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Abstract

In this paper, we explore the performance tradeoffs for real-
time systems with Dynamic Voltage Scaling (DVS) capability,
when the workload includes aperiodic jobs as well as periodic
tasks. As opposed to the assumptions of early works on Real-
Time DVS or non-power-aware scheduling of hybrid task sets,
the settings require the consideration of two often-conflicting
objectives: Improving the responsiveness of aperiodic jobs and
reducing the energy consumption. We propose the composite
metric, Energy * Average Response Time, as a performance
measure in energy-aware scheduling of hybrid task sets. Then
we develop our framework that integrates Dynamic Reclaim-
ing Algorithm (DRA) and Total Bandwidth Server (TBS) mech-
anism in variable-speed settings. In addition to the static algo-
rithm, we propose Basic Reclaiming Scheme (BRS) and Mutual
Reclaiming Scheme (MRS) that enable the re-use of the system
slack arising from early task completions. We also present our
Bandwidth Sharing Scheme (BSS) that aggressively exploits
the bandwidth reserved for TBS to further slow down the pe-
riodic tasks. We provide an experimental evaluation of our
algorithms under different workloads and speed settings, and
show that BSS can provide significant performance improve-
ments when the actual variability in the workload is high.

1 Introduction

In the early ’90s, the real-time research community ad-
dressed the problem of scheduling workloads with mixed tim-
ing constraints (also known as hybrid task sets). Improving the
responsiveness of aperiodic jobs that do not have explicit dead-
lines by minimizing their average response time, while meet-
ing the hard deadlines of periodic tasks was the main objec-
tive in this line of research. Several solutions are proposed for
fixed-priority systems [16, 17] and dynamic-priority systems
[6, 8]. In [19], Spuri and Buttazzo proposed Total Bandwidth
Server (TBS) and Dynamic Priority Exchange (DPE) schemes
to be used in conjunction with Earliest-Deadline-First policy.
The performances of these algorithms are shown to be close to
an ideal scheduler through simulation studies, although their

run-time overhead (especially that of TBS) is extremely low.

In the late ’90s, a growing emphasis was put on power-
aware resource management techniques. The fact that the CPU
power consumption is related to the CPU supply voltage and
clock frequency in a convex fashion gave rise to the Dynamic
Voltage Scaling (DVS) technique. DVS-based scheduling tech-
niques attempt to save energy by reducing the CPU speed on-
the-fly at the expense of increased response time. For jobs
with non-stringent timing requirements, Weiser et al. proposed
schemes where the CPU utilization is monitored and the CPU
speed is adjusted based on these observations in a dynamic
fashion [22]. On the real-time DVS side, the pioneering work
of Yao et al. [23] showed how to adjust the CPU speed to
minimize the CPU energy consumption for a set of aperiodic
jobs with release times and hard deadlines. The case of pe-
riodic real-time task scheduling on variable-speed processors
was explored in depth in the context of both fixed-priority and
dynamic-priority systems [2, 4, 9, 15, 20]. An on-line admis-
sion algorithm for joint scheduling of hard aperiodic jobs and
periodic tasks was described by Hong et al. in [11].

However, scheduling hybrid task sets in energy-limited set-
tings remains relatively unexplored up to this day. To start
with, there is a need to extend the DVS-based techniques to
address the problem of scheduling aperiodic requests with no
specific deadlines without jeopardizing the deadlines of peri-
odic (hard) real-time tasks. An initial difficulty is about the
performance metric itself. All the hard deadlines must be
met, but the criterion by which two different feasible sched-
ules should be compared is not obvious. Clearly, one should
try to save as much energy as possible, but the responsiveness
(average response time) of soft aperiodic requests cannot be
ignored altogether. In fact, the energy consumption compo-
nent due to aperiodic jobs can be minimized by executing them
with the minimum CPU speed1. However, this policy can make
the response times unacceptably large. On the other hand, the
response times can be improved by committing to the maxi-
mum CPU speed for aperiodic jobs. This, in turn, may result

1One can even argue that, in the absence of specific deadlines, these jobs
could be dropped if the ultimate goal is to maximize energy savings.
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in unacceptably high energy consumption due to the convex
relationship between CPU speed and power consumption. The
selection of the CPU speed for the periodic tasks raises similar
considerations.

We suggest that an appropriate performance metric for hy-
brid task sets should incorporate both the energy consumption
and responsiveness dimensions while meeting the hard dead-
lines. One plausible choice is to adopt the product Energy * Av-
erage Response Time as the performance metric. This metric is
reminiscent of Energy ∗ Delay metric adopted in power-aware
paging and sensor networks [14, 21]. Note that finding an an-
alytical solution to the problem is not feasible, since we do
not have closed formulas for average response times of soft
aperiodic jobs that arrive randomly and that are scheduled in
conjunction with hard periodic tasks [16, 19].

Once we decide to use this composite performance metric,
a number of additional design issues become apparent. For in-
stance, reclaiming unused CPU computation time in the com-
mon case where tasks/jobs complete earlier than the worst-case
can help to reduce the energy consumption. In fact, recent
studies show that such reclaiming policies can improve energy
savings for periodic workloads by a factor of 40-50% [2, 15]
while preserving the feasibility. However, the extent to which
the responsiveness of aperiodic jobs will be affected by such
reclaiming strategies is not clear.

In this paper, we develop a framework where the available
CPU capacity is partitioned a priori between the periodic task
set and a Total Bandwith Server in variable-speed settings.
Soft aperiodic jobs are executed by TBS, whose low overhead
and near-optimal performance under various load conditions
was reported elsewhere [19]. In addition to this static ap-
proach, we present two schemes in which Dynamic Reclaim-
ing Algorithm(DRA) [2] and TBS mechanism are integrated in
order to detect and exploit early completions of both periodic
tasks and aperiodic jobs. In Basic Reclaiming Scheme (BRS),
reclaiming is performed only within each type of workload,
while Mutual Reclaiming Scheme (MRS) allows reclaiming of
any slack by any task/job (periodic or aperiodic). Finally, our
last solution, called Bandwidth Sharing Scheme (BSS), aggres-
sively uses the bandwidth of TBS to further slow down peri-
odic tasks when the actual arrival rate of soft jobs is lower
than predicted. We show that the feasibility is preserved in all
these schemes.

We also provide an experimental evaluation of the proposed
schemes. We analyze the performance of the algorithms on
each of the Energy, Average Response Time and Energy * Av-
erage Response Time dimensions. We conclude that reduc-
ing the CPU speed beyond a certain threshold, while yield-
ing significant energy savings, results in drastic degradation
in responsiveness of soft aperiodic jobs and consequently in
Energy * Average Response Time dimension. We show that
reclaiming unused computation time by BRS, MRS and BSS
can provide considerable benefit over the static scheme, though
their relative performance is highly dependent on the variabil-

ity in the actual workload.

2 System Model, Assumptions and Notation

Throughout the paper, we adopt preemptive Earliest-
Deadline-First (EDF) [13] scheduling policy. The computa-
tional workload has two components: A set T = {T1, . . . , Tn}
of periodic tasks with hard deadlines, and a set of soft aperiodic
jobs that arrive randomly at run-time. In accordance with pre-
vious work on scheduling hybrid task sets [8, 16, 17, 19], we
assume that the worst-case resource requirements of periodic
tasks are known in advance, whereas those of soft aperiodic
jobs are made available only when they arrive.

All periodic tasks are assumed to be independent and simul-
taneously ready at t = 0. The relative deadline of each peri-
odic task instance is equal to its period. We assume that ape-
riodic requests are executed by a Total Bandwidth Server [19].
Although there are other algorithms proposed for scheduling
aperiodic jobs in deadline-driven systems [8, 19], we opt to
use TBS because of its simplicity, low run-time overhead, and
near optimal performance over a large spectrum of load values
as shown in [19]. We adopt the following notation:

• Pi : The constant period of the periodic task Ti

• Ti,j : The jth instance of the periodic task Ti

• Ci : The worst-case workload of Ti expressed as the
worst-case number of CPU cycles required per instance

• Ji : The ith aperiodic job (request)
• ri : The arrival time of Ji

• ci : The worst-case workload of Ji expressed as the num-
ber of CPU cycles

• uB : The capacity of Total Bandwith Server (Section 3.1)
• di : The deadline assigned to Ji by Total Bandwidth

Server (Section 3.1)

We assume a variable voltage/speed processor whose speed
S (in terms of processor cycles per unit time) can vary between
0 and an upper bound Smax. For convenience, we normal-
ize the CPU speed with respect to Smax; that is, we assume
that Smax = 1.0. The power consumption of the processor
under the speed S is given by the function g(S). In current
DVS technologies, the function g(S) is assumed to be a strictly
convex and increasing function on non-negative real numbers
[1, 2, 9, 10, 20]. Further, it is usually represented by a poly-
nomial of at least the second degree [2, 10]. If the CPU speed
in the time interval [t1, t2] is denoted by S(t), then the energy
consumed during this interval is E(t1, t2) =

∫ t2

t1
g(S(t))dt.

Our focus is on the CPU energy consumption; low-power tech-
niques for memory, disk and I/O subsystems, albeit important,
are beyond the scope of this paper.

We assume that the process descriptor of each task/job is
augmented by two extra fields, the current speed and the nom-
inal speed. The former denotes the speed level at which the
task is executing and the latter represents the “default” speed
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it has whenever it is dispatched by the operating system prior
to any dynamic adjustment. The current and nominal speed of
the periodic task Ti are denoted by Si and Ŝi, respectively.

3 Preliminaries

In this section, we provide a brief review of the Total Band-
width Server mechanism and Dynamic Reclaiming Algorithm
(DRA). We also present an extension of DRA, called Extended
Dynamic Reclaiming Algorithm (EDRA), that will be used in
conjunction with TBS mechanism to schedule hybrid task sets
on variable-speed processors in Section 4.

3.1 Total Bandwidth Server

Given a set T = {T1, . . . , Tn} of periodic tasks and a
constant-speed CPU, the total utilization of T is defined as
UT =

∑n
i=1

αi

Pi
where αi is the worst-case execution time of

Ti. A well-known result of real-time scheduling theory [13]
states that T can be scheduled in feasible manner by EDF if
and only if UT ≤ 1.0. In case that aperiodic jobs with soft
deadlines are also submitted to the system at run-time, a com-
mon solution is to assign a dedicated server process to sched-
ule these jobs. In Total Bandwidth Server [19] approach, an
aperiodic job server with capacity (size) uB ≤ 1.0 is adopted.
According to the TBS scheduling rules [19], the ith aperiodic
job Ji, upon its arrival at t = ri, is assigned a deadline di and
is subsequently scheduled along with other periodic tasks ac-
cording to EDF scheduling policy. If the worst-case execution
time of Ji is ei, then the deadline (hence, the priority) assigned
to Ji is computed as:

di = max{ri, di−1} +
ei

uB

(1)

where d0 = 0. Notice that the deadline of Ji is a function of
both the deadline of Ji−1 and the server capacity uB : In partic-
ular, the larger uB, the smaller the deadline assigned to Ji, the
higher its priority, and the better its response time. Spuri and
Buttazzo proved that [19], in a system where aperiodic requests
are served through Total Bandwidth Server with capacity uB,
all periodic tasks will meet their deadlines if and only if

UT + uB ≤ 1.0 (2)

where UT is the total utilization of the periodic task set T .

3.2 Scheduling Periodic Real-Time Tasks
with Dynamic Voltage Scaling

In DVS-enabled processors, the worst-case execution time
of a task depends on the CPU speed. In particular, if all pe-
riodic tasks are executed with the speed S ≤ 1.0, then the
effective utilization (Up) of the periodic task set becomes:

Up = UT (S) =

n∑

i=1

Ci

S · Pi

=
Utot

S

where Utot = UT (1.0) =
∑n

i=1
Ci

Pi
. The quantity Utot is of

particular interest: It represents the periodic utilization under
maximum speed S = 1.0, and this is the minimum effective
utilization that the periodic task set can have (i.e. UT (S) ≥
Utot for S ≤ 1.0). Moreover, it is known that [2, 15] for a
purely periodic workload scheduled by EDF, the CPU speed
that minimizes the total energy consumption while meeting all
the deadlines (i.e. the static optimal speed), is constant and
equal to S̄ = Utot. We will call the quantity Utot the base
utilization of the periodic task set T .

However, even when one schedules all the tasks with the
static optimal speed, many task instances complete without
presenting their worst-case workload in practice. Thus re-
claiming unused computation time to reduce the CPU speed
while preserving feasibility was subject to numerous research
papers in recent years [2, 4, 15, 20]. In [2, 4], a generic
dynamic reclamation algorithm (GDRA) was proposed for
power-aware scheduling of periodic tasks. In that algorithm,
each task instance Ti,j assumed a nominal (default) speed
of Ŝi = S̄ = Utot. At dispatch time, this nominal speed
was reduced by computing the unused CPU time of already-
completed tasks (called the earliness factor of Ti,j). Below,
we provide a brief review of GDRA. However, the version we
employ is slightly different from the one proposed in [2, 4]
in that the nominal speed of tasks is no longer necessarily
equal to S̄ = Utot. Instead, Ŝi can assume any value such
that Ŝi ≥ Utot. We will later derive some useful properties
of this Extended Dynamic Reclaiming Algorithm (EDRA),
enabling us to undertake joint scheduling of aperiodic and pe-
riodic jobs.

EDRA is based on dynamically comparing the actual sched-
ule to the static schedule Scan(in which each task instance runs
with its nominal speed and presents its worst-case workload).
To perform the comparison, a data structure (called α-queue)
is maintained and updated at run-time. The α-queue is ef-
fectively the ready queue of Scan at time t. Specifically, at
any time t, the information about each task instance Ti,j that
would be ready at t in Scanis available in α-queue, including
its identity, ready time, deadline and remaining execution time
(denoted by remi,j)2. EDRA assumes that tasks are sched-
uled according to EDF* policy [2]. EDF* is the same as EDF
[13], except that, among tasks whose deadlines are the same,
the task with the earliest arrival time has the highest priority
(FIFO policy); in case that both deadline and arrival times are
equal, the task with the lowest index has the highest priority.
The α-queue is also ordered according to EDF* priorities. We
denote the EDF* priority-level of task Ti by d∗i (low values
denote high priorities).

The key notation and rules pertaining to EDRA are pre-
sented in Figure 1 and 2, respectively. Rules 1-3 are provide
the update rules for the α-queue structure at important “events”

2Since there can be at most one ready instance of a periodic task at any-
time t, we will drop the second index in remi,j and other α−queue related
notation when the context is clear.
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(task arrival/completion), while Rule 4 shows how the speed
of a task Tx is reduced by evaluating its earliness at dispatch
time. εx(t) represents the unused computation time of tasks at
higher or equal priority level with respect to Tx at time t: these
tasks would still have some non-zero remaining execution time
in Scan, but now they must have been completed because Tx

is the highest priority task in the system. Observe that remi

values are available in the α-queue.

• Scan: The “canonical” schedule in which each task Ti

presents its worst-case workload Ci at every instance and
runs with nominal speed

• remi(t): the remaining execution time of Ti at time t in
Scan

• wS
i (t): the remaining worst-case execution time of task

Ti under the speed S at time t in the actual schedule

• εi(t): The earliness of task Ti at time t in the actual
schedule, defined as:

εi(t) =
∑

j|d∗

j
<d∗

i
remj(t) + remi(t) − wŜi

i (t) =
∑

j|d∗

j
≤d∗

i
remj(t) − wŜi

i (t)

Figure 1. Key Notation for EDRA

4 Scheduling Hybrid Task Sets with DVS

4.1 Static Approach (No Reclaiming)

The first scheme we present is an extension of TBS mecha-
nism to variable-speed settings. Given a periodic task set with
base utilization Utot, we execute all the periodic tasks with a
(nominal) speed of Sp ≥ Utot. This yields an effective periodic
utilization of Up = Utot

Sp
. The aperiodic jobs will be served by

TBS whose capacity is set to uB = 1 − Up. Unused computa-
tion times are not reclaimed and the feasibility of the resulting
schedule follows trivially from Equation (2).

When we consider performance issues such as energy con-
sumption and average response time of aperiodic jobs, an
interesting trade-off dimension becomes apparent: The ob-
jective of reducing the energy consumption of periodic tasks
suggests that we should keep Sp as low as possible, but this
will decrease the TBS capacity uB, hence will tend to in-
crease the average response time of aperiodics. In fact, setting
Sp = Utot would minimize the energy consumption of periodic
tasks (while meeting their deadlines), but at the cost of setting
uB to 0, thereby not executing any aperiodic jobs at all.

Even when we decide on the speed Sp for the periodic work-
load and determine uB = 1 − Utot

Sp
, a second problem needs

to be resolved: What should be the speed Sa at which we ex-
ecute the aperiodic jobs? Again, the convex relation between
CPU speed and power consumption suggests that we should
reduce Sa to save energy. However, this will increase the exe-
cution time of Ji, which is equal to ci

Sa
. Moreover, the deadline

assigned to Ji will become (from Equation (1)):

Rules for EDRA

1. Initialize the α-queue to the empty-list.

2. At every event (arrival/completion), consider the head of
the α-queue and decrease its remi value by the amount
of elapsed-time since the last event. If remi is smaller
than the time elapsed since the last event, remove the
head, update the time elapsed since the last event, and
repeat the update with the next element. This is done
until all “elapsed time” is used.

3. At every new arrival, insert into the α-queue, in the cor-
rect EDF* order, the information regarding the new in-

stance of task Ti,j with remi(t) = wŜi

i .

4. Whenever Tx is about to be dispatched at time t:

4.1. Set Sx = Ŝx.
4.2. Consult the α-queue and compute the earliness of

Tx.
4.3. Reduce the speed of task Tx by allocating an extra

εx(t) time units to Tx:

Sx =
wS

x ·Sx

wS
x +εx(t)

5. At every event of preemption or completion of a task, say
Ti, decrease the value of the remaining execution time:
wSi

i = wSi

i −∆t, where ∆t is the time elapsed since the
task Ti was last dispatched.

Figure 2. Extended Dynamic Reclaiming Algorithm (EDRA)

di = max{ri, di−1} +
ci

uB · Sa

That is, decreasing Sa will increase the response time of
Ji and the reason is twofold: its CPU demand (in terms of
execution time) increases, and its scheduling priority decreases
(the deadline assigned by TBS increases).
Experimental Evaluation: In order to experimentally evalu-
ate the effects of the workload and the speed settings (Sp and
Sa) on three performance metrics Energy, Average Response
Time and Energy * Average Response Time over a wide range
of workload, we implemented a scheduling simulator.

In our experiments, we generated 1000 synthetic task sets,
each containing 30 periodic tasks. The periods of the tasks
were chosen randomly in the interval [1000, 32000]. For each
task set, we simulated the execution up to LCM 20 times,
where LCM is the least common multiple of P1, . . . , P30. The
base utilization Utot of the periodic workload component was
set to 0.3. However, we changed the effective periodic utiliza-
tion Up of the task set between 0.3 and 0.9, by varying the
periodic speed Sp between 0.333 and 1.0. We used a quadratic
power/speed function.

The capacity uB of the Total Bandwidth Server was set to
1 − Up, which is the processor utilization unused by the peri-
odic tasks. The nominal aperiodic load Uw (the computational
demand of aperiodic jobs under Smax = 1.00) was also varied
from 0 to 1 − Up. The interarrival times of soft aperiodic jobs
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were modeled by a Poisson probability distribution, with the
average of Ta = LCM

30 . The worst-case number of CPU cy-
cles for each aperiodic job Ji (i.e. ci) was generated according
to a normal probability distribution with a mean of Ta · Uw,
which guarantees a nominal aperiodic load of Uw on the av-
erage. For a given nominal aperiodic load Uw, the aperiodic
speed Sa was varied between 0.1 and 1.0, giving a wide range
of effective aperiodic load.

For each task set simulated, we computed the total energy
consumption, the average response time (of soft aperiodics)
and the resulting Energy * Average Response Time value. The
actual number of CPU cycles for each periodic task instance
and aperiodic job was set to the worst-case in the simulations
we report in this section. We varied the nominal aperiodic load
Uw, the periodic speed Sp and the aperiodic speed Sa to ob-
serve their effect on each performance metric. When we inves-
tigated the effect of the nominal aperiodic load and aperiodic
speed, the periodic speed Sp was set to 0.6, giving an effective
periodic load of 0.5. Similarly, in experiments where we in-
vestigated the effect of Sp and Sa, the nominal aperiodic load
Uw was set to 0.1. Recall that the effective aperiodic load is a
function of both Uw and Sa (specifically, Uw

Sa
).

• Energy Consumption: Figure 3 (left) shows the average en-
ergy consumption as a function of the nominal aperiodic load
Uw under different aperiodic speed settings. The results are
normalized with respect to the energy consumption of the task
set when Uw = 0.5 and Sa = 1.0. We observe that the energy
consumption increases in linear fashion with aperiodic load,
and this is to be expected, since the CPU demand/energy rela-
tion is linear under a given speed. Note that there is a constant
energy component due to the periodic workload (which can be
clearly observed when Uw is zero). As we increase Sa, the
slope of the energy consumption curve becomes steeper due to
the convex relationship between the speed and energy. When
we examine the effect of Sp on the energy consumption (Fig-
ure 3 (right), the results are normalized with respect to the case
where Sa and Sp are both set to 1.0), we see that the increase
is superlinear, despite the fact that the energy consumption of
the aperiodic load is constant for a fixed Sa value.
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Figure 3. Energy consumption of the static scheme as a

function of the aperiodic load (left) and the nominal speed

of periodic tasks (right)

• Average Response Time: When we examine the effect of
varying Sa, Sp and Uw on the average response time of soft

aperiodic jobs, we get a completely different picture (Figure
4, left). The average response time increases in linear fash-
ion with Uw, up to some threshold value for a given Sa, and
beyond this, it sharply increases. The threshold value indi-
cates the point at which the system practically enters the over-
loaded region, and the threshold is encountered much earlier
for smaller Sa values (when the effective aperiodic load in-
creases fast). Similarly, the average response time of soft ape-
riodic jobs increases abruptly when the speed of periodic tasks
falls below a threshold, making the effective periodic utiliza-
tion and the total load too high (Figure 4, right). Interestingly,
when we execute the soft aperiodics with the speed Sa = 1.0,
the increase is marginal even at low Sp values.
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Figure 4. Average response time of the static scheme as a

function of the aperiodic load (left) and the nominal speed

of periodic tasks (right)

• Energy*Average Response Time: By examining the
changes in the Energy * Average Response Time with varying
parameters (Figure 5), we can have a better assessment of the
trade-off dimensions. We observe that the trends in the met-
ric’s curve follow broadly those of the average response time:
As the system steps into the ”overloaded” region due to the de-
crease in either Sa or Sp, the energy savings improve, but this
is shadowed by the superlinear increase in average response
time and the net effect is negative. In fact, the benefits of using
low Sa values is marginal even at low aperiodic load values
(Figure 5, left), which suggests the use of the maximum CPU
speed for aperiodic jobs to improve the composite performance
metric. On the other hand, the metric benefits from reducing
Sp as long as the system stays in underloaded region (Figure
5, right). However, it increases drastically when the effective
periodic utilization exceeds a threshold value.

4.2 Basic Reclaiming Scheme (BRS)

While we explored in Section 4.1 the basic principles of
DVS on a system with periodic and aperiodic workloads, a tacit
assumption of the framework was that each task instance/job
presents its worst-case workload when it executes. While this
assumption is helpful to guarantee the timing constraints under
a worst-case scenario, in practice many jobs complete early.
Thus, detecting early completions and reclaiming unused CPU
time by further slowing down other tasks has been a central
issue in recent Real-Time DVS research, but in many cases in
the context of purely periodic workloads [2, 4, 15, 20].
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Figure 5. Energy * Average Response Time performance

of the static scheme as a function of the aperiodic load (left)

and the nominal speed of periodic tasks (right)

It is clear that reclaiming can provide energy benefits also
for hybrid workloads. On the other hand, reclaiming can have
negative effects on average response time of soft aperiodic
jobs: a given (aperiodic) job can complete earlier if the slack
of a periodic task is not reclaimed by another periodic task
(reducing the potential interference to the CPU demand of the
aperiodic job).

The first reclaiming scheme we present is still based on a
priori partitioning of the CPU capacity between the periodic
workload and TBS. Specifically, the periodic tasks assume a
(nominal) speed of Sp ≥ Utot. The aperiodic jobs are still
served by a TBS with capacity set to uB = (1 − Up), and
the CPU speed is set to Sa when an aperiodic job is executed.
However, unlike the static scheme, early completions are de-
tected and unused CPU time is reclaimed. Further, the iso-
lation between two types of workload is preserved in the re-
claiming mechanism: Periodic tasks can only reclaim the un-
used CPU time of periodic tasks, while the deadline of TBS is
updated (reduced) dynamically when a soft aperiodic job com-
pletes prematurely. The process of adjusting the deadline of
TBS was described in detail in [18], and it is omitted here due
to space limitations. That scheme effectively enables the re-
use of the bandwidth belonging to prematurely-completed soft
aperiodic jobs, and it improves the average response time while
not necessarily reducing the energy consumption.

The reclaiming mechanism for periodic tasks is based on
EDRA presented in Section 3.2. Again, note that the choice of
nominal speed values for periodic and aperiodic tasks, namely
Sp and Sa can potentially have a deep impact on the energy
consumption and average response time of soft aperiodics (as
shown by the simulation results in Section 4.5).

We will prove the correctness of the Basic Reclaiming
Scheme by resorting to processor demand approach.

Definition 1 The processor demand of a real-time job set β in
an interval [t1, t2], denoted as hβ(t1, t2), is the sum of compu-
tation times of all jobs in β with arrival times greater than or
equal to t1 and deadlines less than or equal to t2.

A fundamental result in the feasibility analysis of task sys-
tems scheduled by EDF is the following:

Theorem 1 (from [5, 12]) A set of independent real-time jobs
β can be scheduled (by EDF) if and only if hβ(t1, t2) ≤ t2−t1
for all intervals [t1, t2].

The proof of the following theorem, which establishes an
upper bound on the processor demand of periodic task sets
scheduled by EDRA, is presented in Appendix.

Theorem 2 When scheduled by EDRA and a nominal speed
Sp, the processor demand of a periodic task set T in any inter-
val [t1, t2] does not exceed Utot

Sp
(t2 − t1).

Proposition 1 All the deadlines of a periodic task set T sched-
uled by BRS are met, provided that Sp ≥ Utot and uB =
1 − Utot

Sp
.

Proof: In [19], it was proven that for a set of aperiodic jobs A

scheduled by a TBS with capacity uB :

hA(t1, t2) ≤ (t2 − t1)uB (3)

combining (2) with (3), and noting that uB = 1 − Utot

Sp
, for

any interval [t1, t2] we get:

hA∪T (t1, t2) = hA(t1, t2) + hT (t1, t2) ≤

(t2 − t1)(uB +
Utot

Sp

) = (t2 − t1)

Hence, the processor demand in each interval is smaller than
or equal to the length of the interval. 2

4.3 Mutual Reclaiming Scheme (MRS)

The second reclaiming mechanism that we propose is based
on the generalization of the α-queue mechanism and EDRA to
include aperiodic jobs in addition to periodic tasks. This ef-
fectively results in an integrated mechanism through which
periodic tasks and aperiodic jobs can mutually reclaim
their unused computation times. In other words, the restric-
tion of the previous scheme in which a periodic task (aperiodic
job) can claim only the slack of another periodic task (aperi-
odic job) is removed.

Just as before, upon arrival, a deadline is assigned to aperi-
odic jobs through TBS mechanism. However, the α-queue is
also updated to include the information about the worst-case
remaining execution time of the aperiodic job, its deadline,
ready time and EDF* priority. At dispatch time, each peri-
odic task or aperiodic job, inspects the α−queue and reclaims
available slack by taking into account its EDF* priority.

Note that the addition of aperiodic jobs to the α−queue and
EDRA mechanism requires that we re-visit the definitions and
notations of EDRA. First, we will assume that the default speed
used to execute soft aperiodic jobs (namely, Sa) is the nominal
speed for any job Ji. In addition, Scan will denote the “canon-
ical” (static) schedule in which each task Ti (aperiodic job Ji)
presents its worst-case workload Ci(ci) at every instance and
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• Sn+i : the current speed of soft aperiodic job Ji

• Ŝn+i: the nominal speed of Ji (set to Sa)

• remn+i(t): the remaining execution time of Ji at time t

in Scan

• wS
n+i(t): the remaining worst-case execution time of Ji

under the speed S at time t in actual schedule

• d∗n+i: The EDF* priority level of Ji

• εn+i(t): The earliness of Ji at time t in actual schedule,

defined as εn+i(t) =
∑

a|d∗

a≤d∗

n+i
rema(t) − w

Ŝn+i

n+i (t)

Figure 6. Additional alpha-queue related notation

runs with nominal speed Sp (Sa). Finally, to ensure a compact
notation, we will use indices beyond n (the number of periodic
tasks) to refer to soft aperiodic jobs (Figure 6).

Thanks to this notation, EDRA shown in Figure 2 can be
used with very little change for MRS: In Step 3, at the time
of the arrival of an aperiodic job Ji, TBS will assign a dead-
line according to its rules, and the information about its EDF*
deadline (d∗

n+i) and its remaining worst-case execution time
under its ”nominal speed” Sa (i.e. remn+i) will be ”pushed”
to the α−queue. Naturally, the rules must be re-edited to sub-
stitute the expression ”task Tx or aperiodic job Jx” for ”task
Tx” and care must be taken to ensure that the index of the
α−queue related parameters of the job Jx are introduced as
n + x (see above); but we choose not to duplicate the entire
algorithm because of space limitations.

The correctness of MRS can be established by explicitly
writing and evaluating the processor demand equations (as
done in the proof of Theorem 2); however it can be also veri-
fied by using first principles: Equation (3) basically states that
the aperiodic jobs, when their deadlines are assigned by TBS,
collectively act as a periodic task with utilization uB from the
processor demand point of view. This in turn, implies that the
periodic task set T with effective utilization Utot

Sp
and aperiodic

jobs scheduled by TBS, can be considered as a single peri-
odic task set T ′ with effective utilization Utot

Sp
+ uB ≤ 1.0

scheduled solely by DRA (since periodic tasks and aperiodic
jobs use α−queue in MRS for reclaiming). But we know that
DRA can schedule all periodic task sets whose effective utiliza-
tion does not exceed 1.0 ([2, 3]), justifying the correctness.

4.4 Bandwidth Sharing Scheme (BSS)

While BRS and MRS provide a framework to reclaim un-
used computation times of periodic tasks and soft aperiodic
jobs without compromising the feasibility, it is possible to fur-
ther refine the system’s adaptation to current workload condi-
tions. In all previous schemes a fraction of CPU capacity (uB)
was reserved for TBS to execute the aperiodic jobs, regardless
of the actual aperiodic load. But if the actual aperiodic load
of the system turns out to be relatively low compared to uB,
in many cases TBS will be idle and some CPU capacity will

be wasted. Note that this scenario is fundamentally different
from having soft aperiodic tasks arrive with an expected rate
and then complete early (without presenting their worst-case
number of CPU cycles): instead, we consider the case where
their arrival rate is significantly low. Under this scenario,
the mutual reclaiming algorithm would not be able to provide
compensation, because the unused computation time of aperi-
odics that do not arrive would not be in the α−queue. For such
scenarios, it may be more efficient (from energy consumption
point of view) to dynamically use some capacity of TBS to
further reduce the speed of periodic tasks.

To achieve this, we modify MRS in the following way:
when TBS is idle, and there are ready periodic tasks in the sys-
tem, the algorithm will create a ”ghost” job Jg , and will push
its worst-case execution time remg to the α−queue. However,
the actual execution time of Jg will be zero: that is, we con-
sider it as a job that completes as soon as it is dispatched. The
net effect of this approach is that the periodic tasks will now
find the ”unused” computation time of Jg in the α−queue and
will be able to reclaim it by the rules of MRS.

However, a number of details need to be worked out. In par-
ticular, what will be the worst-case execution time (and hence,
the deadline) of the ghost job Jg? Observe that we are effec-
tively using the bandwidth of aperiodic jobs aggressively in
order to be able to reclaim it in the α−queue; thus, choosing a
very large worst-case execution time may result in a potentially
late deadline and degraded responsiveness for future aperiodic
jobs. To prevent excessive degradation in responsiveness,
we choose to create the ghost job only when there are no
waiting aperiodic jobs and current time t is larger than the
current deadline dc of TBS.

Let NPD be the earliest deadline among the deadlines of all
ready and yet-to-arrive periodic task instances when a ghost
job Jg is created at time t. The worst-case execution time remg

will be computed as:

remg = buB · (NPD − 1 − t)c (4)

Observe that this choice guarantees that the ”deadline”
of Jg will be smaller than NPD; since dc+1 = t +
buB ·(NPD−1−t)c

uB
≤ NPD − 1. In other words, we are intro-

ducing a ghost task with the largest possible slack that could
be still used by the periodic task with the earliest deadline in
the future. This is because, according to the speed adjustment
rules, a periodic task Tk can use the slack of another task/job X

only when d∗
k > d∗X . The correctness of BSS follows from that

of MRS: for every schedule generated by BSS, one can imag-
ine a ’parallel’ scenario in which whenever a ’ghost’ job is
created by BSS, an aperiodic job (with remg as above and ac-
tual execution time 0) arrives and is subsequently scheduled by
MRS. Both algorithms would generate exactly the same sched-
ules in this case. Since MRS preserves the feasibility, so does
BSS.
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4.5 Experimental Evaluation

We implemented all the schemes we proposed in this paper
in our scheduling simulator in order to evaluate their relative
performance for three different metrics under consideration.
Specifically, we implemented: (a) Static, which does not use
any advanced reclaiming scheme (except switching to power-
down mode whenever there is no ready task), (b) BRS, which
is based on using EDRA for the periodic tasks and the dynamic
TBS deadline update technique of [18] for soft aperiodic jobs,
(c) MRS, which uses the EDRA algorithm to reclaim unused
computation time from α−queue for both periodic tasks and
aperiodic jobs, and (d) BSS, which dynamically and aggres-
sively uses the bandwidth of TBS to further slow down peri-
odic tasks. The basic simulation settings are identical to those
given in Section 4.1. However, one important addition is the
fact that we also investigated the effect of the variability in
the actual workload on the performance metrics Energy, Av-
erage Response Time and Energy * Average Response Time.
For a given CPU speed, the variability in the actual workload
is achieved by modifying the BCET

WCET
ratio (that is, the best-

case to worst-case execution time ratio). We ran experiments
where the actual execution time (of periodic tasks and aperi-
odic jobs) follows a normal probability distribution function.
The mean and the standard deviation are set to WCET+BCET

2

and WCET−BCET
6 respectively, for a given BCET

WCET
, as sug-

gested in [20]. The choice of this mean and standard deviation
ensures that, on the average, 99.7% of the execution times fall
in the interval [BCET, WCET ]. We varied the BCET

WCET
ratio

from 0.1 to 1.0 with increments of 0.1.
Since we have four important parameters (namely, Sa, Sp,

Uw and BCET
WCET

), we will comment on the effect of each vari-
able when others are kept constant. Specifically, we will focus
on the case where Sp = 0.6, Sa = 0.7, Uw = 0.1, BCET

WCET
=

0.1, and we will present the trends for each of the four per-
formance metrics by modifying one of the variables while oth-
ers assume the specified values. We report the performance
of the schemes by normalizing with respect to that of Static
(at Uw = 0.1 for the curves where the nominal aperiodic
load varies, at Sp = 1.0 for the curves where Sp varies, at
BCET
WCET

= 1.0 when the actual execution times vary and at
Sa = 1.0 when Sa varies). The experiments led us to the fol-
lowing conclusions:
• Energy: The simulation results (Figures 7 and 8) indicate
that the relative energy consumption ordering of four tech-
niques is the same throughout the entire spectrum of variables:
The best technique is BSS, followed by MRS and BRS. The
static scheme was consistently outperformed by other schemes.
The clear domination of BSS can be explained by its aggressive
use of the TBS’ bandwidth to further slow down periodic tasks.
Further, we observe that its relative energy performance is bet-
ter at high Sa or Sp values, since being able to adopt lower
speeds by using TBS’ bandwidth becomes crucial at energy-
consuming (high) default speeds. The improvement in energy

savings increases with respect to Static as the ratio BCET
WCET

de-
creases, as the opportunities for reclaiming become more fre-
quent. Observe that BSS is able to reduce the energy consump-
tion even when BCET

WCET
= 1.0 (each task takes worst-case exe-

cution time), since it exploits the unused bandwidth originally
reserved for aperiodic jobs.
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Figure 7. Energy consumption of the proposed schemes as

a function of the aperiodic load (left) and the nominal speed

of periodic tasks (right)
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Figure 8. Energy consumption of the proposed schemes as

a function of the BCET
WCET

ratio (left) and the nominal speed

of aperiodic tasks (right)

• Average Response Time: When we consider responsive-
ness dimension (Figures 9 and 10), the picture is reversed once
again. Static, MRS and BRS yield comparable response times,
and they consistently outperform BSS. Further, at high BCET

WCET

ratio values, the BSS’s responsiveness further degrades, since
aggressively using the bandwidth of TBS does not usually pay
off by early completions. Though the trends for Static, MRS
and BRS are similar, we observe that MRS and BRS are likely
to experience sharp increases in response time when the system
approaches the overload conditions. This is due to the fact that
reclaiming unusued computation time at high effective utiliza-
tion values has a clearly distinguishable and negative impact
on soft aperiodic jobs, since these jobs are often delayed by
periodic tasks which reclaim unused CPU times.
• Energy * Average Response Time: The simulation results
(Figures 11 and 12) indicate that important energy savings
of BSS help promote the hybrid performance metric as well,
but with some noteworthy exceptions. We observe that when
BCET
WCET

ratio exceeds 0.5, the performance of BSS quickly de-
grades and it becomes the worst technique. This is due to the
excessive increase observed in response time when reclaiming
opportunities are few and aggressive use of bandwidth does
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Figure 9. Average response time of the proposed schemes

as a function of the aperiodic load (left) and the nominal

speed of periodic tasks (right)
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Figure 10. Average response time of the proposed schemes

as a function of the BCET
WCET

ratio (left) and the nominal speed

of aperiodic tasks (right)

not provide adequate compensation. At this high BCET
WCET

ra-
tios, MRS yields the best results, because of its non-aggressive
reclaiming approach. At low Sa values, the system tends to
enter the ”overloaded zone” rather quickly. Based on our ex-
periences, we can propose the following rule of thumb for the
choice of Sp and Sa: The total effective utilization of the sys-
tem should not exceed 0.8 to avoid drastic and sudden degra-
dation in Energy * Average Response Time performance. If the
BCET
WCET

ratio is likely to be high, then using MRS or BRS is the
most reasonable decision, otherwise BSS is the best technique.
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Figure 11. Energy * Average Response Time performance

of the proposed schemes as a function of the aperiodic load

(left) and the nominal speed of periodic tasks (right)

5 Conclusion

In this paper, we explored the energy/delay tradeoffs in-
volved in scheduling hybrid task sets on DVS-enabled pro-
cessors. We proposed Energy * Average Response Time as a
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Figure 12. Energy * Average Response Time performance

of the proposed schemes as a function of the BCET
WCET

ratio

(left) and the nominal speed of aperiodic tasks (right)

metric that combines two important dimensions of the system
performance. Our framework combines the Dynamic Reclaim-
ing Algorithm [2] and Total Bandwidth Server [19] mecha-
nisms in variable-speed settings. In addition to the static algo-
rithm, we presented two schemes (Basic Reclaiming Scheme
and Mutual Reclaiming Scheme) that dynamically re-use avail-
able system slack. Finally, Bandwidth Sharing Scheme allows
the periodic tasks to aggressively use the bandwidth of TBS.
Our experiments indicate that Bandwidth Sharing Scheme ex-
hibits the best performance over a wide range of workload set-
tings. However, if the actual variability in the workload is low,
then the aggressive slow-down approach of Bandwidth Shar-
ing Scheme affects the responsiveness and the composite met-
ric negatively. In such scenarios, Mutual Reclaiming Scheme
gives the best results.
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APPENDIX
Theorem 2: When scheduled by EDRA and a nominal speed Sp, the
processor demand of a periodic task set T in any interval [t1, t2] does
not exceed Utot

Sp
(t2 − t1).

Proof: First, note that the statement holds for Scan in which each
task/job presents its worst-case workload and there is no reclaiming;
since in this case:

h
CAN
T (t1, t2) =

∑
t1≤ri,j≤di,j≤t2

Ci,j

Sp·Pi
=

∑
b t2−t1

Pi
cCi

Sp
≤ (t2 − t1)

∑
Ci

SpPi
= t2−t1

Sp
Utot

For the case where the reclaiming is done through EDRA (with
nominal speed Sp), we will show that for any interval [t1, t2],

h
EDRA
T (t1, t2) ≤ h

CAN
T (t1, t2) (5)

where hEDRA
T (t1, t2) is the processor demand of the periodic task

set T in the actual schedule produced by EDRA, which will prove the
claim.

The proof is by induction: we will show that (5) holds after each
reclaiming point tr , and for any interval tr ≤ t1 ≤ t2. First, note
that, if there is no reclamation then hEDRA

T (t1, t2) = hCAN
T (t1, t2),

and the statement holds for every interval [t1, t2]. Thus, assume that
the statement holds after the first k reclaiming points.

Consider the (k+1)st reclaiming occurring at t = ti and affecting
the speed of the periodic task Ti which is about to be dispatched. It
is clear that for any interval [ta, tb] such that tb ≥ ta > ti the state-
ment still holds: the CPU allocations of the instances that will arrive
in the future are identical with those in Scan(since these instances,
by default, have the nominal speed in both Scan and actual EDRA
schedule). We choose to ignore the task instances that will arrive in
the future (at tx > ti) in the following processor demand evaluation,
since they will make exactly the same contributions to the demand
expressions in both Scan and the actual schedule.

Observe that, though the arrival time of currently ready tasks are
in the past, for the sake of computing the processor demand, we can
consider them as if they arrived at t = ti (with the worst-case re-
maining execution time equal to wSx(ti) for the actual schedule, and
remx(ti) for Scan, for any ready task Tx). Further, we can restrict
our analysis to intervals [t1, t2] such that t2 is a task deadline [5]. In
other words, to show the validity of the inequality (5), we will prove
that

h
EDRA
T (ti, da) ≤ h

CAN
T (ti, da) (6)

for every da which is the deadline of a ready task. First, ob-
serve that, for any ready task Ta at time ti in the actual schedule,
hCAN

T (ti, da) =
∑

j|d∗

j
<d∗

a
remj(t) + rema(t).

Now, for any deadline da such that ti < d∗
a < d∗

i , hEDRA
T (ti, da)

must be zero since Ta is clearly completed at t = ti (otherwise, Ti

would not be dispatched). Thus, (6) trivially holds for such deadlines.
The second case we examine is da = di: in this case,

hEDRA
T (ti, di) =

∑
j|d∗

j
<d∗

i

remj(t)+remi(t)−w
Ŝi
i (t)+w

Ŝi
i (t)

(due to EDRA reclaiming rule). But this is exactly hCAN
T (ti, di), and

(6) still holds.
The last possibility we consider is the case where da ≥ di. Then:

h
EDRA
T (ti, da) = h

EDRA
T (ti, di)+

∑

Tk is ready and d∗

i
<d∗

k
≤d∗

a

w
Ŝk

k (t)

The last term in the expression is obtained by considering that
tasks effectively return to their nominal speeds when preempted. And
we can write:

h
CAN
T (ti, da) = h

CAN
T (ti, di) +

∑

Tk is ready and d∗

i
<d∗

k
≤d∗

a

remk(t)

But in [2, 3] it was proven that for any ready task Ti, remi(t) ≥

w
Ŝi
i (t) during the execution of GDRA algorithm. That proof can be

repeated almost verbatim to show that the same holds for EDRA.
Combining this with the fact that hEDRA

T (ti, di) = hCAN
T (ti, di)

(see above), the third case is also verified, proving the statement. 2
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