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Abstract—In order to generate or tune fuzzy rules, Neuro-
Fuzzy learning algorithms with Gaussian type membership 
functions based on gradient-descent method are well known. 
In this paper, we propose a new learning approach, the 
Quaternion Neuro-Fuzzy learning algorithm. This method is 
an extension of the conventional method to four-dimensional 
space by using a quaternion neural network that maps 
quaternion to real values. Input, antecedent membership 
functions and consequent singletons are quaternion, and 
output is real. Four-dimensional input can be better 
represented by quaternion than by real values. We compared 
it with the conventional method by several function 
identification problems, and revealed that the proposed 
method outperformed the counterpart: The number of rules 
was reduced to 5 from 625, the number of epochs by one 
fortieth, and error by one tenth in the best cases. 

Keywords-neuro-fuzzy; quaternion neural networks; fuzzy; 
neural networks 

I. INTRODUCTION

In the field of fuzzy control, the practical applications of 
fuzzy inference have increased, and generations of fuzzy 
rules have become important. These include tuning of 
membership functions and rules. However, when a fuzzy 
system model is designed, it is sometimes too hard or 
impossible for human beings to give the desired fuzzy rules, 
due to the ambiguity, uncertainty or complexity of the 
identifying system. Many methods have been constructed 
by combining fuzzy systems and neural networks to 
generate or tune fuzzy rules of fuzzy system models [1]. 
These methods, called Neuro-Fuzzy learning algorithms 
(NFs), recently have been successfully applied to, e.g. 
control system and system identification. Further, a variety 
of system structures and learning algorithms are available 
for NFs. 

In this paper, we use a method of tuning fuzzy rules and 
its parameters by back propagation learning algorithm of 
neural networks [1]. Such NFs, whose antecedent 
membership function is fixed for each fuzzy inference rule 
under the simplified fuzzy inference method, can generate 
fuzzy rules by automatic tuning of its parameters and the 
consequent singleton values based on a gradient-descent 
method. However, if we use multi-input for this method, the 

number of parameter of antecedent membership functions 
increase rapidly with increasing the number of fuzzy 
inference rules. For this reason, it takes a long period of 
time for learning and the learning accuracy may deteriorate 
[2]. 

We focused on Quaternion Back Propagation (QBP) [3] 
of Quaternion Neural Networks (QNNs). QNN is an 
extension of Real-valued Neural Networks (RVNNs) and 
has better learning ability than RVNNs [3]. Further, QNN
has been applied to time series prediction, rigid control and 
color night vision [4].

In this paper, we propose the Quaternion Neuro-Fuzzy 
learning algorithm (QNF). It extends the antecedent 
membership function and the consequent singleton of the 
conventional method to four-dimensional space and 
generates real-valued output for quaternion inputs. Further, 
we compared it with the conventional method by several 
function identification problems, and show the superiority.

II. NF AND QNF 

III. Conventional NF 
In the conventional NF, if the inputs are xi (i = 1, 2, , n)

and the output is Y, then fuzzy inference rules of the 
simplified fuzzy inference are shown below:

Rule 1: If x1 is M11 and x2 is M12 … xn is M1n 

Then Y is W1 

Rule 2: If x1 is M21 and x2 is M22 … xn is M2n 

Then Y is W2 

… 

Rule m: If x1 is Mm1 and x2 is Mm2 … xn is Mmn 

Then Y is Wm 
�����������������

where Wj (j=1, 2, , m) are real value of the consequent 
singleton.

The antecedent membership functions Mji (j = 1, 2, , m;
i = 1, 2, , n) are given by Gaussian function as,
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���(��) = ��� �− 	�� − 
���� 
��� � � � � � � � � � � � � � � � � � � ��

The inference result Y is as follows. First, the grade of the 
antecedent is given by 

�� = ∏ ���(��)���� � � � ( j = 1 ,  2 , … ,  m ) � � � � � � � ��

Then, the inference result Y is calculated by the following 
gravity method. 

� = ∑ ��������
∑ ������

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

The error function to be minimized during the training is 
given by 

� = �
� (� − �)� = �

� �� � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 ��

where T is the desired output. During the training, each 
parameter ��, 
��, 
��  is updated by, 

∆�� = −" #$
#��

= −" #$
#%

#%
#��

� = −"� ��
∑ �&�&��

� � � � � � � � � 
 ��

∆
�� = −' #$
#*�+

= −' #$
#%

#%
#��

#��
#-�+

#-�+
#*�+

��

= −2'���
��.%

∑ �&�&��
/+.*�+

0�+
� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

∆
�� = −1 #$
#0�+

= −1 #$
#%

#%
#��

#��
#-�+

#-�+
#0�+

��

= −1���
��.%

∑ �&�&��
	/+.*�+�3

0�+3 � � � � � � � � � � � � � � � � � � � � � � � � � � ��

where ", ' 
45 1 are the learning rate. 

We can perform the learning process by giving the initial 
value to each parameter and by using Eq. (6) – (8). 

IV. The QNF 

In the learning algorithm we propose that each parameter 
is extended to a quaternion, and is given by the following 
flow. 

Fuzzy inference rules are shown below: 
Rule 1: If X1 is M11 and X2 is M12 … Xn is M1n 

Then Y is W1 

Rule 2: If X1 is M21 and X2 is M22 … Xn is M2n 

Then Y is W2 

… 

Rule m: If X1 is Mm1 and X2 is Mm2 … Xn is Mmn 

Then Y is Wm 
� � � � � 
 ��

where, the variables except Y are quaternion, Y is the real-
valued output. 6� = ��� + 8��9 + :��

; + <��>  is the quaternion 
input. ��� = ���� + 8���9 + :���

; + <���>  is the quaternion 

membership function. �� = ��� + 8��9 + :��
; + <��>  is 

the quaternion singleton. Here, marks R, I, J and K denote 
one real and three imaginary parts of quaternion (same as 
above). Further, i, j and k in front of the variables represent 
imaginary numbers, and 8 = : = < = √−1. The antecedent 
membership functions are given by 

���A(��A) = ��� B− 	��A − 
��A�� 
��A� C � � � � � � � � � � � � � � � � � � � � � ��

where, marks R, I, J and K are given to mark A (same as 
above). This means that Gaussian function is given to the 
real and imaginary parts of the antecedent membership 
functions. The inference result Y is calculated as follows. 
First, the grade of the real and imaginary parts of the 
antecedent is given by 

��A = ∏ ���A(��A)���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Second, the quaternion inference result D = D� + 8D9 +
:D; + <D>  is calculated by the gravity method. 

D = ∑ B���EF���GF���
HFI��J����EF���GF���

HFI��J�C����
∑ ���EF���GF���

HFI��J�����
���������

�����

Finally, the real-valued inference result Y is calculated as 
follows: 

� = KL→�(D) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �����

KL→�(D) =   (D� − D9)� + (D; − D>)� ���� �� � �� ��� ���� �� �����

where Eq. (14) is the activation function that we have newly 
developed. It is similar to the one used for complex-valued 
neural networks [5]. By this activation function, we are able 
to get the real-valued inference result Y.  

The error function is the same as Eq. (5). During the 
training, each parameter is updated by, 

∆�� = −" #$
#��E

− 8" #$
#��G

− :" #$
#��

H − <" #$
#��J

� � � � � � � � � � � � ��	��

∆
�� = −' #$
#*�+E − 8' #$

#*�+G − :' #$
#*�+

H − <' #$
#*�+J � � � � � � � � � � � � � � ��
��

∆
�� = −1 #$
#0�+E − 81 #$

#0�+G − :1 #$
#0�+

H − <1 #$
#0�+J � � � � � � � � � � � � � � � �����

where ", ' 
45 1  are the learning rate. Since Eq. (15) –
(17) are not available directly, we need to expand each 
equation as follows (here, we present only the real part of 
each parameter). 

#$
#��E

= #$
#% N #%

#OE
#OE
#��E

+ #%
#OG

#OG
#��E

+ #%
#OH

#OH
#��E

+ #%
#OJ

#OJ
#��E

P � � � � �� ��
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#%
#��E

#-�+E
#-�+E

#*�+E N #%
#OE

#OE
#��E

+ #%
#OG
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#��E

+ #%
#OH
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#��E

+ #%
#OJ

#OJ
#��E

P ��

��
��
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#$
#0�+E = #$

#%
#��E

#-�+E
#-�+E

#0�+E N #%
#OE

#OE
#��E

+ #%
#OG

#OG
#��E

+ #%
#OH

#OH
#��E

+ #%
#OJ

#OJ
#��E

P ��

�����

Then, each partial differential of Eq. (18) – (20) is 
determined as follows. 
#$
#% = � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

#%
#OE = 2(ZQ − ZR)                             ( 2 2 ) 

#%
#OG = −2(ZQ − ZR)                            ( 2 3 ) 

#%
#OH = 2(ZS − ZT)                              ( 2 4) 

#%
#OJ = −2(ZS − ZT)                            ( 2 5 ) 

#O
#��E

= ���EF���GF���
HFI��J�	∑ �&∗�&�� �

	∑ �&E�&�� �3F	∑ �&G�&�� �3F�∑ �&
H�&�� �3F	∑ �&J�&�� �3     ( 2 6 )                                         

#O
#��E

= ���EF���GF���
HFI��J�	∑ �&∗�&�� �F	∑ �&�&�&�� �.���EO

	∑ �&E�&�� �3F	∑ �&G�&�� �3F�∑ �&
H�&�� �3F	∑ �&J�&�� �3  ( 2 7 )                                     

#��E

#-�+E = ��E

-�+E � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

#-�+E

#*�+E = 2���� 	��� − 
���� 
���� � � � � � � � � � � � � � � � � � � � � � � � 
 ��

#-�+E

#0�+E = −���� 	��� − 
����� 	
������ � � � � � � � � � � � � � � � � � � � � ��

Where, �I∗  denotes the quaternion conjugate of �I. 

As same as the conventional method, we can perform the 
learning process by giving the initial value to each 

parameter and using Eq. (15) – (17). 

V. SIMULATION RESULTS

In the previous section, we proposed the QNF to get 
fuzzy rules, and presented its learning algorithm under 
Gaussian type membership functions. In this section, we 
compare it with the conventional method by several 
function identification problems, and show that the 
proposed method is a useful tool for learning a fuzzy system 
model. 

Function Identifications 
We take the following two nonlinear functions with four 

inputs and one output. Eq. (31) and (32) are quoted from a 
literature [6]. 

Function 1: 

V = 	�/�FW/33FX.��3

[W.W� + B	\]^_^F�]`a_a�`b.c.X.X[[C
W.de � � � � � � � � � ��

Function 2:

V = 	�/�FW/33FX.��3

\[.�� ∙ W ghi(j/^)F� klg(j/a)Fd
�� � � � � � � � � � � � � � ��

Where, ��, ��, �\, �W ∈ [−1, 1] are the input variables, and 
V ∈ [0, 1] is the output variable. 

Then, using these two functions, we compare the new 
method with the conventional method about the epoch and 
the evaluation error when the number of rules is the same. 

Tables 1 and 2 are the initial values of each parameter of 
each method. In two functions, for initialization, we divided 
each antecedent input space in five by Gaussian type 
membership functions. Accordingly, the conventional 
method, the number of fuzzy rule is twenty five. However, 
in the new method, we give x1, x2, x3 and x4 to one real and 
three imaginary parts of one input. Note that, in terms of the 
number of the fuzzy rules, the new method (5 rules) is 
smaller than the conventional method (625 rules). 

Table 1. NF                            Table 2. QNF

    
In Eq. (33), Eall is the fuzzy inference error for the 

training set. Then, we applied both methods to Functions 1 
and 2, and tuned the fuzzy rules until Eall becomes smaller 
than the threshold δ. The results are shown in Tables 3 and 
4. Results shown are the average of 20 trials. In these 
Tables, 

�*qq = �
�r ∑ (�s − �s)�rs�� � � � � � � � � � � � � � � � � � � � � � � � � � ��

where Yd is the fuzzy inference, Td is the desired output, and 
N is the number of training set. 

In Tables 1 and 2, the training set is given by 

Equivalent-81

��, ��, �\, �W ∈ {−0.9, 0, 0.9} � � � � � � � � � � � � � � � � � � � � � ���

Equivalent-625

��, ��, �\, �W ∈ {−0.9, −0.5, 0, 0.5, 0.9} � � � � � � � � � � � � � 	 ��
Table 3. NF vs. QNF for Function 1

The evaluation error is given as follows. First, we 
perform learning each fuzzy rule by the conventional 
method and the new method. Second, we input 14641
evaluation data (��, ��, �\, �W) (where these ranges of x1, x2,
x3 and x4 are increments of 0.2 from -1 to 1) for Functions 1 
and 2 to each learned fuzzy rule. Finally, we get the mean 

 
(-1, 0.12) 0.5

(-0.5, 0.12) 0.5
(0, 0.12) 0.5

(0.5, 0.12) 0.5
(1, 0.12) 0.5

Mji Wj

(-1, 0.12) (0.6, 0.5, 0.4, 0.3)
(-0.5, 0.12) (0.6, 0.5, 0.4, 0.3)

(0, 0.12) (0.6, 0.5, 0.4, 0.3)
(0.5, 0.12) (0.6, 0.5, 0.4, 0.3)

(1, 0.12) (0.6, 0.5, 0.4, 0.3)

� �K
j

J
j

I
j

R
j WWWW ,,,A

jiM

Function 1
Number of data δ No.

NF QNF NF QNF NF QNF NF QNF
5150 227 0.0229 0.0044 0.00007 0.00017 0.4811 0.6225
5221 173 0.0259 0.0036 0.00008 0.00030 0.4889 0.3235

Equivalent-81 0.003 4709 287 0.0331 0.0030 0.00007 0.00006 0.4338 0.3183
8709 197 0.0058 0.0035 0.00004 0.00009 0.4402 0.4945
8963 215 0.0056 0.0032 0.00003 0.00010 0.4388 0.4682

Equivalent-625 0.003 9941 185 0.0032 0.0035 0.00003 0.00010 0.3626 0.4744

Epoch Evaluation Standard deviation Max. absolute error

Random-81 0.003

Random-625 0.003

NF: α=0.1, β=0.01, γ=0.01,    QNF: α=0.1, β=0.01, γ=0.01
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squared error between its output and the desired output for 
Functions 1 and 2. This is the evaluation error. 

Table 4. NF vs. QNF for Function 2

The evaluation error is given as follows. First, we 
perform learning each fuzzy rule by the conventional 
method and the new method. Second, we input 14641
evaluation data (��, ��, �\, �W) (where these ranges of x1, x2,
x3 and x4 are increments of 0.2 from -1 to 1) for Functions 1 
and 2 to each learned fuzzy rule. Finally, we get the mean 
squared error between its output and the desired output for 
Functions 1 and 2. This is the evaluation error. 

As an example, using the random data 2 in Table 4, we 
generated each fuzzy rule for the conventional method and 
the new method. Fig. 1 (a) and (b) are each result of the 
fuzzy inference for 14641 evaluation data. Fig. 2 (c) is the 
desired output of Function 2. Further, Fig. 2 (a) and (b)
shows the absolute error between each result of the fuzzy 
inference and the desired output. 

Fig. 1. Desired output and fuzzy inference for Function 2: (a) NF. (b) QNF. 
(c) Desired output for Function 2.

From Fig. 1 and 2, compared with the new method, the 
conventional method could not learn enough as a whole.
Further, the new method could fit to such random training 
sets. 

Fig. 2. Absolute error between desired output and fuzzy inference for 
Function 2: (a) NF. (b) QNF. 

VI. DISCUSSION

By the analysis of the results shown in Tables 3 and 4, 
Fig. 1 and 2, we can describe as follows. 

(1) The number of rules was drastically reduced from 625 
to 5. And also, the number of epochs to converge was 
around one twentieth. We used a simple activation function, 
other types of activation functions need to be tested. 

(2) In terms of the evaluation error, we found that the 
new method is much better than the conventional method 
for two functions. In particular, the evaluation error for 
random training sets showed good result for all functions. 
Thus, we can say that although the freedom of parameters is 
limited, the new method could fit for training sets well. 

(3) In terms of the maximum absolute error, for both 
Functions 1 and 2, the conventional method showed slightly 
better results than the new method. We consider that this is 
because of the overfitting of the new method. However, 
from Fig. 2, we found that the new method, overall error is 
smaller than the conventional method. 

From the above results of the simulation, we can 
conclude that the new method has equivalent to or better 
accuracy than the conventional method. Furthermore, the 
new method has a feature that while the parameters have 
less flexibility, it can fit for training sets well. Therefore, we 
can say that the new method is a useful tool for learning the 
fuzzy system model. 

VII. SUMMARY

In this paper, we proposed the new method extending the 
conventional method to the four-dimensional space for 
tuning fuzzy rules. Then, we gave the general formulas for 
this algorithm under Gaussian type membership functions. 
Finally, in several function identification problems, we

Function 2
Number of data δ No.

NF QNF NF QNF NF QNF NF QNF
5488 208 0.0332 0.0040 0.00009 0.00025 0.5623 0.5794
5899 322 0.0350 0.0028 0.00009 0.00013 0.4918 0.5045

Equivalent-81 0.003 5014 160 0.0459 0.0053 0.00008 0.00025 0.4830 0.6485
11275 347 0.0065 0.0026 0.00006 0.00011 0.4169 0.4776
10791 305 0.0071 0.0032 0.00006 0.00009 0.4144 0.6141

Equivalent-625 0.003 11335 232 0.0033 0.0038 0.00002 0.00005 0.4136 0.6647

Epoch Evaluation Standard deviation Max. absolute error

Random-81 0.003

Random-625 0.003

NF: α=0.1, β=0.01, γ=0.01,    QNF: α=0.1, β=0.01, γ=0.01
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showed that the new method outperforms the conventional 
approach for learning a fuzzy system model.

In the future, we like to show the effectiveness of the 
proposed method in the subject that can be represented by 
quaternion such as 3D-image and time series data. 
Furthermore, when we extend our algorithm for 
multivariate input, we consider proposing the hierarchical 
algorithm so as to suppress the increase of the number of 
the fuzzy rules, beside the use of hyper-complex numbers. 
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