.

van Renesse, R. (1998). Goal-oriented programming,
or composition using events,or threads consid-
ered harmful, Proceedings of the Eighth ACM
SIGOPS European Workshop, also available
at http: / /www. cs. corn ell. edu/lnfo /People/rvr / -

papers/ event/event.ps.

Wang, Y. and Saksena, M. (1999). Scheduling
fixed priority tasks with preemption thresh-
old, Proceedings, IEEE International Confer-
ence on Real- Time Computing Systems and Ap-
plications, pp. 328-335.

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) 
0-7695-1739-0/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


