
 

 

 

 

A LOW PHASE NOISE WIDE–TUNING RANGE CLASS–F VCO BASED ON A 

DUAL–MODE RESONATOR IN 65NM CMOS 

 

A Thesis 

by 

NAUSHAD DHAMANI  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

Chair of Committee,  Kamran Entesari 

Committee Members, Samuel Palermo 

 Jun Zou 

 Debjyoti Banerjee 

Head of Department, Miroslav M. Bigovic 

 

May 2017 

 

Major Subject: Electrical Engineering 

 

Copyright 2017 Naushad Dhamani 

  



 

ii 

 

ABSTRACT 

 

A Voltage Controlled Oscillator (VCO) is a critical building block in the design of 

current frequency synthesizers for RF system applications. State-of-the-art operation 

defines that an oscillator should have the best spectral purity while consuming low amount 

of power for a wide tuning range. 

With this in mind, this work presents a low phase noise wide tuning range Class- 

F VCO using a dual-mode resonator.  In comparison to other conventional wideband 

oscillators, the proposed capacitively/inductively-coupled resonator will integrate the 

benefits of Class-F voltage control oscillators and dual-mode switching networks to obtain 

simultaneous low phase noise and wide-tuning range. The proposed structure, prototyped 

in 65nm TSMC CMOS technology, shows a 2.14 – 4.22GHz continuous tuning range, 

phase noise figure-of-merit (FoM) of 192.7dB at 2.3GHz and better than 188dB across the 

entire operating frequency range. The oscillator consumes 15-16.4mW from a 0.6V supply 

and occupies an active area of 0.7mm2. In conclusion, the proposed resonator achieves 2-

3dB phase noise improvement while achieving 65% overall tuning range when compared 

to a typical class-F VCO architecture.  
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1. INTRODUCTION

It is well said that if Alexander Graham Bell, founding father of the first practical 

telephone, returns from heaven, it would be impossible for him to completely understand 

the way in which humankind communicates today. The past few decades has seen a 

stupendous growth in wireless communication. People have moved from the traditional 

use of landline telephones to wireless smartphones. Tablets have replaced traditional 

desktop computers. Today, it is possible to do more on the internet than we could have 

ever imagined. Your home, your car, your photographs, and your videos, everything is 

connected wirelessly, and can be accessed through your smart phone, within no time, 

irrespective of your physical location. Such high-speed data requirements forces 

companies to develop power-efficient multi-standard communications systems for 

complete customer satisfaction, which in turn accelerates their growth. These standards 

encompassing but not limited to GSM/3G/WIFI/LTE require frequency synthesizers 

occupying considerable chip area. An LC – tank based voltage controlled oscillator (VCO) 

is typically used in such frequency synthesizers which in turn is one of the most power-

hungry blocks in an integrated transceiver. Furthermore, these synthesizers must meet the 

stringent spectral purity requirements for a wide spectrum of frequencies. For example, 

GSM TX application, demands that the VCO has a phase noise better than -162dBc/Hz at 

20MHz offset frequency for a 915MHz carrier. A challenging task to achieve if concurrent 

extended battery life is required. 
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Therefore, designing an area-efficient voltage controlled oscillator (VCO) of high 

spectral purity with low power consumption for a wide spectrum still remains to be a 

challenging task in high-performance wireless communication systems. A typical 

configuration of a generic receiver/transmitter (transceiver) chain [1] is shown in Figure 

1. 

Figure 1: A common wireless transceiver system [1] 

In the receiver path, an RF signal reaches the base-band by traversing the low noise 

amplifier, through the band-pass filter and finally crossing down-conversion mixer. In the 

transmitter path, the signal travels from the baseband to the antenna while passing an up-

conversion mixer, band-pass filter and a power amplifier. The LO signal for the mixers is 

generated by the frequency synthesizers. Any phase noise in this synthesizer would 

corrupt both the receiver and transmitter signal. For example, the receiver path experiences 

reciprocal mixing, if the LO exhibits significant phase noise, i.e., the wanted signal band 

gets corrupted by an interferer band on down-conversion at the mixer due to LO’s spectral 
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impurity. Similarly, on the transmitter end, amplification of the significant oscillator phase 

noise will desensitize a nearby noiseless receiver.    

Even though, extensive research has been conducted to improve the overall 

performance for a high figure-of-merit (FoM) [1] – [66], one still has to dabble with the 

trade-offs. For example, the traditional Class-B architecture is widely prevalent in the 

market due to its simple and robust design. For an optimum phase noise performance, a 

Class-B oscillator is usually biased at the current and voltage limited boundary regions 

[5]. However, just by replacing the ideal current source with a real one, its phase noise 

(PN) and power efficiency significantly deteriorates when the cross-coupled gm- devices 

enter deep triode region for part of the oscillation period [5], [15].  

The Class-C approach seems to be a good alternative due to its high dc-to-RF 

power conversion efficiency along with the prevention of gm-devices from entering the 

triode regions [17], [18]. Nevertheless, the latter constraint limits a Class-C to achieve its 

lowest possible PN performance due to a limited output voltage swing. M. Babaie et al’ 

[34] Class-F VCO obtains a better PN with higher power efficiency but the use of varactors 

and switched capacitor banks limits the overall tuning range for state-of-the-art PN 

performance. To have a comprehensive understanding of what the problem is, let us 

review Leeson’s phase noise equation for an LC Oscillator. Leeson’s equation [8] predicts 

the phase noise of an oscillator as 

 
𝐿(𝛥𝜔) = 10𝑙𝑜𝑔 (

𝑅𝑝𝑘𝐵𝑇

2𝑄2𝑉𝑝
2
. 𝐹. (

𝑓0
Δ𝑓

)
2

) 
 

(1.1) 
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In which F is a noise factor modelling the noise contribution of the active devices, Δf is 

the frequency offset, f0 is the carrier frequency, Q is the tank’s equivalent quality factor, 

Vp is the maximum oscillation voltage swing and Rp is parallel resistance of the LC tank. 

When switched capacitors are used to improve the tuning range of an oscillator, the CMOS 

switches introduce parasitic capacitances, when they are OFF, which limits the frequency 

tuning range, or resistance when they are ON, which degrades Q and PN. Thus, to obtain 

a wide tuning range one needs narrow MOS switches, while low phase noise would 

necessitate wide ones. As a result, it becomes extremely difficult to simultaneously meet 

both PN and tuning range requirements. Several ideas have been proposed to alleviate this 

issue in Class-B VCO architectures [37] – [55]. Of one particular interest, is the use of 

magnetic (inductive) and electric (capacitive) coupling resonant-mode switching scheme 

that significantly increases tuning range without degrading PN in Class-B [54]. Such a 

scheme of coupling N oscillators also has the benefit of improving PN since the effective 

phase noise factor is reduced by a factor of N by maintaining the same FoM [25]. A class 

-F Oscillator implementation [34] can further reduce the effective noise factor. Thus, by 

proper integration of inductively/capacitively coupled resonant mode switching [54] in a 

Class-F operation [34], a low phase noise wide tuning oscillator can be designed. 

1.1.Research Objective 

 As mentioned above, simultaneously meeting the phase noise requirements for a 

wide tuning range such that phase noise FoM improves or at least remains the same is a 

challenging task. Before we delve into solving this particular issue, first, it is vital to 

intuitively analyse the working of different classes of oscillators available in the market, 
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more importantly, their limitations to achieve low phase noise performance for a wide 

range of operating frequencies. Second, understanding the operation of various wide-band 

oscillators topologies at our disposal is also required to obtain the most optimal integration 

of the state-of-the-art oscillators.  

With this in mind, a dual-mode resonator has been proposed to integrate the 

advantages of resonant-mode switching with Class-F operation to achieve simultaneous 

wide-tuning range and low phase noise performance. The primary objective of this thesis 

would be to design, implement and finally test the functionality of the proposed wide-band 

Class-F VCO. 

 

1.2.Thesis Organization 

Following the introduction, Section 2 briefly presents and discusses different 

classes of oscillators and their fundamental limitations, specifically highlighting the 

requirements of wideband oscillators.  

Section 3, discusses the proposed low phase noise wide-tuning range Class-F based 

on a dual-mode resonator. This section will illustrate the working of a Class-F structure 

followed by the design and implementation of the dual-mode resonator and the transistor 

switching network.  

Section 4, provides measurement results of the fabricated wide-band VCO 

followed by a comparison between different state-of-the-art oscillator topologies, and 

Section 5, presents the conclusion of the thesis. 
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2. LC OSCILLATOR ARCHITECTURES 

  

The voltage controlled oscillator is a key block used in GSM/WCDMA/LTE 

frequency synthesizers, where phase noise requirements are demanding and the oscillator 

as such is one of the most power-hungry blocks [1], [2] and [3]. For this reason, VCO 

research has gained momentum to introduce different topologies. aimed at improving 

phase and frequency tuning range while reducing power consumption. Therefore, 

understanding and modelling phase noise is crucial for improving overall system 

efficiency.  

 

Figure 2: Phase noise of an oscillator vs. carrier offset Δω [7] 

 

Various studies have been conducted to model phase noise of an oscillator [4] – 

[15]. Figure 2. demonstrates the plot of phase noise of an oscillator versus carrier offset 

Δω. The Leeson-Cutler phase noise model is an LTI model for a tank oscillator given by 
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𝐿{𝛥𝜔} = 10. 𝑙𝑜𝑔 {

2𝐹𝑘𝑇

𝑃𝑠
. [1 + (

𝜔0

2𝑄𝐿𝛥𝜔
)
2

] . (1 + 
𝛥𝜔1

𝑓3⁄

|𝛥𝜔|
)} 

 

(2.1) 

 

where F is the device noise factor, T is the absolute temperature, k is Boltzmann’s 

constant, Ps is the average power dissipated by the resistor, QL is the loaded quality factor 

of the tank, and 𝜔1/𝑓3  is the 1/𝑓3 and 1/𝑓2 regions corner frequency, shown in Figure 2.  

F and 𝜔1/𝑓3  are empirical parameters which are occasionally known during the initial 

oscillator design. F represents noise contributed by the active transistors in the oscillator. 

Equation (2.1) accurately models the graph shown in Figure 2, if F and𝜔1/𝑓3  are accurately 

known. However, such a scenario is seldom possible since F does not incorporate the 

nonlinear frequency conversion effects and 𝜔1/𝑓3  is not same as the 1/𝑓 device noise 

corner. Accurate predictions of phase noise using Leeson’s equations have been restricted 

to relatively high Q, discrete oscillator designs. 

One widely accepted and mostly accurate approach, is the use of a linear time 

variant model which introduces the concept of an impulse sensitivity function (ISF) for 

each noise source of an oscillator [7]. As shown in Figure 3, if a current impulse is injected 

into a tank, it can change the oscillation amplitude and/or phase depending on when the 

impulse was injected. Injecting an impulse at the peak, would result in only oscillation 

amplitude change. However, if a current impulse is injected at the zero crossing, it would 

have maximum effect on the phase with minimum amplitude disturbance. 
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Figure 3: Amplitude and phase response to an injected current [7] 

 

 The impulse response is a periodic function whose amplitude depends on the time 

when the current is injected. The unit impulse response for a step function is defined as 

 
ℎ𝜙(𝑡, 𝜏) =  

Γ(ω0𝜏)

𝑞𝑚𝑎𝑥 
𝑢(𝑡 − 𝜏) 

 

(2.2) 

where Γ(ω0τ) is the impulse sensitivity function, due to its periodic nature, can be defined 

as  

         
Γ(𝜔0𝜏) =  

𝑐0

2
+ ∑ 𝑐𝑛cos (𝑛𝜔0𝜏 + 𝜃𝑛)

∞

𝑛=1

 
 

(2.3) 

and 𝑞𝑚𝑎𝑥  is the maximum charge displacement across the capacitor on the node where the 

impulse was injected. ISF is a dimensionless, frequency and amplitude independent 

periodic function with a period of 2π that describes the oscillator phase shift caused by 

introducing an impulse at t= τ. It is an oscillator-waveform dependent function. The 
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oscillator waveform is in turn depended on the nonlinearities and the topology of the 

oscillator. The excess phase is then calculated by convolving the ISF with any current 

source, 𝑖(𝑡), as 

 
𝜙(𝑡) =  

1

𝑞𝑚𝑎𝑥
[
𝑐0

2
∫ 𝑖(𝜏)𝑑𝜏

𝑡

−∞

+ ∑ 𝑐𝑛 ∫ 𝑖(𝜏) cos(𝑛𝜔0𝜏) 𝑑𝜏
𝑡

−∞

∞

𝑛=1

] 
 

(2.4) 

Eqn. (2.4) suggests that 𝜙(𝑡)  can be calculated for any random current source 

𝑖(𝑡) inserted into any circuit node. Consequently, if we inject a current 𝑖(𝑡) =

𝐼𝑛 cos[(𝑛𝜔0 +  𝛥𝜔) 𝑡] close to any integral multiple of the oscillation frequency, the 

excess phase is approximately given by 

 
𝜙(𝑡) ≈  

𝐼𝑛𝑐𝑛sin (Δ𝜔𝑡)

2𝑞𝑚𝑎𝑥Δ𝜔
 

 

(2.5) 

This excess phase would show itself in the sideband power spectrum relative to the carrier. 

Therefore, an injected current 𝑖(𝑡) at 𝑛𝜔0 + ∆𝜔 would result in two equal sidebands at ω0 

+ Δω with the sideband power calculated as 

 
𝑃𝑆𝐵𝐶(𝛥𝜔) = 10. log (

𝐼𝑛𝑐𝑛

4𝑞𝑚𝑎𝑥Δω
)
2

 
 

(2.6) 

The above method can be utilized for the case of random input current noise 

sources  𝑖𝑛(𝑡) , to obtain the phase noise for a white power spectral density, 𝑖𝑛2̅ Δ𝑓⁄  ,given 

by 

 
𝐿(𝛥𝜔) = 10. log (

Γ𝑟𝑚𝑠
2

𝑞𝑚𝑎𝑥
2

.
𝑖𝑛2̅ Δ𝑓⁄

4. Δ𝜔2
) 

 

(2.7) 
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where 𝐼𝑛
2 2⁄ =  𝑖𝑛2̅ Δ𝑓⁄  , since 𝐼𝑛 in Eqn. (2.6) represents the peak amplitude, and Γ rms is 

the rms value of Γ(x), given by 

 
Γ𝑟𝑚𝑠

2 = 
1

2𝜋
∫ |Γ2(𝑥)|2𝑑𝑥

2𝜋

0

 
 

(2.8) 

In order to obtain the Γ𝑟𝑚𝑠
2  of each noise source, the most accurate methodology 

would be to directly calculate ISF of each noise source from their impulse response 

simulations. First, an impulse current is injected at the node of interest at a certain time. 

Second, the time shift is measured after a few cycles, which then, is converted to its phase 

shift and finally, by sweeping the injection time over one oscillation cycle, the ISF can be 

calculated.  

For a typical LC-tank based oscillator, the phase noise is given by [18] 

𝐿(𝛥𝜔) = 10𝑙𝑜𝑔 (
𝑅𝑝𝑘𝐵𝑇

2𝑄2𝑉𝑝
2
. 𝐹. (

𝑓0
Δ𝑓

)
2

) = 10 log (
𝑘𝐵𝑇

2𝑄2𝛼𝐼𝛼𝑉𝑃𝐷𝐶
. 𝐹. (

𝑓0
Δ𝑓

)
2

) 
 

(2.9) 

where Δ f is the frequency offset, f0 is the carrier frequency, Q is the tank’s equivalent 

quality factor, Vp is the maximum oscillation voltage swing, PDC is power consumption, 

Rp is parallel resistance of the LC tank, 𝛼𝐼 = 𝐼𝜔0/𝐼𝐷𝐶   and 𝛼𝑉 = 𝑉𝑝/𝑉𝐷𝐶 are the current 

and voltage efficiencies and F is the noise factor. 

Before comparing different LC oscillator structures, let us define a simple phase 

noise figure of merit to fairly compare different VCO topology performances. The FoM 

metric given by (2.10) normalizes the phase noise performance to the power consumption 

and oscillation frequency. Therefore, by reducing the phase noise and power consumption 

can significantly improve the overall FoM of the oscillator. 
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𝐹𝑜𝑀 = 10 log10 [

1

𝑃𝐷𝐶| 𝑚𝑊
 (

𝑓0
𝛥𝑓

)
2

] − 𝐿(𝛥𝑓) 
 

(2.10) 

For a typical LC tank-based oscillator, the phase noise reduces by increasing the 

tank’s quality factor, In the vicinity of resonance, the overall tank quality factor is given 

by                             

 1

𝑄
=  

1

𝑄𝐶
+ 

1

𝑄𝐿
 

(2.11) 

where QL is the inductor’s quality factor which is predominately technology dependent 

and doesn’t improve with CMOS scaling. On the other hand, QC trade’s- off with the 

tuning range of the oscillator. For example, a switch capacitor bank, typically used for 

tuning, entails a large width for the MOS switches to reduce the switch’s on-resistance 

which although improves the phase noise, reduces the tuning range of the oscillator due 

to increased parasitic capacitance when the switch is off. 

Another approach to improve phase noise is to trade power for phase noise by 

reducing the tank’s inductance L while keeping the QL constant. For example, if L is 

reduced by half, Rp = 2πQLL, reduces by half which lowers PN by 3dB but doubles power 

consumption (PDC), where PDC is given by                                        

 
𝑃𝐷𝐶 = 

𝑉𝑝
2

𝛼𝐼𝛼𝑉𝑅𝑝
 

 

(2.12) 

                                

2.1. Class-B Oscillator 

 A traditional Class-B oscillator has become a dominant choice in real life 

applications due to its simple and robust design. Figure 4 shows a simple NMOS Class-B 
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oscillator topology where in the negative Gm presented by the two ross-coupled NMOS 

transistors cancel the loss of the LC tank in order to sustain periodic oscillations at 

resonance. In other words, the Barkhausen criterion for oscillation i.e., unity feedback 

loop-gain and 360-degree phase shift, is satisfied. The placement of tail current source MT 

provides additional flexibility to the designer in order for them to obtain the best FoM. 

 

 

Figure 4: Traditional Class-B VCO [18] 

 

For an ideal case, the Class-B oscillator has a noise factor of 1+ ϒ [11]. This value 

is based on the assumption that the current source MT is ideal i.e., noiseless and provides 

high impedance for the complete oscillation period. However, in reality, the oscillator’s 
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maximum voltage amplitude has a trade -off with the noise contribution of MT. 

Consequently, affecting the best possible PN performance (Figure 5) 

A typical Class-B structure shows best PN performance when it operates in the 

boundary of voltage and current limited regime [14], [15], and [22] i.e., αV = 1, and αI = 

2/π. However, for a non-ideal current source, αV is much lower than 1, due to the minimum 

Vdsat required to keep MT in saturation. A large MT can increase αV but at the cost of a 

higher noise contribution. The overall phase noise for a typical Class-B is given by 

 
𝐿(∆𝜔) =  −10𝑙𝑜𝑔 [

𝑘𝐵𝑇

2𝑄2𝛼𝐼𝛼𝑉
(𝛾 + 1 +  𝜂𝛾𝑇𝑔𝑚𝑇𝑅𝑝)] 

 

(2.13) 

in which 𝛾(𝛾𝑇) are the channel noise factor for M1-M2 (MT), η is an oscillation amplitude 

depended factor and 𝑔𝑚𝑇  is MT transconductance. 

The parasitic capacitance Cpar at the common source of M1 and M2 (Figure 6) also 

reduces the current efficiency when M1-M2 enter the triode region. Since Cpar tends to 

maintain a constant common source voltage, the current consumption experiences a 

dimple (as shown in Figure 6) which reduces αI from the ideal 2/π value.  Furthermore, to 

reduce the 1/f3 phase noise corner, MT should be large. Therefore, Cpar creates a discharge 

path to ground when M1-M2 enter deep triode, dramatically degrading the tank Q and thus, 

phase noise.  
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Figure 5: Phase Noise and FoM comparison between ideal and real Class-B VCOs [18] 

 

 

(a)                                              (b) 

Figure 6: (a) Effect of tail parasitic capacitance Cpar on current waveform; (b) current 

efficiency αI vs. bias current [18] 

 

Various solutions have been proposed to improve the phase noise of a Class-B 

oscillator. Subsequently, new classes of oscillators have been proposed to improve trade-

offs between power consumption and phase noise.  The noise filtering technique proposed 

in [16] is another interesting technique to improve phase noise. In this technique, an 

inductor is placed between M1 – M2 and MT which resonates with Cpar at twice the 
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oscillation frequency. Thus, the structure preserves the intrinsic Q of the tank by creating 

a high impedance path. However, using an extra resonator significantly increase the die 

area, complexity and cost. In the following sections, we review other classes of oscillators 

which try to minimize the phase noise/ power consumption trade-off.  

 

2.2. Class-C Oscillator 

A Class-C oscillator [17] is shown in Figure 7(a). To obtain, the best phase noise 

performance, the core transistors should always remain in saturation for the entire 

oscillation period. Moreover, use of low Vbias and a large current source shunt capacitance 

(Ctail) ensures that the drain currents of M1- M2 are composed of narrow and tall pulses, 

resulting in αI close to 1. (Figure 7(b)), while maximizing the oscillation amplitude. 

Furthermore, since a large Ctail naturally filters out high frequency noise, a large MT can 

be used to increase oscillation amplitude, further increasing αV. However, a very large 

shunt capacitance may result in squegging i.e., modulation of oscillation amplitude [17]. 

The expression for Ctail is derived as, 

 
𝐶𝑡𝑎𝑖𝑙 =

6

𝑘
.
sin(𝜙) − 𝜙 cos(𝜙)

sin3(𝜙)
. 𝐶𝑡𝑎𝑛𝑘 

 

(2.14) 

where, k represents the voltage gain from the tank to the MOS gate and 𝜙 is the current 

conduction angle. Assuming a practical value of k = 1, and 𝜙 = 1 would allow the choice 

of Ctail = 3Ctank. Whereas, even for the limiting case of  𝜙 = 0, will allow Ctail = 2Ctank, a 

reasonable value to avoid squegging. Therefore, proper choice of Ctail is one of the critical 

aspects of this design.  
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(a)                                                            (b) 

Figure 7: (a) Class-C VCO; (b) it’s voltage and current waveforms [17] 

 

The phase noise expression for a typical Class-C VCO [17], can be calculated as  

 
𝐿(∆𝜔) = 10 log (

𝑘𝐵𝑇

2∆𝜔2𝐶2𝐼𝑏𝑖𝑎𝑠
2 𝑅2

(
1

𝑅
+

𝛾

𝑘
.
1

𝑅
 )) 

 

(2.15) 

This phase noise expression shows that a Class-C structure benefits with 36% 

power saving in comparison to a typical Class-B having the same phase noise 

performance. In other words, for the same power consumption, theoretically, a Class-C 

topology can achieve 3.9dB PN improvement when compared to a Class-B VCO. 

Nevertheless, the constraint of M1- M2 to remain in saturation limits the maximum 

oscillation amplitude to VDD/2, if the transistors are biased close to the threshold voltage, 

translating to 6dB phase noise penalty [34]. 

Furthermore, if the transistors enter triode, αI drastically deteriorates, resulting in 

poor PN performance. Several attempts have been made to resolve this issue [18] – [24]. 

Of one particular interest is the use of dynamically biased Class-C VCO (Figure 8). In  
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Figure 8: (a) Class-C VCO with dynamic generation of Vbias [18] 

 

this topology, Vbias is dynamically adjusted in a negative feedback loop to ensure a robust 

start-up, while keeping αI close to 1 at steady states, maximizing the oscillation amplitude 

[18].  

The bandwidth and the DC gain of the operational amplifier decides the stability, 

settling time and the steady state error between the common mode voltage and the 

reference voltage. Additionally, the op-amp AM-to-PM noise conversion is suppressed 

due to the high impedance seen at the current source at low frequencies [16], if the 

oscillator operates in a Class-C manner. Therefore, the current consumption of the 

operation amplifier can be made negligible small, compared to MT current bias. 

 



 

18 

 

 

Figure 9: Class-B vs. Class-D oscillator tank comparison [27] 

 

2.3. Class-D Oscillator 

The dramatic scaling of CMOS technology has dropped the maximum voltage that 

MOS devices can handle without undergoing breakdown which even though saves power, 

makes it difficult to achieve a good phase noise performance. The overdrive voltage 

consumed by the current source of Class-B VCO limits the maximum oscillation 

amplitude, which for a lower supply voltage would make it impossible to obtain the 

desired phase noise level. A Class-D oscillator is a good alternative for low supply voltage 

design.  A Class-D VCO makes it possible to combine low phase noise, low supply  
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Figure 10: Time-domain analysis of (a) floating tank; (b) single-ended tank [27] 

 

voltage, and high efficiency simply by increasing the size of cross-coupled MOS switches 

of a typical Class-B VCO [27].  

It is interesting to note that Class-D oscillator topology was first proposed in 1959 

by Baxandall [30] but its development was stalled in RF applications due to the 

unavailability of MOS switches with acceptable parasitic capacitance and excellent 

conductance, which the current CMOS technologies have begun to offer. The operation 

of a Class-D LC tank is shown in Figure 9.  The LC tank in a Class-D behaves quite 

differently when compared to a Class-B LC tank. As can be seen, a Class-D tank displays 

a time varying nature which differentiates it from the time invariant Class-B LC tank. 

While in a Class-B, the capacitor and inductor are always parallel to each other for the 

complete oscillation period, in a Class-D tank, the switches M1-M2, by virtue of shorting 

the output to ground, decouples the respective inductor and capacitor for half of the 

oscillation period.  
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This time variant nature of the tank, as seen in Figure 10, makes a Class-D 

oscillator exhibit two different oscillation frequencies, ωosc, float and ωosc, se depending on 

whether the tank capacitance behavior is floating or single ended. 

The oscillation frequencies are given by 

 

𝜔𝑜𝑠𝑐,𝑠𝑒 = 
1

𝛼
√

1

𝐿𝐶
            𝜔𝑜𝑠𝑐,𝑓𝑙𝑜𝑎𝑡 = 

√2

𝛼
√

1

𝐿𝐶
 

 

(2.16) 

where the calculated α is approximately equal to 1.3. Detailed analysis can be found in 

[13]. Therefore, in real-life scenarios, the Class-D VCO actual frequency of operation will 

be in between these two oscillations, combining the floating tank capacitance with the 

parasitic capacitance of M1/M2 switches to ground. 

The peak amplitude of this topology is given by, 

 

𝑉𝑝 = 𝑉𝐷𝐷 (1 + √
𝛼2𝜋2

4
+ 1) ≈ 3.27 𝑉𝐷𝐷 

 

(2.17) 

which shows that the oscillation amplitude is approximately three times the supply 

voltage, necessitating a low supply voltage for the safety of MOS switches. Such high Vp 

has the advantage of forcing the large M1/M2 switches to ground. Thus, eliminating the 

large phase noise generated by theses switches to be up-converted to phase noise due to 

an almost zero ISF i.e., the ISF waveform is shaped to reduce the overall noise to phase 

noise conversion when M1 – M2 enter triode. Furthermore, this behavior also improves the 

power efficiency to go beyond 90% [27] making it suitable for low power low phase noise 

applications [28], [29]. Nevertheless, such a low VDD would entail higher supply 

frequency pushing [27]. 
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 The simplified current consumption and phase noise expressions for floating and 

single ended capacitance cases are 

 
𝐿𝐶𝑓𝑙𝑜𝑎𝑡

( 𝛥𝜔) ≈ 10 log [
𝜔𝑜𝑠𝑐,𝑓𝑙𝑜𝑎𝑡

2

Δω2

𝑘𝐵𝑇

𝑉𝐷𝐷
2

(0.104𝑅𝐿 + 0.141𝑅𝐶)(1 + 𝛾𝑀𝑂𝑆)] 
 

 
𝐿𝐶𝑠𝑒

( 𝛥𝜔) ≈ 10 log [
𝜔𝑜𝑠𝑐,𝑠𝑒

2

Δω2

𝑘𝐵𝑇

𝑉𝐷𝐷
2 (0.104𝑅𝐿 +

0.141

2
𝑅𝐶) (1 + 𝛾𝑀𝑂𝑆)] 

 

 
𝐼𝐷𝐶,𝑓𝑙𝑜𝑎𝑡  ≈ (7.1 − 2.0𝑘)

(𝑅𝐶 + 𝑅𝐿)𝑉𝐷𝐷

𝜔𝑜𝑠𝑐,𝑓𝑙𝑜𝑎𝑡
2 𝐿2

 
 

 
𝐼𝐷𝐶,𝑠𝑒  ≈ (3.6 + 1.6𝑘)

(𝑅𝐶 + 𝑅𝐿)𝑉𝐷𝐷

𝜔𝑜𝑠𝑐,𝑠𝑒
2 𝐿2

 
 

(2.18) 

where RL and RC are the inductive and capacitive losses, and 𝑘 =  
𝑅𝐿

𝑅𝐶+𝑅𝐿
 . From the above 

equations, it can be seen that implementing a floating capacitance Class-D tank can 

achieve lower current consumption, lower PN (individual contributions of RC and 𝛾𝑀𝑂𝑆 is 

different for single-ended and floating capacitance implementations) and higher 

oscillation frequency when compared to a single-ended implementation. However, such 

an implementation is not always possible. 

Thus, sensitivity to supply voltage plus the specific implementation of floating 

capacitance tank, makes a Class-D design a challenge in itself. Although, an on chip LDO 

implementation in [31] tries to mitigate this problem but doings so, increase the overall 

power consumption. Therefore, a solution has yet to be found to use Class-D for practical 

applications. 
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Figure 11: (a) Class-F3 VCO design (b) it’s oscillation voltage waveforms [34] 

 

2.4. Class-F Oscillator 

If ISF of a certain oscillation voltage waveform is minimal for a certain interval of 

an oscillation period due to the zero derivative of the oscillation voltage, the circuit noise 

does not up-convert to phase noise during that interval. Thus, reducing the oscillator phase 

noise. This is the concept behind Class-F oscillators design, where oscillator waveforms 

are shaped by injecting second or third order harmonics of the fundamental frequency to 

reduce phase noise.  

 

2.4.1. Class-F3 Oscillator 

As the name suggest, a Class-F oscillator (Figure 11) enforces a pseudo square 

wave waveform across the LC tank (VD1-VD2) by self-injecting a third harmonic at the 

fundamental oscillation voltage (ω1) through an additional impedance peak at that 

frequency. Lp, Ls, C2, C1 correspond to the respective primary and secondary inductance  



 

23 

 

 

Figure 12: ISF function of a Class-F VCO [34] 

 

and capacitance. Figure 12 illustrates the respective ISF for various ξ values, where ξ is 

defined as the magnitude ratio of the third-to-first harmonic oscillation voltage component 

given by 

 
𝜉 =

𝑉𝑝3

𝑉𝑝1
= (

𝑅𝑝3

𝑅𝑝1
)(

𝐼𝐷𝐻3

𝐼𝐷𝐻1
) ≈ 0.33 (

𝑅𝑝3

𝑅𝑝1
) 

 

(2.19) 

 

For 𝑉𝑖𝑛 = 𝑉𝑝1 sin(𝜔0𝑡) + 𝑉𝑝3 sin(3𝑤0𝑡 + ∆𝜙). In which, Rp3 and Rp1 represent the first 

and third harmonic impedance peaks for first and third harmonic currents IDH3 and IDH1 

respectively and the ISF rms value, for −
𝜋

8
< ∆𝜙 <

𝜋

8
  is estimated as, 

 
Γ𝑟𝑚𝑠

2 =
1

2

1 + 9𝜉2

(1 + 3𝜉)2
 

 

(2.20) 

The square waveform has sharper zero crossings and flatness when the transistor 

turns on/off respectively, which effectively reduces the rms value of the ISF and noise 
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contribution to the phase noise. The third harmonic voltage is realized by introducing 

another impedance resonant peak at ω2 = 3ω0 such that filtering of third harmonic drain 

current is prevented. A separate LC resonator could be used for the 3ω0 realization [32]. 

However, such an implementation increase area and cost of the oscillator. M. Babaie et al. 

[34] presents an alternative to implement such a peak by using a transformer (Figure 11). 

The input impedance of a transformer based tank has two resonant peaks whose ratio is 

given by 

 
𝜔2

𝜔1
= √

1 + 𝑋 + √1 + 𝑋2 + 𝑋 (4𝑘𝑚
2 − 2)

1 + 𝑋 − √1 + 𝑋2 + 𝑋 (4𝑘𝑚
2 − 2)

  

 

(2.21) 

where,  

 
𝑋 =  (

𝐿𝑠

𝐿𝑝
 .  

𝐶2

𝐶1
)   

 

(2.22) 

If properly designed, a transformer can show the second peak at the third harmonic 

point, resulting in a pseudo square waveform. Reiterating Eqn. (2.9), the phase noise of 

an oscillator is expressed as 

 
𝐿(𝛥𝜔) = 10𝑙𝑜𝑔 (

𝑅𝑝𝑘𝐵𝑇

2𝑄2𝑉𝑝
2
. 𝐹. (

𝑓0
Δ𝑓

)
2

) 
 

(2.23) 

where the effective tank quality factor at the fundamental resonance point, Q, of the 

resonator having primary and secondary quality factor, Qp and Qs, is derived as, 

 
𝑄 = 

(1 + 𝑋2 + 2𝑘𝑚𝑋)

(
1
𝑄𝑝

+
𝑋2

𝑄𝑠
)

 
 

(2.24) 
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and maximum oscillation voltage amplitude is calculated as, 

 

𝑉𝑝 = (
1

3
+  𝜉)√(1 +

1

3𝜉
) . 𝛼𝐼 . 𝑅𝑝. 𝐼𝐵 ,       

1

9
≤ 𝜉 ≤ 1 

𝑉𝑝 = (1 − 𝜉). 𝛼𝐼 . 𝑅𝑝. 𝐼𝐵,                                0 < 𝜉 ≤
1

9
 

 

 

 

(2.25) 

The effective noise factor for a general Class-F, B, C oscillator calculated using [7] linear 

time variant model can be expressed as,  

 𝐹 =  2𝛤𝑟𝑚𝑠
2 . (1 +

𝛾

𝐴
) . (1 + 𝑅𝑝𝐺𝐷𝑆_𝐸𝐹) 

 

(2.26) 

in which, A is the voltage gain of the feedback path from the tank (VD1) to the MOS gate 

(VG2) in Figure 11. GDS1EF is the effective drain-source transconductance of M1/M2 

expressed as 

 𝐺𝐷𝑆_𝐸𝐹 = 𝐺𝐷𝑆[0] − 𝐺𝐷𝑆[2] (2.27) 

where 𝐺𝐷𝑆[𝑘] represents the kth-order Fourier coefficient of the instantaneous conductance 

𝐺𝑑𝑠(𝑡) [11], and γ is the effective channel noise factor proving that a change in  Γrms
2  can 

significantly improve the overall phase noise performance.  

In summary, a choice of 0.3 for ξ results in a 3dB phase noise reduction, when compared 

to a traditional Class-B VCO. At the same time, a high voltage and current efficiency equal 

to αV = 0.8 and αI = 2/π can also be obtained. Table I summarizes a performance 

comparison of Class-B, dynamically biased Class-C [18], and Class-F3 VCO. 
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Table I: Comparison of different oscillator classes for the same VDD (1.2V), Tank Q-

Factor (15), Rp (220Ω), and carrier frequency (7GHz) at 3MHz offset frequency [34] 

 

 Theoretical expression Class-B Dynamic 

biased 

Class-C  

Class-F3 

F(dB) 𝐹 =  2𝛤𝑟𝑚𝑠
2 . (1 +

𝛾

𝐴
) . (1 + 𝑅𝑝𝐺𝐷𝑆_𝐸𝐹) 5.5 3.9 2.8 

𝛼𝐼 𝐼𝜔0/𝐼𝐷𝐶 0.55 0.9 0.63 

𝛼𝑉 𝑉𝑝/𝑉𝐷𝐷 0.8 0.7 0.8 

PN 

(dBc/Hz) 

𝐿(𝛥𝜔) = 10𝑙𝑜𝑔 (
𝑅𝑝𝑘𝐵𝑇

2𝑄2𝑉𝑝
2
. 𝐹. (

𝑓0
Δ𝑓

)
2

) 
-133.5 -134 -136 

FoM 

(dB) 

𝐿(𝛥𝜔) = −10𝑙𝑜𝑔(
103𝑘𝐵𝑇

2𝑄2𝛼𝐼𝛼𝑉
. 𝐹. (

𝑓0
Δ𝑓

)
2

) 
191.2 194.5 194.2 

 

 

2.4.2. Class-F2 Oscillator 

 Class-F2 (shown in Figure 13) [36, 59] is yet another interesting topology where 

even though the MOS switches (M1 – M2) go into triode, the ISF is negligible due to the 

oscillation voltage waveform shaping, resulting in better phase noise performance 

compared to Class-B. This topology is realized by enforcing a second harmonic voltage 

over the fundamental harmonic oscillation to have sharper zero crossings. The even 

harmonics appear as a common mode input for the tank and odd harmonics appear as 

differential mode input.  
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Figure 13: Schematic of a Class-F2 VCO [36] 

 

Fig. 14 illustrates the oscillation voltage and its respective ISF for various ξV 

values, where ξV is defined as the magnitude ratio of the second-to-first harmonic 

oscillation voltage component given by 

 
𝜉𝑉 =

𝑉𝑝2

𝑉𝑝1
= (

𝑅𝐶𝑀

𝑅𝑖𝑛
) (

𝐼𝐷𝐻2

𝐼𝐷𝐻1
) 

 

(2.28) 

In which, RCM and Rin are the common mode (2ω0) and differential mode (ω0) input 

impedance respectively. Choosing ξV = 0.3 has a 1.5dB phase noise improvement when 

compared to a Class-B oscillator due to decrease in the ISF rms value of the tank. Such an 

oscillator is implemented by using a back-to-back connected transformer as illustrated in 

Fig 13. A high voltage and current efficiency comparable to an ideal Class-B VCO can be 

achieved with αV = 0.9 and αI = 2/π.  Moreover, using a 1:2 back -to-back transformer  
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Figure 14: Effect of adding 2nd harmonic to the oscillation voltage waveform(top) and its 

respective ISF (bottom) [36] 

 

scales down the input impedance of the tank which results in a phase noise improvement 

by a factor of 5 at the cost of higher power such that the FoM remains same, when 

compared to a Class-B. However, such an implementation requires larger area. 

 

2.5. Wideband Oscillators 

In all the previous VCO structures discussed before, our main focus was on 

improving the phase noise with little regard to the oscillator’s frequency tuning range. 

However, current standards for various RF applications necessitate the need for 

simultaneous low phase noise and wide tuning range.  Several studies have been conducted 

to operate oscillators for multiple frequency bands without impairing phase noise [37-55].  
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Figure 15: C-V characteristic plot of a typical pMOS varactor [52] 

 

Phase noise-tuning range trade-off limits the use of varactors without degrading 

the stringent phase noise requirement [37]. A typical C-V characteristic of a MOS varactor 

is shown in Figure 15 [52]. As seen from the plot, a typical MOS varactor shows a large 

VCO gain (KV Hz/V). This maximum-to minimum capacitance ratio of the 

varactor ( 𝐶𝑚𝑎𝑥/ 𝐶𝑚𝑖𝑛 ) determines the complete tuning range of a cross-coupled VCO 

which is limited to at-most 30% for a standard CMOS process [38 – 40]. Additionally, 

varactors show a 20% capacitance process variation. Therefore, a large KV is 

advantageous to incorporate such process spreads. However, abrupt voltage fluctuations 

on the control terminal modulate the VCO frequency, resulting in increased phase noise 

[1]. Thus, increasing KV would further raise phase noise demonstrating the tuning range-

phase noise trade-off. 

The employment of a switch capacitor bank in an LC-resonator makes an effort to 

improve tuning range by reducing the VCO gain. However, trade-off between power  



 

30 

 

 

Figure 16: Schematic of a switched inductor with its simulated inductance (L) capacitance 

(Cp) [41] 

 

consumption and phase noise for a wide-tuning oscillator limits their use. For instance, 

consider an LC-tank VCO composed of an inductor L with a series resistance, RS and 

quality factor, QL, which has a trans-conductance of Gm. If the capacitor Q is relatively 

high, the equivalent parallel resistance Rp of the tank for a fairly high inductor Q can be 

approximated to 𝜔2𝐿2/𝑅𝑠 or 𝑄𝐿
2𝑅𝑠  ,where ω is the desired oscillation frequency. 

Sustainable oscillation is maintained if 

  𝐺𝑀𝑅𝑝 > 1 (2.29) 

Eqn. (2.29) shows that, for a given CMOS process, on the assumption that QL 

roughly remains same, if the inductance is scaled up by a definite proportion, then its series 

resistance also scales up similarly, such that a smaller Gm can be used, resulting in reduced  
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Figure 17: Complete schematic of a switch inductor based dual-mode oscillator [41] 

 

power consumption. At the same time, recalling Eqn. (2.9), phase noise can be rewritten 

as 

 
𝐿(∆𝜔) = 10 log (

𝑅𝑠𝑘𝐵𝑇

2𝑉𝑝
2

. 𝐹. (
𝑓0
∆𝑓

)
2

) 
 

(2.30) 

Since noise factor, F, is inversely proportional to Gm, phase noise can be reduced by 

increasing Gm or decreasing Rs. If L is set for the high frequency band, using the same 

inductance for low frequency band by employing a switch capacitor bank, the power 

consumption required to push the lower band into voltage-limited regime (setting Gm) 

would be unreasonably high for high band. On the contrary, if L is set for the low band, 

using the same inductance for high band would result in phase noise deterioration due to 

the 𝜔2 dependency of Rp. Scaling L and C simultaneously can resolve this issue [41] by 

using an inductor switching resonator topology as shown in Figure 16. 
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Figure 18: Transformer based resonator and effects of I1 and I2 on the oscillation amplitude 

[45] 

 

The inductance between port1 and port2 can be tuned by switching the M4 on and 

off. When M4 is on, L2 is shorted and the complete inductance of the resonator decreases. 

The capacitance (Cp1) looking into port1 also changes due to the change in CGD, CGS and 

CDB of the transistor.  The complete circuit topology is shown in Figure 17 [41]. However, 

losses in the switch can degrade the quality factor of the resonator limiting the achievable 

phase noise and tuning range. Use of active inductors has also been reported to improve 

the tuning range [51]. Nevertheless, such implementation does not obtain simultaneous 

low phase noise and power consumption. 

There has been active research to use switchless dual-band transformers to 

generate multiple frequency bands [42]- [50]. Figure 18 shows an example of such an 

implementation.  
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The resonator consists of a transformer whose primary and secondary windings, 

L1 and L2 with series resistance R1 and R2, are tuned by capacitance, C1 and C2. If we 

assume, that L1 = L2 = L, C1 = C2 = C, and R1 = R2 = R, then the two resonant mode 

frequencies can be derived as 

 
𝜔𝐿,𝐻 =

1

√𝐿𝐶(1 ∓ 𝑘)
 

 

(2.31) 

with the quality factor at each resonant mode calculated to be 

 

𝑄𝐿,𝐻 = 
1

𝑅
√

𝐿

𝐶
(1 ∓ 𝑘) 

 

(2.32) 

Current sources, I1 and I2, connected to the primary and secondary windings 

control the oscillation amplitudes at the two resonant frequencies, where the oscillation 

amplitudes for each resonant mode are given as 

 
𝑣𝐿 = 

(𝐼1 + 𝐼2)(1 + 𝑘)𝐿

2𝑅𝐶
 

 

(2.33) 

and, 
𝑣𝐻 = 

(𝐼1 − 𝐼2)(1 − 𝑘)𝐿

2𝑅𝐶
 

 

(2.34) 

If I2 =0, then the oscillations at the higher resonant mode are suppressed, while if 

a I2 = -I1, then the oscillation amplitude at the lower resonant mode is completely 

suppressed. Consequently, simultaneous dual-mode oscillations can be successfully 

avoided. The complete circuit topology of the transformer-coupled VCO is shown in 

Figure 19 [45]. M1 – M4 connected to the resonator, with primary inductance Lp1 and Lp2 

tuned by MOS varactors Cp1 and Cp2, realize the negative resistance required to sustain  
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Figure 19: Complete schematic of a transformer base dual-band oscillator [45] 

 

balanced oscillations. M5 – M6 differential pair feeds the secondary winding with current 

I2 whose magnitude is equal to II but with a completely opposite polarity. Turning on/off 

M11 (enables/disables I2) controls the dual-mode oscillations for this architecture.  

Although a transformer coupled VCO seems to be a better solution to resolve the 

phase noise-tuning range trade-off, high dependence of the resonant frequencies on the 

resonant mode’s quality factor limits the achievable tuning range of this oscillator since 

the quality factor and impedance of the resonator changes drastically from one mode to 

the other, degrading the phase noise in one or more resonant modes.  

Capacitive coupling reported in [53] uses two identical LC tanks that are coupled 

by capacitors to create two resonant frequencies and reduce phase noise. However, the 

capacitor loads the resonator as a fixed capacitor in one of the modes limiting the complete  
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Figure 20: Complete schematic of capacitively/ inductively coupled resonant mode 

switching VCO [54] 

 

tuning range. Another study reported in [54] uses the benefits of transformer and 

capacitive coupling to generate two resonant modes which when properly coupled show 

equal impedance at the two modes resulting in equivalent phase noise performance due to 

same Q and Rp at the two resonant modes.  

As illustrated in Figure 20, the oscillator design consists of a coupled LC resonator 

tank and a transistor based resonant mode switching network. Proper selection of M 

(inductive coupling) and CC (capacitive coupling) would give use the freedom to have a 

wide tuning range with a balanced phase noise performance due to the same input 

impedance as shown in Fig. 21. The two oscillation frequencies are given by 

 
𝜔𝑒𝑣𝑒𝑛 =

1

√(𝐿 + 𝑀)𝐶
 

(2.35) 
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Figure 21: Input impedance tuned by M and Cc (a) effect of M; (b) effect of Cc [54] 

 

and,  
𝜔𝑜𝑑𝑑 =

1

√(𝐿 − 𝑀)(𝐶 + 𝐶𝑐)
 

 

(2.36) 

The transistor network (Gmc and Gm) stimulates one resonant mode while damping the 

other to eliminate concurrent dual-mode oscillations. As one can clearly notice, the 

difference between the top and bottom pair is the polarity. The resulting dual-mode 

configuration, if properly coupled achieves a 3dB phase noise improvement due to the 

coupling of two oscillators at the cost of twice the power consumption resulting in the 

same FoM when compared to a traditional Class-B VCO. Figure 22 plots the measured 

odd/even mode frequency tuning range, and phase noise at 1MHz for the entire tuning 

range from 2.48 – 5.2 GHz. 

In conclusion, Table II summarizes the performances of different classes 

discussed above, while Table III summarizes the performance of different wideband 

VCOs. 
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(a) 

 

 

(b) 

Figure 22: (a) Measured tuning range; (b) Measured phase noise across the entire tuning 

range; [54] 
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Table II: Performance comparison of different LC oscillator topologies 

 

 

 [33] [17] [27] [34] [36] 

Oscillator 

Structure 

Class-B Class-C Class-D Class-F3 Class-F2 

Technology 90nm 130nm 65nm 65nm 65nm 

Supply VDD 1.4 1 0.4 1.25 1.3 

Power  25.2(mW) 1.4(mW) 4(mW) 15(mW) 41.6(mW) 

Tuning range 

(GHz) 

3.2-4.1(25%) 4.9-

5.65(14%) 

3-4.8(46%) 2.9-

3.8(25%) 

3.6-

4.4(19%) 

Frequency  915MHz 5.2GHz 4.8GHz 3.7GHz 4.35GHz 

Phase Noise  

(dBc/Hz) 

-149 @ 

3MHz  

-141.2 @ 

3MHz  

-135 @ 

3MHz  

-142.2 @ 

3MHz  

-144.8 @ 

3MHz 

Norm. PN1 

(dBc/Hz) 

-149 -147.5 -149.4 -154.3 -158.3 

Figure of 

Merit(FOM) 

183 195 191.5 192.2 191.8 

Type Single-Band Single-Band Single-Band Single-

Band 

Single-

Band 

 

1 phase noise at 3MHz offset frequency normalized to 915MHz carrier 
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Table III: Performance comparison of different wideband LC VCO 

 

 

 [33] [49] [51] [44] [54] 

Oscillator 

Structure 

Class-B Switched 

Inductor 

Active 

Inductor 

Transformer 

Coupled  

Capacitively/ 

Inductively-

coupled  

Technology 90nm 130nm 180nm 130nm 65nm 

Supply 

Voltage 

1.4 1.2 1.8 1 0.6 

Power 

consumption 

25.2(mW) 6.5-

15.4(mW) 

6-

28(mW) 

1-8(mW) 9.8-14.2(mW) 

Tuning range 

(GHz) 

3.2-

4.1(25%) 

3.28-

8.35(87.2%) 

0.5-

3(143%) 

3.6-7(69%) 2.48-

5.62(76.5%) 

Frequency  915MHz 3.28GHz 2.9GHz 4.6GHz 3.7GHz 

Phase Noise  

(dBc/Hz) 

-149 @ 

3MHz  

-122 @ 

1MHz  

-102 @ 

1MHz  

-119 @ 

1MHz  

-151.4 @ 10 

MHz 

Figure of 

Merit(FOM)1 

183 180.5 174.3 183.8 192.5 

Type Single-

Band 

Dual-Band Dual-

Band 

Dual-Band Dual-Band 
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3. PROPOSED OSCILLATOR DESIGN 

 

As mentioned earlier, for an optimum phase noise performance, LC oscillator is 

usually biased at the current and voltage limited boundary regions, where the oscillation 

amplitude reaches an upper limit set by the supply voltage [5]. H. -C. Chang et al [25] 

shows that by coupling N oscillators, the effective phase noise factor can be reduced by a 

factor of N by maintaining the same FoM. This theory has been utilized in the resonant 

mode switched oscillator design [54]. A class -F Oscillator implementation [34] can 

further reduce the effective noise factor. Thus, by proper integration of dual-mode 

resonance switching [54] with Class-F operation [34], a low phase noise wide tuning 

oscillator can be designed. 

This chapter is organized as follows: Section 3.1 shows the implementation of a 

single-band Class-F oscillator. Section 3.2 presents the dual-mode resonator and proposes 

the effectiveness of the resonator to make the Class-F operation for a wide operating 

frequency range. Section 3.3 demonstrates the working of a transistor switching network 

to activate the desired resonant mode while damping the other. Section 3.4 reveals the 

complete circuit implementation. 

    

3.1. Class-F Oscillator 

As discussed in the previous section, a Class-F oscillator requires the use of two 

impedance resonance peaks to have a ratio of 3. However, using two separate inductors 

for such an implementation would be cost- inefficient and require extra area. A more  
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Figure 23: Schematic of a 4th order Class-F resonator i.e., a transformer-coupled resonator 

[34] 

 

suitable option would be to implement a transformer based resonator as shown in Figure 

23, where Cp and Cs are the respective tuning capacitors at the primary and secondary 

winding. Lp and Ls are the primary and secondary self-inductances. M is defined as the 

mutual inductance between the primary and secondary inductance of the 4th-order Class-

F resonator. The magnetic coupling strength, km is defined by 

 
𝑘𝑚 =

𝑀

√𝐿𝑝. 𝐿𝑠

 
 

(3.1) 

The magnetic flux created by a time-varying current Ip flowing into the primary 

will cause a time-varying induced current Is in the secondary winding. The terminal current 

and voltage of this ideal transformer are related as  

 
[
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
] =  [

𝑗𝜔𝐿𝑝 𝑗𝜔𝑀

𝑗𝜔𝑀 𝑗𝜔𝐿𝑠
]  [

𝐼𝑝
𝐼𝑠

] 
 

(3.2) 

The turn ratio n relating to the voltage and current transformation of the secondary and 

primary is given by 

 

𝑛 = √
𝐿𝑠

𝐿𝑝
 ≈  

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 ≈  

𝐼𝑝

𝐼𝑠
 

 

(3.3) 
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Figure 24: Equivalent circuit of the transformer-based resonator [34] 

 

Neglecting the substrate losses, an equivalent T-model for this resonator is shown 

in Figure 24, where the equivalent input impedance Zin can be calculated as  

𝑍𝑖𝑛 = 
𝑠3 (𝐿𝑝𝐿𝑠𝐶𝑠(1 − 𝑘𝑚

2 )) + 𝑠2 (𝐶𝑠(𝐿𝑠𝑅𝑝 + 𝐿𝑝𝑅𝑠)) + 𝑠(𝐿𝑝 + 𝑅𝑝𝑅𝑠𝐶𝑠) + 𝑅𝑝

𝑠4 (𝐿𝑝𝐿𝑠𝐶𝑝𝐶𝑠(1 − 𝑘𝑚
2 )) + 𝑠3 (𝐶𝑝𝐶𝑠(𝐿𝑝𝑅𝑠 + 𝐿𝑠𝑅𝑝)) + 𝑠2(𝐿𝑝𝐶𝑝 + 𝐿𝑠𝐶𝑠 + 𝑅𝑝𝑅𝑠𝐶𝑝𝐶𝑠) + 𝑠(𝑅𝑝𝐶𝑠 + 𝑅𝑠𝐶𝑠) + 1

 

(3.4) 

in which Rp and Rs denote the corresponding primary and secondary series resistance. 

Eqn. (3.4) demonstrates the presence of two conjugate pole pairs, provided km < 1. 

Equating the denominator of (4) to zero, the two resonant frequencies are given as,   

 
𝜔1,2

2 = 
1 + 𝑋 ± √1 + 𝑋2 + 𝑋(4𝑘𝑚

2 − 2)

2𝐿𝑠𝐶𝑠(1 − 𝑘𝑚
2 )

 
 

(3.5) 

where, 

 

              𝑋 =  (
𝐿𝑠

𝐿𝑝
 .  

𝐶𝑠

𝐶𝑝
)   

 

(3.6) 

If 0.5 ≤ 𝑘𝑚 ≤ 1, then fundamental resonant peak can be approximated as  

 
𝜔1

2 =
1

(𝐿𝑝𝐶𝑝 + 𝐿𝑠𝐶𝑠)
 

 

(3.7) 
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Figure 25: Input impedance and trans-impedance magnitude (Z11, Z21) [34] 

 

The ratio of the two resonant frequencies for oscillations is given by 

 
𝜔2

𝜔1
= √

1 + 𝑋 + √1 + 𝑋2 + 𝑋 (4𝑘𝑚
2 − 2)

1 + 𝑋 − √1 + 𝑋2 + 𝑋 (4𝑘𝑚
2 − 2)

  

 

(3.8) 

From (3.8), it can be seen that ω2/ω1 solely is a function of tuning inductance and 

capacitors ratio (X), and the coupling coefficient km, and as a result is independent of 

process variations. To adjust ω2/ω1 =3, a km of 0.7 lowers sensitivity to X and increases 

voltage gain. (Z21 in Figure 25). 

Figure 26 shows the implemented transformer-coupled Class-F oscillator. As per 

the linear time variant model [7], better phase noise and power efficiency can be achieved 

by shaping the output waveform of an oscillator. A Class-F oscillator enforces a pseudo 

square wave waveform across the LC tank (VD1-VD2) by self-injecting a third harmonic at 

the fundamental oscillation voltage through an additional impedance peak at that 

frequency. This square wave has sharper zero crossings and flatness when the transistor  
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(a)                                                                    (b) 

Figure 26: Transformer-coupled Class-F oscillator and its characteristics: (a) schematic 

of the oscillator; (b) Oscillation voltage waveform; [34] 

 

turns on/off respectively, which effectively reduces the rms value of the ISF and noise 

contribution to the phase noise [7].  

Although a class -F can be implemented as a cross coupled oscillator with a 

floating secondary winding, connecting the secondary winding to the gate of the gm-

device has the advantage of generating higher amount of third harmonic currents at the 

gm-devices which lowers the ISF rms value, and eliminates the possibility of oscillation 

at the third harmonic [34]. Section 3.4 explains the design considerations regarding 

transistor sizing in detail.  
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Figure 27: Proposed dual-mode resonator with the addition of trans-conductors for 

simulating the desired oscillation mode. 

 

3.2. Dual-Mode Resonator 

As illustrated in Figure 27, the proposed resonator consists of two identical 4th-

order resonators (Lp1=Lp2, Ls1=Ls2, Cp=Cs) which are inductively and capacitively coupled. 

Coupling values, k11, k22, k12, and k21 represents the magnetic coupling coefficients for the 

sets (Lp1, Lp2) (Ls1, Ls2), (Lp1, Ls2) and (Ls1, Lp2), respectively. Cpp and Css represent 

capacitive coupling between the primary and secondary tanks. Each of the 4th-order 

resonators consist of two magnetically coupled LC tanks satisfying oscillation conditions 

for a Class-F VCO. Intuitively, capacitive couplings (Cpp and Css) provide resonance at 

two different frequencies depending on whether the polarity of the voltages and currents 

are in phase, or out of phase across the coupled capacitors [54]. It should be noted, that 

the third harmonic frequency component accompanies its respective first order harmonic 

content due to the Class-F operation. 
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Figure 28 shows the effects of magnetic and electric coupling on the input 

impedance (Zin) seen from each port of the primary winding (Lp1, Lp2) using simulations. 

As expected, this figure shows four impedance peaks. ωfH and ω3fH for higher resonant 

mode, and ωfL and ω3fL for the lower resonant mode. At the fundamental harmonic, by only 

increasing k11 (or k22), it can be seen that the two resonant frequencies move apart such 

that the impedance peak (|Zin|) at ωfL increases, while decreasing at ωfH. On the other hand, 

Cpp (or Css) pushes down ωfL, without affecting ωfH. Changing k12 (or k21) doesn’t impact 

the position of ωfL (or ωfH). At the third harmonic, one can see that Cpp (or Css) and k11 (or 

k22) increases the separation between the two |Zin| peaks at ω3fL and ω3fH, while changing 

k12 (or k21) brings these peaks closer. Moreover, wider impedance bandwidth, i.e., lower 

tank Q, at the 3rd harmonic frequency, makes the design less susceptible to the positon of 

ω2, or the Cp/Cs ratio change, such that the integrity of the Class-F waveform is maintained 

with negligible degradation in the phase noise performance. Detailed implementation of 

the dual-mode resonator topology is explained in section 3.4. 

 

3.3.Mode Switching Network 

Negative-Gm cells can be added to each of the 4th-order Class-F resonators to 

achieve sustainable oscillations and compensate for the losses in the system. However, the 

proposed resonator is designed such that input impedance has the same value for both 

modes to obtain similar phase noise and power consumption. Hence, use of only Gm cells 

can make the circuit unstable or possibly result in concurrent dual-mode oscillations. 

Therefore, additional circuitry is required to activate the desired resonant mode while  
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(a) 

 

 

(b) 

 

 

(c) 

Figure 28: Input impedance |Zin| tuned by magnetic and electric coupling. (a) effect of 

k11; (b) effect of Cpp; and (c) effect of k12. We assume that k11, k22, k12, k21 < 0. 
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damping the other. To implement a solution between the two modes, one needs to 

understand how the network in Figure 27 responds to fH and fL mode excitations. The 

system can be modelled as a two port Y network. It should also be noted that due to 

symmetry, the effective conductance I1/V1 and I2/V2 are equal. Now, assume a current of 

Iinj= Gmc . V2 is injected into the first port of the resonator, as shown in Figure 27. Since 

V1 and V2 have the same amplitude but a difference of phase (𝜃 = 0o or 180o depending 

on the oscillation mode), this injected current can be replaced with an admittance of  

 
𝑌𝐶 = 

𝐼𝑖𝑛𝑗

𝑉1
= 

𝐺𝑚𝑐𝑉2

𝑉1
= cos(𝜃) . 𝐺𝑚𝑐 

 

(3.9) 

Cos (𝜃) is negative when the resonator operates at ωfL (lower mode) while it 

becomes positive at ωfH (higher mode). Consequently, when Gmc > 0, the effective 

conductance seen from port 1 is -Gm + Gmc, increasing the total loss of the resonator at 

higher mode. On the other hand, at lower mode, YC = -Gm - Gmc. Thus, a sufficiently 

positive Gmc can excite oscillation at ωfL mode while damping it at ωfH. Similarly, negative 

Gmc will show a completely opposite behaviour and can make the oscillator work at ωfH. 

Therefore, only by changing the polarity of Gmc, it is possible to switch between the two 

modes.  

 

3.4. Circuit Implementation  

3.4.1. Transformer Design 

Since the inception of integrated or monolithic silicon based transformers, there 

has been tremendous research in the design, analysis, modelling and optimization of a 
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transformer [58, 60-64]. A transformer, as one already knows, is nothing but a 

combination of two mutually coupled inductors. A fundamental comprehension of the 

inductor characteristics will assist in the optimum design of a transformer. Essentially, 

quality factor and self-resonance frequency are the two metrics on which the performance 

of an inductor is characterized. A higher self-resonant frequency will extend its inductive 

behaviour for a larger span of operating frequency range and high Q would result in a less 

lossy inductor. From an oscillator perspective, a high Q also improves the phase noise 

performance while reducing power consumption. However, substrate and metal layer 

losses are the two major contributors which limit the best Q that a silicon integrated 

inductor can achieve.  Conduction current flowing from the metal layers to the low 

resistive silicon substrate, and the current induced into the substrate by the current carrying 

inductor as well as eddy current losses in the metal layer, dramatically impact the overall 

performance of an inductor. Since a transformer is a stack of mutually coupled inductors, 

these losses will still hold true. 

Various topologies have been proposed in the recent decade related to transformer 

design. However, since a differential VCO would require a transformer with a symmetric 

differential output, the transformer topologies available can be vastly categorized into 

three different categories: a), interleaved b), tapered and c) stacked transformers as shown 

in Figure 29. [64]. 

An interleaved transformer as shown in Figure 29(a), as the name suggests, 

consists of the primary winding intertwined within the secondary winding, such that every 

primary metal trace section (or secondary) is neighboured by secondary metal trace  
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(a)                                              (b)              (c) 

Figure 29: Differential transformer topologies: (a) Interleaved; (b) tapered; (c) stacked; 

[64] 

 

sections (or primary) resulting in a reasonably high mutual coupling (km ≈ 0.7), but at the 

cost of reduced self-inductances and inter-winding capacitance (cross-coupled 

capacitance between the primary and secondary). An interleaved transformer is usually 

laid on the topmost thick metal layer of the Si process technology to obtain a high self-

resonant frequency and inductor Q. Both the secondary and primary windings are present 

on the same layer while cross-over of metal traces of the same winding is performed by 

using lower metal layers. 

Figure 29(b) shows the layout of a tapered transformer. In this topology the 

primary (or secondary) inductor is placed inside the secondary (or primary) winding 

resulting in a higher self-inductance and reduced inter-winding capacitance but at the cost 

of reduced mutual coupling coefficient. Km usually lies in the range of 0.2-0.7 depending 

on the spacing between these two inductors. 
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Figure 30:  Lumped electrical model of a differential transformer, including center-taps 

[61] 

 

In a stacked transformer as illustrated in Figure 29(c), primary and secondary 

windings are present on the adjacent metal layers to utilize both lateral and vertical 

magnetic coupling resulting in higher self-inductance, higher mutual coupling and lesser 

area but at the cost of lower self-resonance frequency, higher inter-winding and substrate 

coupling capacitance. A combination of stacked and interleaved capacitance can further 

boost the coupling coefficient but at the cost of higher parasitic capacitance and lower 

self-resonant frequency. 

However, design, simulation and optimization of circuits require accurate 

broadband transformer models which imitates the process technology and physical layout 

conditions. Incorporating substrate and ohmic losses for a wide range of frequencies is a 

necessary requirement for its accuracy. An example of such a lumped electric model of 
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the transformer is shown in Figure 30 [61].  Figure 30 models a balanced transformer with 

a primary and secondary centre-taps. Self-inductances of the primary are modelled by L1, 

L2 and of the secondary are modelled by L3, L4. Each of the inductors are mutually 

coupled and their respective coupling coefficients are represented by k12, k13, k14, k23, k24, 

k34. 

 RP1, RP2 and RS1,RS2 are the respective primary and secondary metal layer ohmic 

losses due to finite conductivity, skin effect, proximity effect. Skin effect manifests itself 

due to the vertical current density redistribution along the metal trace thickness. Proximity 

effect accounts for the horizontal current density redistribution due to the changing 

magnetic fields around a metal trace. In other words, these effects represent the eddy 

current losses in the metal trace. Eddy current loss can be due to the current flowing in the 

same metal trace, or due to induced magnetic field from current flowing in adjacent metal 

traces of the same inductor, or from the other mutually coupled inductor of a transformer. 

Skin and proximity effects manifest themselves at high frequencies and the product of 

these two result in an increased resistance. The total series resistance from [63] is given 

by  

 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝐷𝐶 + 𝑅𝑅𝐹 ≈ 𝑅𝐷𝐶𝑟𝑒𝑎𝑙(𝜉 coth(𝜉)).

[
 
 
 

1 + 𝑟𝑅𝐹

(
𝑓
𝑓𝑜

)
2

1 + (
𝑓
𝑓0

)
2

]
 
 
 

 

 

 

(3.10) 

where Rtotal represents the total series resistance of a primary and secondary winding such 

that  𝑅𝑡𝑜𝑡𝑎𝑙 = 2𝑅𝑃1 = 2𝑅𝑃2 = 2𝑅𝑆1 = 2𝑅𝑆2 , RDC represents the finite conductivity of the 
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metal trace. RRF accounts for the high frequency losses due to skin and proximity effects. 

ξ accounts for the skin effect given by 

 
𝜉 =

(1 + 𝑖)𝑡

2𝛿
 

 

(3.11) 

In which t, is the metal trace thickness and δ defines the skin depth represented by  

 

𝛿 =  √
2𝜌

𝜔𝜇
 

 

(3.12) 

where ρ, μ are the metal trace’s resistivity and permeability respectively. ω is the operating 

frequency. 𝑟𝑅𝐹 and 𝑓0 account for the increase in resistance caused by proximity effect. 

𝑟𝑅𝐹 is a technology and geometry dependent coefficient whose values lies between 0.1 to 

0.2. 𝑓0 is the frequency factor given as 

 
𝑓0 =

2𝑅𝑠ℎ(1 + 3𝑞)

𝜇0𝑊(1 − 𝑞2)
 

 

(3.13) 

where Rsh represents the sheet resistance of the metal trace, μ0 is free space permeability, 

W is the overall width of the metal trace, q factor is a ratio which represents width 

reduction due to eddy current loss. RRF tends to show a 𝑓2 dependency at lower frequencies 

while at higher frequencies it follows a √𝑓 dependency [63].  

 CK1, CK2, CK3, and CK4 model the cross-coupling capacitances between the primary 

and secondary winding, including the under-pass and fringing capacitance. COX1 – COX6 

model the metal-oxide parallel plate capacitance from the metal layer winding to the 

substrate.  



 

54 

 

 

Figure 31: Symmetrical octagonal shaped interleaved transformer layout for a single  

 

 
𝐶𝑂𝑋𝑖

=
1

4

𝜀𝑂𝑋

𝑡𝑂𝑋
.𝑊𝑖 . 𝑙𝑖;  𝑖 = 1, 3, 4 , 5  

𝐶𝑂𝑋𝑖
=

1

2

𝜀𝑂𝑋

𝑡𝑂𝑋
.𝑊𝑖. 𝑙𝑖;  𝑖 = 2,6 

 

 

(3.14) 

Rsub1 – Rsub6 denote the parasitic substrate resistances calculated in [61] as 

 
𝑅𝑠𝑢𝑏 =

𝜌

𝜋𝑙𝑀
𝑙𝑛 [2𝑐𝑜𝑡ℎ (

𝜋

8
.
𝑊𝑒𝑓𝑓

𝐻𝑠𝑢𝑏
)]     𝑓𝑜𝑟 

𝑊𝑒𝑓𝑓

𝐻𝑠𝑢𝑏
< 1  

𝑅𝑠𝑢𝑏 =

𝜌
𝜋𝑙𝑀

𝑙𝑛 [2 𝑒
𝜋 
4

𝑊𝑒𝑓𝑓

𝐻𝑠𝑢𝑏 ]

   𝑓𝑜𝑟 
𝑊𝑒𝑓𝑓

𝐻𝑠𝑢𝑏
> 1 

 

 

 

(3.15) 

where Rsub denotes the substrate resistance of single metal trace placed on the substrate, ρ 

defines the specific resistivity of the substrate, 𝑙𝑀 is the mean perimeter of the primary or  
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(a)                                                               (b) 

 

 

   (c)                                                               (d) 

Figure 32: Electromagnetic simulation results using Sonnet: (a) Primary and secondary 

inductance; (b) Primary and secondary quality factor; (c) Coupling coefficient of a single 

transformer; (d) Inter-transformer coupling coefficients        

 

secondary winding, Hsub is the thickness of the substrate material and Weff is the effective 

width of the primary and secondary winding given as 

 𝑊𝑒𝑓𝑓 = 𝑊 + 6𝐻𝑂𝑋 + 𝑡 (3.16) 
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in which W is the width of the metal trace, HOX is the oxide thickness, and t represents 

the conductor thickness. The overall substrate resistance of the primary and secondary 

winding would indeed depend on the number of turns and geometry of the transformer. 

Unfortunately, as mentioned before, the proposed resonator consists of two 

inductively coupled transformers. The complexity of such a topology makes it extremely 

challenging to accurately model the complete electric behaviour of the proposed resonator. 

However, current EM solvers (such as Sonnet, HFSS, etc.) have the power to solve 

Maxwell equations using finite element method with greater accuracy providing a faster 

solution before compact models are developed. 

 Prior to designing the complete resonator, it is necessary for the transformer to 

meet the requirements of a single-band Class-F oscillator design, where the primary and 

secondary inductance were chosen to be approximately 0.5nH and 1.5nH with a coupling 

coefficient of 0.71. An interleaved 1:2 octagonal shaped transformer topology was 

selected to meet the above specifications. Figure 31 shows the implemented transformer 

laid out using the top metal layer in TSMC 65nm technology. The primary and secondary 

windings share the same centre-tap connection. An octagonal structure makes the 

transformer layout more area efficient and improves the quality factor, Q, of the inductor. 

The spacing between adjacent windings (2um) was minimized to increase the mutually 

coupling between the two winding. The optimum width of the metal trace was chosen to 

be 13um for both primary and secondary so as to maximize Q, while minimizing ohmic 

losses for the desired operating frequency range. Figure 32. shows the inductance, quality 

factor and coupling coefficient (km) simulated using the Sonnet EM solver. The complete  
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Figure 33: Inductively-coupled transformer layout for the proposed dual-mode resonator 

 

inductively coupled transformer implementation for the proposed resonator is shown in 

Figure 33. The two transformers are placed adjacent to each other to maximize inter-

transformer coupling. Both these transformers are placed on the same layer to obtain 

equivalent performance for individual 4th-order Class-F resonators i.e., similar Lp, Ls, Qp, 

Qs and km. The inter-transformer coupling coefficient is shown in Figure 32 (d).  

 

3.4.2.  Capacitor Design 

In the design of the Class-F VCO, a 6-bit binary weighted switched metal-

insulator-metal (MIM) capacitor array is used for coarse tuning [ 55, 65].  Figure 34 shows 

the implementation of a single-switch capacitor and its equivalent electrical model. The 

implemented design sets the source and drain junction to the power supply voltage via a  
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(a) 

 

 

(b) 

Figure 34: Single-switch capacitor for coarse-tuning: (a) schematic; (b) equivalent 

electrical model [65] 

 

high impedance resistance (R) when the switch is OFF warranting that the switch is 

complete turned off when a high voltage is applied to the MOS gate. The high impedance 

also eliminates ac current flowing into the switch. 

If the parasitic capacitance and resistance of the MIM cap is negligible, the 

complete single-ended capacitance derived from the model can be calculated as 
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Figure 35: Schematic of a PMOS varactor design for fine tuning [57] 

 

 

 
𝐶𝑠𝑒 = 𝐶𝑢||

1 + 𝜔2𝑅𝑠𝑤
2 𝐶𝑠𝑤

2

𝜔2𝑅𝑠𝑤
2 (𝐶𝑠𝑤)

 
 

(3.17) 

where Rsw and Csw are given by  

 1

𝑅𝑠𝑤
=

1

𝑅𝐵
+

2

𝑅𝑀𝑂𝑆
+ 

𝜔2𝑅𝑠𝐶𝑑𝑏
2

1 + 𝜔2𝑅𝑠𝐶𝑑𝑏
2  

𝐶𝑠𝑤 =
𝐶𝑑𝑏

1 + 𝜔2𝑅𝑠𝐶𝑑𝑏
2 + 𝐶𝑔𝑑 

 

 

 

(3.18) 

When the switch is ON. It operates in triode. Hence, RMOS can be derived as 

 
𝑅𝑀𝑂𝑆 =

𝐿

𝜇𝐶𝑜𝑥𝑊(𝑉𝑔𝑠 − 𝑉𝑡ℎ)
 

 

(3.19) 

If the width of the transistor switch is large, RMOS is small and the equivalent on-

capacitance (𝐶𝑠𝑒_𝑜𝑛) can be approximated as Cu.  When the switch is OFF, Rsw is high, 

and the equivalent off-capacitance can be approximated as 𝐶𝑠𝑒_𝑜𝑓𝑓 = 𝐶𝑢||𝐶𝑠𝑤. Therefore, 

the overall tuning range of a single capacitor bank is given as 
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𝑇𝑅𝑠𝑒 =

𝐶𝑢

𝐶𝑢||𝐶𝑠𝑤
 

 

(3.20) 

 

A 6-bit binary weighted capacitor array can satisfy the requirement for the 

desired operating tuning range [55]. 

Fine tuning is achieved by implementing a MOS varactor available in the 

TSMC65nm technology library in a differential operation as shown in Figure 35. This 

MOS capacitor operates in similar to a parallel plate capacitor where the plates are 

formed by the MOSFET channel and polysilicon gate. Although such an implementation 

shows a nonlinear capacitance variation with change in VC. 

3.4.3. Complete Circuit Integration 

Figure 36 shows the complete schematic of the dual-mode Class-F oscillator. Each 

4th-order Class-F tank consists of a transformer-coupled Gm cell which remains on in both 

resonant modes. The large voltage swing transitions at the gate (VG1 – VG2 in Figure 26) 

of the M1-M2 switches of a single-band Class-F necessitate the need for thick-oxide Gm 

devices. The Gm cells of M1-M2 can be thought of as negative resistance that negates the 

input impedance looking into the primary winding of the 4th-order Class-F tank. Gm must 

be at least 12.5mS to overcome the parallel resistance, Rin = 80 Ω. A Gm of 15mS was 

chosen such that as long as Rin > 66.6Ω, the oscillator would still function properly.  

 



 

61 

 

 

Figure 36: Complete schematic of the dual-mode Class-F VCO 

 

Proper sizing of Gm can be thought of as an iterative process. Initially, the primary 

and secondary inductance of the 4th order Class-F tank are chosen based on Eqn. (3.8) to 

guarantee a Class-F operation for more than half of the desired tuning range. In order to 

maintain ω2/ω1=3, the primary and secondary self-inductance are chosen to be 

approximately 0.5nH and 1.5nH respectively with a magnetic coupling coefficient of 

km=0.71. Also, since the oscillation at the secondary winding is a sinusoid (VG1-VG2 from 

Fig.25), the transformer is designed to maximize Q at the secondary in order to desensitize 

the phase noise of the oscillator to the circuit noise at the secondary winding in comparison 

to the primary, having a pseudo- square wave. Nevertheless, it should be noted that Cp and 
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Cs are course tuned simultaneously to sustain 𝑋 = 𝐿𝑝𝐶𝑠 𝐿𝑠𝐶𝑝⁄  ratio warranting that 𝜔2 =

 3𝜔1. Gm cells i.e., cross coupled MOS devices are inserted to cancel the inductive and 

capacitive losses in the single-band Class-F oscillator. Cp and Cs should be resized to 

account for the respective parasitic capacitances introduced by Gm cells and 4th-order 

Class-F tank. Simulations are performed to determine if the voltage swing, phase noise, 

power consumption specifications are met. 

 Gmc cells are voltage-controlled current sources which control the resonant modes 

of operation. For operation in the lower mode, the positive polarity for Gmc is maintained 

by the bottom pair while the top Gmc pair is switched off. Similarly, for enabling the higher 

mode, the top negative polarity Gmc cells are switched on while the bottom pairs are off. 

Variations in polarity can be seen easily by noting the change in connections made across 

the two 4th order Class-F tanks. 

If the top Gmc network in Figure 36 is active in the higher mode, the oscillator 

should satisfy the conditions given by 

 |𝐺𝑚,ℎ𝑖𝑔ℎ𝑒𝑟 . 𝑅𝑖𝑛,ℎ𝑖𝑔ℎ𝑒𝑟| > 1     𝑎𝑛𝑑     𝐺𝑚,ℎ𝑖𝑔ℎ𝑒𝑟 < 0 

|𝐺𝑚,𝑙𝑜𝑤𝑒𝑟. 𝑅𝑖𝑛,𝑙𝑜𝑤𝑒𝑟| < 1   𝑜𝑟  𝐺𝑚,𝑙𝑜𝑤𝑒𝑟 > 0  

 

(3.21) 

where 𝑅𝑖𝑛,ℎ𝑖𝑔ℎ𝑒𝑟 and 𝑅𝑖𝑛,𝑙𝑜𝑤𝑒𝑟 represent the fundamental input impedance peaks of the of 

the higher and lower mode respectively and, 

 𝐺𝑚,ℎ𝑖𝑔ℎ𝑒𝑟 = −𝐺𝑚 − 𝐺𝑚𝑐 

𝐺𝑚,𝑙𝑜𝑤𝑒𝑟 = −𝐺𝑚 + 𝐺𝑚𝑐 

 

(3.22) 

Whereas if the bottom Gmc network is active in Figure 36, the lower mode gets enable 

satisfying the conditions given by  
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 |𝐺𝑚,ℎ𝑖𝑔ℎ𝑒𝑟 . 𝑅𝑖𝑛,ℎ𝑖𝑔ℎ𝑒𝑟| < 1   𝑜𝑟  𝐺𝑚,ℎ𝑖𝑔ℎ𝑒𝑟 > 0  

|𝐺𝑚,𝑙𝑜𝑤𝑒𝑟 . 𝑅𝑖𝑛,𝑙𝑜𝑤𝑒𝑟| > 1     𝑎𝑛𝑑     𝐺𝑚,𝑙𝑜𝑤𝑒𝑟 < 0 

 

(3.23) 

where,   

 𝐺𝑚,ℎ𝑖𝑔ℎ𝑒𝑟 = −𝐺𝑚 + 𝐺𝑚𝑐 

𝐺𝑚,𝑙𝑜𝑤𝑒𝑟 = −𝐺𝑚 − 𝐺𝑚𝑐 

 

(3.24) 

A choice of Gmc = 25mS satisfies the above oscillatory conditions. Final 

simulations are performed to determine if the voltage swing, phase noise, power 

consumption specifications are met. 

Selecting proper values for the inductive (k11, k22, k12, k21) and capacitive coupling 

(Cpp, Css), and Gmc cells between the two Class-F tanks is one of the major hurdles in this 

design, because (a) tuning range of the lower mode is restricted by the choice of Cpp and 

Css. In order to obtain a wide tuning range across each band, these capacitors must be kept 

small, (b) coupling between the two 4th-order tanks should be sufficiently strong in order 

to avoid frequency mismatch i.e., damping one frequency mode when the other is 

operating, and (c) maintaining ω2/ω1 =3 for each of the two bands is necessary to guarantee 

Class-F operation. In summary, proper selection of magnetic coupling coefficients, Cpp 

and Css can make the two fundamental harmonic peaks of Zin have the same amplitude to 

achieve a balanced operation in the two modes, while extending the operating bandwidth. 

Meanwhile, this choice of magnetic/electric coupling should guarantee Class-F operation 

(ω2/ω1 =3). Thus, in order to cover a tuning range of around 40-45 % in each mode while 

achieving Class-F operation, M (k11 = k12 = k21 = k22), Cpp and Css were chosen to be -0.1, 
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300f and 400f, respectively. Cpp and Css are fixed, and implemented using metal-insulator-

metal (MIM) capacitors. Cp (or Cs) is a 6-bit binary weighted capacitor array for coarse 

tuning [8]. Fine tuning is achieved by employing a pair of MOS varactors in Cp (or Cs). 

The centre-taps of each transformer is connected to a 0.6V power supply.  The MOS 

switches are enabled by a 0/1.2V bias. Also, the control voltage of the varactors is varied 

between 0-1.2V. 
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4.  FABRICATION AND MEASUREMENT RESULTS 

 

The proposed VCO was fabricated using TSMC 65nm CMOS technology. A die 

microphotograph of the chip is shown in Figure 37, occupying an active area of 0.7 mm2, 

while consuming 15-16mW power from a 0.6V supply. The die was boxed in a 6mm x 

6mm 40- lead QFN package and tested on a custom-designed PCB.  

 

 

Figure. 37: VCO die photo 

 

4.1.Current Consumption Measurements 

Figure 38 shows the DC current consumption in each resonant mode from a 

constant 0.6V supply for different frequencies. The VCO consumes similar amount of 

power in the two modes as predicted by the same input impedance magnitude requirement 
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mentioned before. The variation in current is small when compared to other state-of-the-

art wideband oscillator design in Table III.   

 

Figure 38: Measured current consumption 

 

4.2. Phase Noise and Tuning Range Measurements 

 The tuning range and phase noise were measured using Agilent E4446A spectrum 

analyser. Figure 39 shows the measured tuning range, in which B<5:0> is the 6-bit digital 

control word of the switched capacitor banks. The lower resonant mode covers a frequency 

band from 2.14-3.13GHz, while the higher resonant mode covers frequencies ranging 

from 2.5-4.22GHz, therefore, this wideband Class-F VCO successfully covers a 

continuous tuning range from 2.14-4.22GHz with enough overlap (=620MHz) between 

the two modes promising its functionality even in the presence of worst case PVT 

variations. Each red/blue bar represents the fine-tuning frequency range covered by the 
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PMOS varactors. Figure 40 shows the measured phase noise at 1MHz offset frequency 

throughout the tuning range. Figure 41 shows a sample of measured phase noise curve at 

2.3GHz in lower mode. The FoM of the VCO ranges from 188-193dB which is 

comparable to state-of-the-art designs [1]-[55]. 

 

Figure 39: Measured tuning range 
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Figure 40: Measured phase noise at 1MHz offset frequency across the tuning range 

 

 

Figure 41: Measured phase noise at 2.3GHz 
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The oscillator performances are summarized in Table IV and compared with 

other state-of-the-art oscillators. The presented oscillator shows an excellent average 

FoM while covering a wide tuning range.  

 

Table IV: Performance summary and comparison chart for a wide-band Class-F VCO 

 

 

𝐹𝑜𝑀1 = 10 log10 [
1

𝑃𝑑𝑖𝑠𝑠| 𝑚𝑊
 (

𝑓0
𝛥𝑓

)
2

] − 𝐿(𝛥𝑓) 

 

 

 

 [5] [7] This Work 

Type Single-Band Dual-Band Dual-Band 

Technology 65nm CMOS 65nm CMOS 65nm CMOS 

VDD (V) 1.25 0.6 0.6 

Core Power (mW) 15 9.8-14.2 15-16.4 

Tuning range (GHz) 5.9-7.6 (25%) 2.5-5.6 (76.5%) 2.14-4.22(65 %) 

Frequency 3.7 3.7 3.7 

Phase Noise (dBc/Hz) -131 @ 1MHz -128.3 @ 1MHz -132.93 @ 1MHz 

FOM1 (dB) 190.5-192.5 188-192.5 188-192.7 

Area (mm2) 0.12 0.294 0.7 
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5. CONCLUSION AND FUTURE WORK 

In this dissertation, working of different classes of oscillators and their tuning 

range limitations have been identified and analyzed. A low phase noise wide-tuning range 

Class-F oscillator based on a dual-mode resonator was finally presented. In comparison to 

other conventional wideband oscillators, the proposed capacitively/inductively-coupled 

resonator integrates the benefits of Class-F voltage control oscillators and dual-mode 

switching networks to obtain simultaneous low phase noise and wide-tuning range. The 

proposed structure, prototyped in 65nm TSMC CMOS technology, shows a 2.14-4.22GHz 

continuous tuning range, phase noise figure-of-merit (FoM) of 192.7dB at 2.3GHz and 

better than 188dB across the entire operating frequency range. The oscillator consumes 15 

– 16.4mW from a 0.6V supply and occupies an active area of 0.7mm2. 

Revisiting Table IV, the proposed VCO shows a 2dB phase noise improvement at 

the same carrier frequency (3.7GHz) when compared to a single-band Class-F VCO [34].                 

Ideally, this proposed VCO should have displayed a 3dB phase noise improvement since 

two identical oscillators were coupled together [25]. Therefore, in the future, defining an 

accurate broadband electrical model for the two inductively-coupled transformers which 

imitates the process technology and physical layout by incorporating the substrate and 

ohmic losses, as well as the mutual coupling between the various primary and secondary 

windings, can assist in accurately predicting the position and amplitude of the four 

resonant peaks (two each of the first-order and third-order harmonics) resulting in 

optimizing the performance of the design to attain the lowest achievable phase noise 

performance while simultaneously meeting the wide tuning range requirement. 
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Additionally, this VCO can be integrated into a frequency synthesizer for various wireless 

applications utilizing Bluetooth, unlicensed ISM applications, or 802.11 WLAN in the 2 

– 5GHz frequency band to investigate the improvement in the performance of the PLL 

(jitter), resulting in the development of an attractive alternative to the existing incorporated 

VCO designs.  
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