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Abstract

In this paper, we address the problem of adaptively re-

serving the CPU to concurrent soft real-time tasks, in or-

der to meet target Quality of Service requirements. First, we

present two new techniques inspired to the idea of stochas-

tic control. Then, we present a flexible and modular soft-

ware architecture suitable for adaptive scheduling, realised

as a minimally invasive set of modifications to the Linux

Kernel. Finally, we show experimental results that validate

our approach and prove its effectiveness in the context of

multimedia applications.

1. Introduction

Software based implementation of a class of time-

sensitive applications is gaining momentum because it is

generally regarded as cheaper and more flexible than a ded-

icated hardware solution. Important examples can be found

in the area of consumer electronics: multimedia stream-

ing programs, video/audio players, software sound mixers,

movie editing, and so on. Such applications are char-

acterised by implicit timing constraints for which oc-

casional timing failures can be tolerable, provided that

they do not become too frequent. Whenever applica-

tions of this kind populate the same system and com-

pete for a pool of shared resources, an appropriate real-time

scheduling solution is needed to attain both an effi-

cient use of the processor and an acceptable level of Quality

of Service (QoS) for the different tasks. To this regard, tra-

ditional real-time techniques, such as Rate Monotonic

(RM) and Earliest Deadline First (EDF) [12], are not ap-

propriate because they deem unacceptable even a sin-

gle deadline violation, and schedulability tests are based

on worst case assumptions. As a consequence, adop-

tion of such techniques in the context of soft real-time ap-

plications leads to an overly conservative management of

∗ This work has been partially supported by the European OCERA IST-
2001-35102 and RECSYS IST-2001-32515 projects.

the CPU. On the other hand, it is crucial that large fluctua-

tions on the execution or inter arrival times of a task do not

affect the performance levels granted to other tasks.

In the past years, several scheduling algorithms have

been proposed that mimic a fluid allocation of the proces-

sor, giving each task the “illusion” of running on a dedicated

slower CPU. These range from Proportional Share (PS) [10]

to Reservation Based (RB) [15] algorithms.

This work is based on the use of RB techniques for CPU

reservation, which have been implemented on a variety of

systems using different algorithmic solutions [19, 3, 11, 14].

We are confident that most of the presented results can be

extended to the management of other kind of resources, like

network bandwidth and disk, and to algorithms providing

temporal protection other than CPU reservations, such as

the ones based on PS.

The traditional way for using RB scheduling is to re-

serve a fixed fraction of the CPU utilisation to each task,

so that its temporal constraints can be fulfilled. However, a

static allocation is not effective if the task widely changes

its execution requirements throughout its execution. In fact,

an allocation based on “average” requirements would result

into transient but unacceptable degradations of the provided

QoS, while an allocation based on worst case assumptions

would most times be inefficient in terms of CPU utilisa-

tion. This problem can be addressed by dynamically adapt-

ing the amount of resources reserved to each task, i.e. by

using a feedback inside the scheduling mechanism.

A first proposal for feedback based scheduling of time

sharing systems dates back to 1962 [9]. More recently, feed-

back control techniques have been recently applied to real-

time scheduling [20, 13, 8, 7] and multimedia systems [23].

Owing to the difficulties in modelling schedulers as dy-

namic systems, these works only provide a limited math-

ematical analysis of the closed-loop performance, often

based on approximate models or intuitive arguments. The

application of feedback to RB algorithms was pioneered in

[4] introducing the concept of adaptive reservations. This

work opened up a new research thread. In [6], it is shown

how it is possible to write an exact mathematical model for

the dynamic evolution of a single reservation and to de-

sign a switching Proportional Integer (PI) controller based
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on a linearisation of the system. Stability results and syn-

thesis techniques for tuning the parameters of the switch-

ing PI controller, based on the theory of hybrid systems and

on convex optimisation, were shown in [16]. The problem

was further investigated in [18], where a nonlinear feedback

control scheme taking advantage of the specific structure of

the system model was shown.

In this paper, we first introduce two novel control tech-

niques, which have been designed by attacking the problem

in the stochastic domain.Then, we describe a software ar-

chitecture suitable for our feedback control strategies and

we present its implementation in the Linux kernel. Con-

trary to other approaches that are more focused on hard

real-time applications, such as RTlinux [22] and RTAI [21],

we can run time-sensitive applications in user space with

obvious benefits in terms of safety and access to a wealth

of libraries available for Linux. Modifications of the origi-

nal kernel have been carried on in such a way that ordinary

Linux applications can run without any awareness whatso-

ever of the new environment.

2. Problem presentation

2.1. The tasks model

We consider a set of independent tasks T (1), ...,T (n)

sharing a CPU. A task T (i) consists of a stream of jobs,

or instances, J
(i)
k k∈N

. Each job J
(i)
k arrives (becomes exe-

cutable) at time r
(i)
k , and finishes at time f

(i)
k after executing

for a time c
(i)
k . Job J

(i)
k is associated a deadline d

(i)
k , which

is respected if f
(i)
k ≤ d

(i)
k , and is missed if f

(i)
k > d

(i)
k .

For our purposes, the sequences of computation times

{c
(i)
k }k∈N are considered as discrete-time continuous val-

ued stochastic processes. For the sake of simplicity, we will

restrict to periodic tasks, in which r
(i)
k+1 = r

(i)
k + T (i),

where T (i) is the task period. Moreover, we will assume

that d
(i)
k+1 = d

(i)
k + T (i); hence, r

(i)
k+1 = d

(i)
k .

2.2. Resource Based Scheduling

In the application that we will show in this paper tasks

are scheduled by a Reservation Based (RB) policy [15].

In a RB framework, a task T (i) is associated a pair

(Q(i), P (i)), said reservation, meaning that the schedul-

ing algorithm guarantees to T (i) a budget of Q(i) execu-

tion time units in every reservation period P (i) (when-

ever in need). The ratio b(i) = Q(i)/P (i) is referred to as

bandwidth. Dealing with periodic tasks, it is convenient to

choose P (i) so that T (i) = kP (i), k ∈ {1, 2, . . .}. If the

task is not allowed to execute for more than Q(i) units every

P (i), even in presence of an idle processor, then the reser-

vation is said hard [19]. In this paper we will restrict our

attention to this class of RB algorithms, even though most

techniques and considerations shown in the sequel are ap-

plicable to a good extent also to other types of reservations.

A very important property ensured by RB scheduling is

the so called temporal isolation, i.e. a task’s schedulabil-

ity depends only on the behaviour of the task itself and on

the assigned budget Q(i). Thanks to this property, the task

can be thought of as running on a virtual CPU having speed

a fraction b(i) of the CPU speed. In fact, defining the vir-

tual finishing time v
(i)
k as the time the kth job would finish

if it were running on a virtual CPU with speed b(i), the en-

forcement of a hard reservation policy implies the follow-

ing relation [11]:

v
(i)
k − δ ≤ f

(i)
k ≤ v

(i)
k + δ, (1)

where δ = (1 − b(i))P (i). The above shows that in princi-

ple a RB scheduler can be made to approximate a “fluid”

allocation of the processor as closely as needed by choos-

ing P (i) small enough. However, in practical implementa-

tions, the overhead of context switches becomes relevant if

P (i) is too small. A consistency relation necessary for a RB

scheduler to work properly is

∑

i

b(i) ≤ Ulub, (2)

with Ulub ≤ 1 depending on the algorithm used for the im-

plementation.

2.3. Adaptive Reservations

When considering soft real-time applications it is of

paramount importance to quantify the Quality of Service

that each task experiences during his execution. In our

model we can tolerate occasional deadline misses as long as

the anomaly is kept in check. Therefore, it is reasonable to

define a quality of service metric, that we will call schedul-

ing error, related to the deviation of the finishing time from

the deadline. A possible definition for such a metric could

be e
(i)
k = (f

(i)
k−1 − d

(i)
k−1)/Ti, where e

(i)
k is the scheduling

error experienced by job J
(i)
k−1. An ideal bandwidth alloca-

tion would be one for which e
(i)
k = 0 for all k. Indeed, both

e
(i)
k > 0 and e

(i)
k < 0 are undesirable situations, since in the

former the task does not respect its timing constraint, whilst

in the latter it receives an excess of bandwidth that would

better be allocated to other activities.

When dealing with tasks which expose a large fluctu-

ation of the computation requirement, a static allocation

of bandwidth to the task is not appropriate. An adapta-

tion mechanism is needed to dynamically allocate the band-

width to a task during its execution, thus the idea of adap-

tive reservation. In particular, in the line of research initi-

ated in [4], we perform bandwidth adaptation using con-
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Figure 1. Envisioned architecture.

ceptual tools borrowed from feedback control theory. This

concept is henceforth referred to as feedback scheduling.

2.4. Dynamic model

In order to design a feedback control we need a mathe-

matical model for the system dynamic evolution. To this re-

gard, the scheduling error as defined above, although an ap-

pealing QoS metric, turns out to be cumbersome to use. In-

stead, we shall define a different metric, by approximating

the actual finishing time fk of each job with its virtual fin-

ishing time, vk : ε
(i)
k =

v
(i)
k−1−d

(i)
k−1

T (i) . In view of Equation (1),

it is easy to show that ε
(i)
k constitutes an approximation of

the original metric e
(i)
k :

ε
(i)
k − δ

′

≤ e
(i)
k ≤ ε

(i)
k + δ

′

, (3)

(where δ
′

= δ
T

= (1 − b(i))P (i)

T (i) ), which clearly shows

that the introduced approximation is acceptable provided

that the ratio P (i)

T (i) be small enough. The dynamics of ε
(i)
k

is given by [6]:

ε
(i)
k+1 = S(ε

(i)
k ) +

c
(i)
k

T (i)b
(i)
k

− 1 (4)

where S(x) = 0 if x < 0 and S(x) = x if x ≥ 0.

For most RB algorithms, ε
(i)
k is exactly and easily mea-

surable upon the termination of each job.

2.5. Control goal

For what said above, the control goal is to keep the

scheduling error evolution as close to zero as possible. Mod-

elling the scheduling error evolution as a stochastic process,

reasonable design goals for the QoS can be formulated on:

• the first order probability density distribution f
ε
(i)
k

(·):

it can be used to visually compare performance of two

different control algorithms;

• the expected value of the s.e. µ
ε
(i)
k

and its variance

σ2

ε
(i)
k

: these values can be used for a quantitative com-

parison of two control techniques;

• the probability for the scheduling error ε
(i)
k to fall in a

specified segment [−e(i), E(i)] of the real axe.

3. Feedback scheduling techniques

Equation (4) describes a first order switching system,

in which ε
(i)
k is a measurable state variable that we want

to control, the bandwidth b
(i)
k acts as a command variable,

whereas c
(i)
k is an exogenous disturbance term. As a mat-

ter of fact, we have a collection of first order systems that

evolve asynchronously one another, their states being ob-

served at asynchronous points in time (jobs termination for

the different tasks).

The asynchronism of the system makes it difficult to de-

sign a global controller. A simpler choice is a decentralised

scheme where a dedicated controller decides the bandwidth

of each task looking at the evolution of the task itself in

isolation. This idea is not completely applicable since the

bandwidths chosen by the different controllers undergo a

global constraint dictated by Equation (2). A minor depar-

ture from the entirely decentralised scheme is to include a

supervisor that, whenever the controllers violate the con-

straint, resets the values of the bandwidths to fix the prob-

lem (e.g. operating a weighted compression or a saturation).

From the standpoint of each controller, every time the su-

pervisor is forced to act an impulsive disturbance is experi-

enced (see Figure 1).

3.1. Single controller general design

The control scheme just introduced consists of a collec-

tion of controllers attached to each task and a supervisor that

performs corrective actions only when a controller chooses

a value for the bandwidth in contrast with Equation (2) de-

termining an overload condition. The latter component is

described in depth in [2] and we will omit further details.

Rather, this section is mainly concerned with the design of

the dedicated controllers. In order to reduce the probabil-

ity of overload conditions, and the subsequent supervisory

corrections, each controller is constrained by a “local” sat-

uration constraint: b
(i)
k ≤ B

(i)
max.

From now on, we will concentrate on how to design a

controller for a single task and the (i) superscript will be

dropped for notational convenience. We propose a scheme

based on two components (see Figure 2): a predictor that,

upon the termination of Jk−1, supplies a set of parameters

Ik related to a prediction of ck; a controller that decides the

bandwidth bk based on the set of parameters Ik and on the
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Figure 2. Block diagram for QoS controller

measurements of εk collected from the scheduler. The pre-

dictor plays in this scheme an important role: the more ac-

curate the prediction the better the resulting control perfor-

mance. The ability to build an accurate predictor is related

to the stochastic properties of the input process. A very sim-

ple predictor is one which is based on statistics (e.g. mov-

ing average) gathered on the past computation times. Actu-

ally, we will show that the type of information that the pre-

dictor needs to supply depends on the control scheme.

In the rest of the section we first quickly review the in-

variant based control, which has already been presented in

[18, 17], then we introduce two new approaches, namely the

stochastic dead beat and cost optimal controllers, which are

based on the stochastic formulation of the problem.

3.2. Invariant based design

The goal of an invariant based controller is to con-

strain the scheduling error evolution within a small region

[−e,E], compensating for the fluctuations of ck. The infor-

mation Ik provided at each step by the predictor is a range

[hk,Hk] where the next computation time ck is expected to

fall. The invariant based controller guarantees that, as long

as ck ∈ [hk,Hk], the scheduling error remains constrained

in [−e,E]. Otherwise, a recovery mode is used to steer back

the error into the invariant region. A theoretical discussion

on conditions for such a controller to exist as well as on the

problem of mistaken predictions (i.e. ck /∈ [hk,Hk]) can be

found in the cited paper. In this context we just summarise

results on how to choose the bandwidth:

step k) choose bk















∈
[

Hk

T (1+E−S(εk)) ,
hk

T (1−e−S(εk))

]

, if εk ≤ ε1

∈
[

Hk

T (1+E−S(εk)) , Bmax

]

, if ε1 < εk ≤ ε2

= Bmax, if εk > ε2

(5)

where ε1 = 1− e− hk

TBmax
and ε2 = 1+E − Hk

TBmax
.

step 0) choose b0 in the same range as for a negative schedul-

ing error.

The control formula just showed embeds the simplest re-

covery policy, which assigns the maximum available band-

width in such situations. Alternative policies are discussed

further in [17].

3.3. Stochastic dead beat approach

This control scheme attacks the design problem in the

stochastic domain. The goal is to choose a bandwidth such

that the expectation of the next scheduling error be equal

to a desired value. The expectation that we are consider-

ing is conditioned to the past evolution of the system. If the

desired value is zero we refer to the controller as Stochas-

tic Dead Beat (SDB). It is possible to prove that the con-

trol law having such a property, and satisfying the satura-

tion constraint, can be expressed as follows:

bk =

{

µCk

T (1−s(εk)) if εk < 1 −
µCk

TBmax

Bmax if εk ≥ 1 −
µCk

TBmax

. (6)

If εk > 1 −
µCk

TBmax
, then it is not possible to guarantee that

the expected next error be zero. The information Ik required

from the predictor is µCk
, i.e. the expectation of ck condi-

tioned to the past evolution of the system. This can be done,

for example, with a moving average performed on last exe-

cution times. Despite its simplicity, this technique is able to

achieve a very good performance, as we will show in Sec-

tion (5).

3.4. Optimal cost (OC) approach

This technique takes inspiration from dynamic program-

ming techniques, in that the controller optimises, at each

step, the expectation (conditioned to the past evolution of

the system) of a cost function w(ε, b). Such cost is associ-

ated to a transition of the system using bk = b that results in

εk+1 = ε. In particular we chose a cost function accounting

for the deviation of the next scheduling error from zero, and

the bandwidth being used: w(εk+1, b) = γε2
k+1 + (1− γ)b,

where γ ∈]0, 1[ allows to assign different weights to the two

cost components. The following formula [17] gives the op-

timum bandwidth choice in the general case:

bk(εk) = 3
√

ρ + δ(εk) + 3
√

ρ − δ(εk), ρ =
γ(σ2 + µ2)

(1 − γ)

δ(ε) =

√

(

γ

1 − γ

)2

(σ2 + µ2)
2

+

(

2

3

µγ[1 − S(εk)]

1 − γ

)3

µ and σ denote, respectively, the mean value and standard

deviation of ck (conditioned to the past evolution of the

system), which must be provided by the predictor compo-

nent. This formula can be directly used for all εk ≤ ε∗ =

1 + 3
2µC

3

√

γ
1−γ

(σ2 + µ2), which is the range for which

δ(εk) is real. For εk > ε∗, the formula still holds if com-

putations are properly performed in the complex domain.

Furthermore, note that the optimum bandwidth value found

with this formula is subject to the usual saturation con-

straint.
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Figure 3. B(ε) laws for the OC and SDB cases.

Figure 3 reports the optimal B(εk) function for a partic-

ular set of parameters. The same figure makes also a com-

parison with the bandwidth function in (6).

An important problem with this approach is that the com-

putation of the bandwidth requires several floating point op-

erations for which it is not immediate to achieve an efficient

kernel implementation. For fixed µ and σ the problem is rel-

atively simpler in that it is possible to do efficient linear in-

terpolations of the curve. For dynamically changing param-

eters, more sophisticated techniques are required and they

are currently under investigation.

4. Architecture of OCERA implementation

The applications to be scheduled with the techniques

considered so far are soft real-time by nature. Thus it is

of paramount importance to provide an implementation of

such techniques in the context of a general purpose OS,

where such applications are mostly used. We proved this

to be feasible by providing a reference implementation in

the Linux kernel, which is described in this section.

The implementation has been carried out in the context

of the OCERA project (see http://www.ocera.org), finan-

cially supported by the European Commission under the

IST programme, fifth framework. The aim of the OCERA

project is to enhance the real-time characteristics of Linux

for both hard and soft real-time systems by providing a set

of open software components. In this paper we will focus

on the soft real-time components, describing how adaptive

reservations are implemented.

In OCERA, soft real-time tasks are implemented as reg-

ular Linux processes running in user space, and loadable

modules are used to implement resource reservations as

shown in Figure 4. The QRES module implements resource

reservation according to the CBS algorithm [1]. The QSPV

module implements the admission control policy, and it pro-

vides the supervisor functionality for the single QoS con-

trollers, which are implemented in turn as separate mod-

ules. This orthogonal separation among the different com-

ponents allows a great level of configurability.

Linux Scheduler

QMgr1 Module

Task 1

QMgr2 Module

Task 3 Task 4 Task 5

Linux Kernel

QRes Module

QSPV module

Task 2

Figure 4. OCERA soft RT architecture.

4.1. Generic Scheduler Patch (GSP)

Scheduling functionality of the Linux kernel has been

extended through the application of a non-intrusive patch,

namely the Generic Scheduler Patch. This defines an inter-

face for allowing other modules to intercept scheduling re-

lated events and undertake appropriate actions in response

to them. For this purpose, the GSP defines a set of hooks,

i.e. function pointers, one for every scheduling event, made

available to other modules by exporting the necessary sym-

bols.

The scheduling events for which hooks are defined are

job arrivals, job finishings, process creations, and process

terminations, for which the defined hooks are, respectively:

unblock, block, fork and cleanup. The setsched

hook is invoked when the scheduling policy is changed by

calling the sched setscheduler() system call. Ini-

tially, all hooks are unset in the kernel, and are not used.

Thus, modules that need to customize the scheduler be-

haviour, like our QRES module, may set the hooks to point

to their appropriate handlers implementing the new be-

haviour. A more detailed description of the implementation

of the generic scheduler patch and of the scheduling mod-

ule can be found in [5].

4.2. Scheduling Module

The QRES module implements a slightly modified ver-

sion of the CBS algorithm [3], where the original soft reser-

vation paradigm has been replaced with a hard reserva-

tion one (see [19] for a comparison between the two ap-

proaches), which allows to use the system evolution model

introduced in Section (2.4). The CBS belongs to the class

of RB algorithms described in Section (2.2), and is based

on the earliest deadline first algorithm (EDF) [12]. Due to
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Task 1 QMGR 1  QRES 

sched_setscheduler()

qspv_request_create()

qmgr_end_cycle()

qres_get_consumed()

qspv_change_budget()

 QSPV 

qres_create()

qres_change_budget()

Figure 5. Interaction between the QMGR, the

QSPV and the QRES modules.

the underlying EDF strategy, and the overhead introduced

into the kernel by our modules, the Ulub parameter in Equa-

tion (2) can be set greater than 0.95 for most practical ex-

periments.

Once the QRES module has been loaded into the kernel,

a task can require to be scheduled according to a RB policy

by invoking the sched setscheduler() system call

with the policy SCHED CBS. After such a call, the QRES

hook handlers will intercept all scheduling events related to

that task, implementing the desired scheduling policy. The

sched setscheduler() system call is also used by the

task to specify scheduling parameters, through the use of an

extended version of the structure sched param. Specifi-

cally, the task is required to provide the desired budget and

period into this structure.

4.3. QoS Supervisor (QSPV) Module

When a new reservation is created specifying a certain

budget Q and a certain period P , the system must check if

there is enough free bandwidth to accommodate for the new

reservation. This admission control is performed by the QoS

supervisor module. This module intercepts all the calls to

the scheduler setsched() via the setsched hook.

Three different flavours of this module exist, each one

implementing a different admission control policy: satura-

tion, compression and reject. They differ in their response

to requests that cannot be accommodated. In all cases, if

the sum of the CPU utilisations of the existing reservations,

plus the utilisation of the new reservation, does not exceed

Ulub, then the request is forwarded to the setsched han-

dler of the QRES module; the sched setscheduler()

succeeds and the task is scheduled according to the CBS al-

gorithm with the specified parameters.

If there is not enough bandwidth to serve the new re-

quest, the action depends on the selected policy:

saturation policy: the highest possible budget is assigned

to the task so that the total CPU utilisation does not ex-

ceed Ulub;

compression policy: all the reservations are recomputed

(“compressed”) so that we can make enough space for

the new request (see [4] details);

reject policy: the sched setscheduler() returns

with an error and the task is scheduled in back-

ground.

The QSPV module is also used by the QoS Manager to

dynamically change the budget of an existing reservation

according to the feedback control algorithm.

4.4. The QoS Manager module

We provide different QoS management modules (de-

noted with QMGR1 and QMGR2 in Figure 4) that can coexist

in the same system. Each module provides a different con-

troller strategy and can serve more than one task.

A task can choose the QoS manager for its execution

by specifying, in the sched setscheduler() call, the

SCHED QMGR1 or SCHED QMGR2 scheduling policy, and

by providing proper parameters to the module through the

sched param structure.

In order to use adaptive reservations, a task must

be structured in the following way. At the beginning,

the task must set the scheduling policy by calling the

sched setscheduler system call, specifying for ex-

ample the QMGR1 policy, and providing scheduling param-

eters. The setsched hook of the QMGR1 module is then

invoked. After storing the required parameters in its inter-

nal data structures, the QMGR1 module invokes (see Fig-

ure 5) the qspv request create() function of the

QSPV module to initialise the reservation budget and pe-

riod.

After initialisation, the task enters a loop. Each execu-

tion of the loop corresponds to a job of the task. For exam-

ple, in case of a MPEG decoder, a job may correspond to

the decoding of one frame. At the end of the loop, the task

invokes the qmgr end cycle() function. Such a call re-

sults in the activation of the setsched hook into the ker-

nel, which results in a call to the proper handler into the

QMGR1 module. This obtains the amount of budget con-

sumed by the job by calling the qres get consumed()

function provided by the QRES module. Then, the con-

trol law is applied and a new budget is computed and set

with the qspv change budget() function of the QSPV

module. If there is not enough free bandwidth to accom-

modate for the new budget, the QoS supervisor applies one

of the three possible behaviours described in the previous
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Figure 6. Computation times gathered from the

Xine player (a), and scheduling error resulting with

a static and dynamic bandwidth assignments (b).

section, with the difference that if the reject policy is in

place then the old value is kept unchanged. Finally, the task

blocks waiting for the next periodic event by calling the

wait period() function.

5. Experimental results

In this section we report experimental results gath-

ered on a real Linux system. We modified the xine (see

http://xine.sourceforge.net) MPEG player, in order to con-

trol, for each frame, the finishing time of the decoding

stage.

In the first experiment, we show the benefit of adopt-

ing a feedback scheduling mechanism as opposed to a static

allocation of the bandwidth. Then, we compare the perfor-

mance of the various controllers.

Consider the MPEG decoding times shown in Figure 6

(a), which evolve around the 15% of the task period. The

scheduling error evolution achieved with a static bandwidth

assignment equal to 16% is shown in Figure 6 (b), com-

pared to the one achieved with a SDB controller, where the

expected value µCk
is approximated by the predictor by per-

forming a moving average of the last ten samples, and the

saturation value has been set to 17%. A visual comparison

between the two evolutions is illustrative of the extent of the

achieved enhancement.

In this section we compare the performance of different

controllers: 1) the switching PI controller [6, 13], 2) the in-

variant based controller [18], 3) the stochastic dead-beat

controller, 4) the optimal cost controller. The experimental

Probability Density Functions (PDF) resulting from the ap-

plication of the four controllers are reported in Figure 7 and

0

1

2

3

4

5

6

7

8

9

10

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Stoch. Dead Beat (multiple averages)
Invariant based (multiple averages)

Switching PI

Figure 7. Scheduling error PDF achieved by

switching PI, invariant-based and SDB controllers.

Figure 8. A preliminary work was to hand-tune the param-

eters of the controllers so as to optimise their performance

(in order to get a fair comparison).

As Figure 7 demonstrates, the switching PI controller is

largely outperformed by both the invariant based and the

stochastic dead beat schemes. This is also partially due to

the use, inside the last two approaches, of a predictor com-

ponent taking advantage of the periodic structure of the de-

coding times, by using multiple moving averages. The com-

parison between the SDB and the invariant based solution

reveals very similar performance. A strength of the SDB

is its extreme simplicity, while the invariant based solution

allows for more flexibility to the price of a greater design

complexity.

In Figure 8 we compare the SDB and optimal cost ap-

proaches, this time using a simpler predictor for all

schemes, which just computes a single moving mean over

last ten samples. A visual comparison between the per-

formance of the SDB in Figure 7 and Figure 8 gives an

idea of the impact of the predictor quality on the over-

all controller performance. Regarding the optimal cost

controller, we report the results for two values of the γ pa-

rameter. In the first case we chose γ = 0.90, thus weighing

very much the importance of the scheduling error. With re-

spect to the SDB case, the PDF is shifted to the right; this is

because the optimal cost controller achieves a trade-off be-

tween bandwidth consumption and performance. Attach-

ing even more importance to the bandwidth (γ = 0.75),

the curve is further shifted to the right. Performance

in terms of the scheduling error degrades, but the sys-

tem tends to “save” bandwidth for other tasks. As pointed

out earlier, this flexibility is paid in terms of computa-

tional complexity.

6. Conclusions and future work

In this paper, we addressed the problem of controlling

the QoS in soft soft real-time applications by using reser-

vation based scheduling techniques augmented by feed-

back control strategies. First, we proposed two new control

strategies that are inspired to the ideas of stochastic con-
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Figure 8. Scheduling error PDF achieved by dif-

ferent stochastic based control schemes.

trol. We compared the performance of these new controllers

with previous approaches. Second, we described a software

architecture for feedback control in the Linux OS, which

has been realised as a minimally set of invasive changes

to the Linux scheduler, plus a set of external modules. We

showed results obtained applying the proposed techniques

to an MPEG player, demonstrating their effectiveness.

In the short future, we want to consider alternative archi-

tectural solutions, such as the possibility of moving part of

the QoS manager functionality from kernel to user space.

Furthermore, we plan to attack the problem of scheduling

tasks that use multiple resources (disk, network, etc.) in a

coordinate way, by applying RB techniques for a coordi-

nated schedule of them.
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