
Analysis of a Heterogeneous Multi-Core,

Multi-HW-Accelerator-Based System Designed

Using PREESM and SDSoC

Leonardo Suriano*, Alfonso Rodriguez*, Karol Desnos**, Maxime Pelcat**, Eduardo de la Torre*

*Centro de Electrónica Industrial

Universidad Politécnica de Madrid, Spain

{leonardo.suriano; alfonso.rodriguezm;

eduardo.delatorre}@upm.es

**IETR, UMR CNRS 6164, UEB

INSA Rennes. France

{Karol.Desnos; Maxime.Pelcat}@insa-rennes.fr

Abstract— Nowadays, new heterogeneous system technologies

are flooding the market: through the past years, it is possible to

observe the move from single CPUs to multi-core devices

featuring CPUs, GPUs and large FPGAs, such as Xilinx Zynq-

7000 or Zynq UltraScale+ MPSoC architectures. In this context,

providing developers with transparent deployment capabilities to

efficiently execute different applications on such complex devices

is important. In this paper, a design flow that combines, on one

side, PREESM, a dataflow-based prototyping framework and, on

the other side, Xilinx SDSoC, an HLS-based framework to

automatically generate and manage hardware accelerators, is

presented. This integration leverages the automatic, static task

scheduling obtained from PREESM with asynchronous

invocations that trigger the parallel execution of multiple

hardware accelerators from some of their associated sequential

software threads. An image processing application is used as a

proof of concept, showing the interoperability possibilities of

both tools, the level of design automation achieved and, for the

resulting computing architecture, the good performance

scalability according to the number of accelerators and sw

threads.

Keywords— Heterogeneous computing, scheduling,

reconfigurable MPSoC, SDSoC, PREESM,

I. INTRODUCTION

The advent of reconfigurable Multiprocessor Systems on
Chip (MPSoCs) equipped with a combination of several
processing cores with programmable logic, such as the Xilinx
Zynq-7000 family or, more recently, the Zynq-UltraScale+,
enables the possibility of building large systems with
unprecedented complexity and integration levels. However,
developing efficient implementations requires the execution of
multiple tasks simultaneously, relying on the use of both
software (SW) and hardware (HW) computing fabrics at the
same time, with relatively complex interdependencies among
them.

This type of devices may be considered as high-end target
platforms within the domain of high performance embedded
systems, but at the same time they are becoming more and
more important in the high performance computing domain

itself, with significant developments in big data or cloud
computing applications, among others. However, their inherent
heterogeneity and the associated complexity (which forces the
use of embedded operating systems, often with real-time
constraints), poses important challenges from the point of view
of the design methodologies, where a minimum level of
automation is required.

High Level Synthesis (HLS) tools have finally paved the
path from high-level languages to HW, allowing some
flexibility in selecting the levels of parallelism that HW
accelerators should have. However, this is not for free, since
performance has to be traded against resource utilization and
interface complexity. With this idea in mind, FPGA vendors
are offering SW-oriented solutions that, starting from SW
programs, let a relatively unexperienced HW designer to
implement and use HW accelerators. However, it does not
directly address the issue of exploiting the concurrency or
parallelism levels that the multiple HW and SW cores may
offer.

A good work on providing SDSoC with Dynamic and
Partial Reconfiguration (DPR) capabilities was recently
presented in [30], allowing HW accelerators to be exchanged
by other ones. Another important issue is the possibility, for
some reconfigurable architectures, of providing scalability and
adaptable fault tolerance levels, deciding at runtime the number
of HW accelerators and the depth of HW redundancy to be
used in the execution of an accelerated task.

By using these such features (DPR and HW scalability)
reconfigurable heterogeneous systems would offer an excellent
flexibility in the sense that a set of tasks could be mapped into
an arbitrary number and combination of SW cores and HW
accelerators, especially when the latter have been obtained
from HLS processes. In this context, task/thread mapping and
the choosing of right scheduling may benefit from tools that
(i): explicitly express the parallelism at function level, (ii):
provide parameterized specification, (iii): support various
models of architecture (MoA) to adapt to different platforms
(and number of HW accelerators) and (iv) are able to produce
the convenient task scheduling.

PREESM precisely does this. It provides a graphical
framework to support the specification of dataflow
applications, where actors are implemented as tasks and are
linked with parameterizable communication links. The
framework contains a mapper that, according to a specified
architecture, provides the corresponding task/thread mapping
to cores and the corresponding scheduling (shared memories
and semaphores for shared memory structures, FIFOs for
dataflow-like linked actors, etc…).

In this paper, it is presented a prospection on the use of
PREESM and SDSoC for building heterogeneous, dynamically
scalable systems, making use of the actor specification
(including the parameterization features) and the mapping and
scheduling generated from PREESM, combined with HLS-
based HW accelerator design as well as all the integration
provided by SDSoC. The main highlights of this paper are:

- A proof of concept that shows the possibility of combining
dataflow oriented specifications and their associated
mapping and scheduling for a multicore-oriented device
with HW acceleration using available tools.

- Changes in the HW handling strategy to more efficiently
use HW parallelization capabilities may be used to improve
performance, by using asynchronous HW invocation calls
from within a thread-based multiple-task scheme.

The rest of the paper is structured as follows: a brief
description of the state of the art is given in the second section,
and in the third and fourth Xilinx SDSoC and PREESM are
introduced, respectively. Section V contains the description of
the application used for testing the integration of the tools, as
well as the experimental results. In the conclusions, the main
achievements are highlighted together with the future lines of
the work.

II. BACKGROUND

As predicted by Hartestein in 1997 [1], Reconfigurable
Platforms are becoming crucial devices for developing data-
intensive applications [2] since they leverage both high-
performance and flexibility at the same time, in the same
package. However, not only performance and flexibility are
important: energy-efficiency of the devices plays a decisive
role especially in growing fields such as Internet of Things
(IoT), sensor networks, wearable devices [5], and even in space
applications [6].

In this context of embedded high computational demand
and low power consumption, MPSoCs such as Zynq-7000 and
Zynq Ultrascale+ families, designed by Xilinx, are being
intensively used [6-10] due to the combination of two ARM
processors Cortex-A53 surrounded by 28-nm programmable
logic in the case of Zynq 7000 family and, for the Ultrascale+,
by four ARM Cortex-A53, two ARM Cortex-R5, a Mali GPU
and a 16nm FinFET+ programmable logic fabric [11].
However, an application running on such heterogeneous
devices, should guarantee not only the logical correctness of
the data output but, also, that the data is “provided on a timely
basis” [3]. Therefore, an efficient task scheduling is needed in
addition to all the tools already provided to develop
applications on these complex systems. In the next paragraphs,

a brief overview of the task scheduling methodologies is given,
focusing mainly on heuristic methods and on the tools
available for programming such systems.

According to the nature where they are applied, task
scheduling methodologies can be classified into (i)
homogeneous computing systems, (ii) heterogeneous
computing systems and (iii) reconfigurable computing systems,
as explained by Vucha and Rajawat in [12].

A. Homogeneous Computing Systems

Homogeneous computing systems include multiple
processors, all with the same characteristics. Different
scheduling techniques were proposed during the 70’s and 80’s
in really well known works such as [13-15]. One of the most
popular ones is the Rate Monotonic Algorithm (RM) [14]. This
is a static priority based algorithm. It assigns a high priority to
the most recurring task and a low priority to the one that is less
executed. Due to the limitations of this scheduling, the Earliest
Deadline First algorithm (EDF) was proposed in [13], where
the priority of execution is assigned based on the deadline of
the tasks. The main advantage of this approach is the
dynamism of the algorithm, compared to the previous one.
Some of the most important scheduling algorithms are the Task
Duplication Based scheduling [18], the Maximum Urgency
First Algorithm [15], the Dynamic Critical Path scheduling
[16] and the Selective Duplication algorithm proposed in [17]:
all of them are targeted upon a set of homogeneous processors.

B. Heterogeneous Computing Systems

A heterogeneous computing system is, normally, a set of
processing elements different among them. Therefore, the
application is spread upon it, taking into account the priorities
of all the tasks and the time necessary for every processing
element of the system to process them [12]. The milestone
strategies of all the heterogeneous system scheduling
algorithms developed so far are presented in [19]. The
Heterogeneous Earliest Finish Time (HEFT) and Critical-
Path-On-a-Processor (CPOP) there proposed, are the bases of
countless recent works like, for example, the Heterogeneous
Scheduling Algorithm with Improved Task Priority (HSIP)
proposed in 2015 [20].

C. Reconfigurable Computing Systems

Reconfigurable Computing Systems are “an emerging
paradigm” [12] where both flexibility and performance are
met. It gives the programmers the possibility of customizing
and changing, dynamically, the HW architecture to execute
concurrently applications and tasks. The problem was studied
in [4][21][22][23][24] and [25], where different solutions for
an online scheduler of real-time tasks were also proposed. All
these solutions have the common aim of “reducing
configuration overheads through resource reuse and
minimizing the total execution time in addition to decrease task
rejection ratio” [12].

However, the most recent hot topic concerns the
Heterogeneous Reconfigurable Computing Systems, in which
the Zynq-7000 and Zynq Ultrascale+ devices can be included.
In the [26], researchers from Politecnico di Milano show how

an efficient resource-aware scheduling can improve
performance on a ZedBoard using DPR. Nevertheless, as
Vucha and Rajawat highlight in [12], there is still a “need of
developing scheduling methodologies for Heterogeneous
Reconfigurable Computing Systems (HRCS), which is an
emerging high speed computing platform for real time
applications”.

The preliminary work presented in this paper should be
intended as a proof-of-concept in which a manual integration
of PREESM and SDSoC is proposed, to provide a static
schedule of a given application together with the automatic
generation of hardware accelerators by SDSoC, in charge of
driving the “translation” of C code into IP cores embedded in
Vivado.

III. XILINX SDSOC

The SDSoC development environment is a tool introduced by

Xilinx [27] in the 2015 for the MPSoCs previously mentioned

where, using as inputs programming languages such C/C++, it

is possible to generate applications (standalone or running

upon an Operating System) that can offload part of the

computationally-intensive tasks to the reconfigurable fabric of

the target device. The hardware accelerators are generated

using High Level Synthesis techniques, and the bitstreams are

produced by invoking Vivado. In addition, SDSoC provides

system level profiling techniques for performance estimation,

as well as estimations on the overheads introduced by data

communication between Processing System (PS) and

Programmable Logic (PL).

Another reason for the choice of such tools lies in future

evolution of this paper. In fact, Kalb and Göhringer, in [30],

demonstrate the integration of the DPR in SDSoC achieving

further acceleration in time performance and, at the same time,

a reduction of power consumption. This is, clearly, another

aspect that needs to be considered in the development of

applications that make use of hw acceleration.

A. Workflow

The first step for designer is to select the board (featuring a

Zynq device) where to run the test applications. In our case a

Zedboard by AVNET was selected, equipped with a

Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 which

encloses two ARM processor A53.

The second step is the choice of the OS: SDSoC can, in fact,

create application running on an embedded Linux OS or on a

FreeRTOS real time OS or in bare-metal enviroment.

The most important element in SDSoC is the SDS compiler

that is the responsible, after, of calling the tools of Vivado for

the HLS “translation” of C/C++ code in HDL, the creation of

the whole system in RTL (including the communication

infrastructure) and the generation of the bitstreams.

The final step is the generation of a bootable image (by

invoking Bootgen tool) that contains the kernel of the eventual

OS, the bitstrams, the devicetree blob, the application and all

the other necessary elements for correctly booting the system.

IV. PREESM

PREESM is an open-source framework developed by

researchers of INSA in France and Texas Instruments. It is a

dataflow-based tool for rapid prototyping and simplifying

multi-core Digital Signal Processing (DSP) programming

[28].

Fig. 1. Rapid Prototyping Process: Workflow example

for TMS320C6678 [28]

It provides automatic generation of deadlock-free code, and
features memory and time analysis thanks to the Parameterized
and Interfaced Synchronous Dataflow (PiSDF) Model of
Computation (MoC). In [29], the authors describe how an
application can be divided into actors that communicate
through FIFOs (i.e. First In First Out data queues) using
PiSDF: the generation of the code is then performed taking into
account the System-Level Architecture Model (S-LAM) that
provides a high-level description of the device. In figure 2 an
example of PiSDF is shown, whereas in figure 3 an example of
S-LAM, related with the DSP TMS320C6678 by Texas
Instrument, can be seen.

Fig. 2. An Example of a PiSDF Model [28]

Fig. 3. example of S-LAM for TMS320C6678 [28]

The PREESM framework does not provide yet a code

generation optimized for HLS techniques and the code itself is

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

not intended to be exported directly into SDSoC for hardware
accelerator generation: in the S-LAM is not possible to specify
the HLS nature of the cores (i.e. it is not possible to specify
that some specific functions should be executed on the FPGA).
Therefore, one of the main contributions of this work consist of
manually adapting, for an image-processing/video-stream
application, the generated deadlock-free code for Synchronous
Data Flow computation in SDSoC, applying, when necessary,
pragma directives to guide the hardware optimization process.

V. VIDEO-IMAGE PROCESSING APPLICATION (DATAFLOW)

In this section, the different experimental setups are
presented. Notice that all of them share the same functionality
(the same high-level definition in PREESM), even though the
hardware/software partitioning or certain configuration
parameters (e.g. number of stripes in the image) might be
different.

In order to establish a baseline solution, the unmodified
output of PREESM is executed in the target platform (dual-
core ARM Cortex A9). Every implementation alternative is
then compared with this reference solution.

For this first version, where only software is executed, it is
not possible to perform automatic code instrumentation to track
the events of the function calls (this feature of SDSoC is
available only when moving functions to hardware). However,
it is possible to measure the execution time by manually
instrumenting the code or by using software-profiling functions
available in Linux.

The other versions will contain different number or
hardware accelerators, different number of threads invoking
the hardware functions and different strategies of performing
these hardware calls.

A. SW version

With the software version, it was possible to reach 150
frames per second using a video 352 pixels wide and 288
pixels high. In this case, the video was divided in 8 slices in
order to exploit data-level parallelism (each image stripe can be
independently processed by a different instance of a Sobel
actor). So, to execute a Sobel function with a slice of 352x38
pixels upon an ARM processor clocked at 667MHz, 300us are
needed (average over three hundred executions). For this
“baseline-set” test, only one threads was used in the execution.

B. SW accelerated by HW execution

The second version of the program uses four hardware
accelerators generated by SDSoC. In this case, SDSoC is left
free to handle hardware function calls. In this case, a 115
frame-per-second (fps) rate is reached when executing the
whole image pipeline, and it takes 650us to execute every
instance of the Sobel function in hardware. The frequency at
which hardware accelerators operate was intentionally left to
the default value of 142.86 MHz in order to show that, with a

modified and parallelism-aware manual invocation strategy,
execution performance can be improved significantly.

In Fig. 4, a graph reporting the experimental “event
tracing” is shown. Notice that, by default, SDSoC implements
hardware-function handling using a blocking approach, i.e.
each accelerator has to finish before the software can proceed
executing the rest of the application code. Of course, this leads
to an inefficient use of FPGA resources (it is possible to obtain
similar performance values with just one hardware accelerator
instead of four).

Fig. 4. Execution of HW function in the case of automatic handling of

hardware function calls by SDSoC

C. Indroduction of “pragmas”

In the third version, the use of #pragma SDS

async()was introduced. Whit these compiler instructions it
is possible to call a hardware function in a non-blocking way,
i.e. without waiting for the outputs to be available. Every

“async” call is associated with a #pragma SDS

wait()that has to be placed just before the program needs to
gather the outputs. In this case it is possible to reach 200 fps on
the same video elaboration and, in Fig. 5, it is shown that the
strategy of the asynchronous function call was useful: inside
only a sequential software thread, another level of parallelism
can be exploited. In fact, it is easy to note that the execution of
the image processing functions is overlapped in time.
Therefore, and although the performance of a single call to
Sobel accelerator is worse than the one of its software
counterpart, it is possible to reach a speedup of 25%.

Fig. 5. Execution of HW function in the case of manual hw handling using

one thread

Following, it is shown that it is still possible to improve the
performance adding other optimization to the code and to the
HLS synthesis (by increasing the clock frequency of the HW
functions and using more threads to perform the HW calls). In
addition, as it was described, the frequency of the
communication bus and the clock signal of the RTL block is
increased giving better performances in executing the same
functionalities.

D. Modification of HW accelerators clock frequency

Bringing the frequency of the clock of the HW accelerators
from 142.86MHz to 166.67MHz, in the case of the automatic
hardware-call handling in SDSoC, the execution of the Sobel
actor is reduced from 650us to 550us and the frame rate of the
video goes from 115fps to 125fps. Anyhow, in the case of
manual strategy optimization, it is possible to achieve an
improvement of 5 fps (from 200 fps to 205fps).

In table 1, all the results obtained with 1 thread and 4
hardware accelerators are shown with the different values of
frequency used in both manual and automatic accelerator
handling.

Table 1.Performance with 1 thread and 4 HW accelerators

 1 Thread - 8 Slices 4 Accelerators

HW freq. [MHz] 142.86 166.67 200

SDSoC hw
handling 115 fps 125 fps 135 fps

Manual hw
handling 200 fps 205 fps 207 fps

E. Improving performance by using two Pthreads

Now, using again PREESM to generate more threads
(Pthreads), it is possible to use the two ARM cores available in
the Zedboard for the concurrent execution of software and, for
every generated Pthread, offload the computation of the
different instances of the Sobel actor to one or more hardware
accelerators. In this case, again, for every Pthread, it is
necessary to take care of manually performing the
asynchronous handling of the hardware calls in order to better
exploit the computational power enabled by the parallel
resources of the FPGA.

Fig. 6. Execution of HW function in the case of manual hw handling using
two threads

In Fig 6, a graph obtained by manual handling of HW calls is

shown: as expected, the level of parallelism of the execution

of the functions is even higher due the independence of the

call inside Pthreads. In contrast, in Fig 4, a graph of the event

tracing for the case of the default SDSoC HW calls

management is shown.
In table 2 al the results obtained using two Pthreads and

four hardware accelerators are shown.

Table 2.Performance with 2 threads and 4 HW accelerators

 2 Thread - 8 Slices 4 Accelerators

HW freq. [MHz] 142.86 166.67 200

SDSoC hw
handling 150 fps 160 fps 171 fps

Manual hw
handling 211 fps 218 fps 222 fps

Fig. 7 . Frame per second obtained using 1 or 2 threads in case of manual and

automatic hw handling

To summarize, in Fig. 7, the software version of the video

application executed on the ARM processors of the Zynq

device (dark-blue bar) is compared with other two versions

where four hardware accelerators are used in each. On the left

side, only one thread is used and, on the right side, two

threads.

The light-green bars show that, leaving SDSoC free to call the

hardware accelerators, the performance decreases when one

thread is used while, using two, an improvement is obtained.

However, the improvement is achieved always if a manual

managing of the hardware function is performed (yellow bar)

by using asynchronous calls.

VI. CONCLUSION AND FUTURE WORK

In this paper it is proposed, as a proof-of-concept, the

integration of two existing tool for the scheduling and the

generation of hardware accelerators: PREESM, a data-flow

based framework for rapid prototyping, and SDSoC, a

commercial tools developed by Xilinx that generates hardware

accelerators exploiting HLS techniques. It is demonstrated that

a careful asynchronous invocation of hardware accelerators

inside threads (already generated by PREESM) can bring

benefits, pushing the performance of a video streaming

application from 150 fps up to 220 fps with an improvement

of 48% on the execution time.

However, this is a first step that will lead to an evolution of

PREESM where it is possible to automatic generate deadlock-

free and scheduled code ready to be compiled by SDSoC with

the right pragmas in order to generate and call the hardware

function execution.

For future work it is possible to consider, also, the energy and

power consumption

ACKNOWLEDGMENTS

Leonardo Suriano holds a predoctoral contract under

RR01/2015 (Programa Propio) by Universidad Politécnica de

Madrid.

REFERENCES

[1] R. Hartestein, “Microprocessor Is No More General Purpose: Why
Future Reconfigurable Platforms Will Win” Invited Paper, Of The
International Conference On Innovative Systems In Silicon.Isis’97,
Texas, Usa, Pp 1- 10, October 8-10, 1997.

[2] D. Wang, S. Li and Y. Dou, Loop Kernel Pipelining Mapping Onto
Coarse-Grained Reconfigurable Architecture For Data-Intensive
Applications, In Journal Of Software, Volume 4, No-1,P81-89, 2009.

[3] J. Singh and N. Auluck, "Real time scheduling on heterogeneous
multiprocessor systems — A survey," 2016 Fourth International
Conference on Parallel, Distributed and Grid Computing (PDGC),
Waknaghat, India, 2016, pp. 73-78.

[4] J. Spasic, D. Liu and T. Stefanov, "Energy-efficient mapping of real-
time applications on heterogeneous MPSoCs using task
replication," 2016 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, 2016,
pp. 1-10.

[5] H. Cherupalli, R. Kumar and J. Sartori, "Exploiting Dynamic Timing
Slack for Energy Efficiency in Ultra-Low-Power Embedded
Systems," 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), Seoul, 2016, pp. 671-681.

[6] D. Rudolph, C. Wilson, J. Stewart, P. Gauvin, A. George, H. Lam, G.
Crum, M. Wirthlin, A. Wilson and A. Stoddard, CHREC space
processor: a multifaceted hybrid architecture for space computing, Proc.
of the AIAAIUSU Conference on Small Satellites, 2014.

[7] K. Railis, V. Tsoutsouras, S. Xydis and D. Soudris, "Energy profile
analysis of Zynq-7000 programmable SoC for embedded medical
processing: Study on ECG arrhythmia detection," 2016 26th
International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), Bremen, 2016, pp. 275-282.

[8] S. Shaikh and S. Pujari, "Migration from microcontroller to FPGA based
SoPC design: Case study: LMS adaptive filter design on Xilinx Zynq
FPGA with embedded ARM controller," 2016 International Conference
on Automatic Control and Dynamic Optimization Techniques
(ICACDOT), Pune, 2016, pp. 129-134.

[9] K. Railis, V. Tsoutsouras, S. Xydis and D. Soudris, "Energy profile
analysis of Zynq-7000 programmable SoC for embedded medical
processing: Study on ECG arrhythmia detection," 2016 26th
International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), Bremen, 2016, pp. 275-282.

[10] A. Stoddard, A. Gruwell, P. Zabriskie and M. Wirthlin, "High-speed
PCAP configuration scrubbing on Zynq-7000 All Programmable SoCs,"
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), Lausanne, 2016, pp. 1-8.

[11] V. Boppana, S. Ahmad, I. Ganusov, V. Kathail, V. Rajagopalan and R.
Wittig, "UltraScale+ MPSoC and FPGA families," 2015 IEEE Hot
Chips 27 Symposium (HCS), Cupertino, CA, 2015, pp. 1-37.
doi: 10.1109/HOTCHIPS.2015.7477457.

[12] M. Vucha and A. Rajawat, “A Case Study: Task Scheduling
Methodologies for High Speed Computing Systems”, International
Journal of Embedded systems and Applications (IJESA) Vol.4, No.4,
December 2014

[13] C. L. Liu And James W. Layland, Scheduling Algorithms For
Multiprogramming In A Hard Real Time Environment, Journal Of Acm,
Vol. 20, No. 1, Pp. 46-61, 1973.

[14] J. Lehoczky, L. Sha And Y. Ding, The Rate Monotonic Scheduling
Algorithm: Exact Characterization And Average Case Behavior,
Proceedings Of Real Time Systems Symposium, Pp. 166-171, Dec.
1989.

[15] Wei Zhao, K. Ramamritham and J. A. Stankovic, "Scheduling Tasks
with Resource Requirements in Hard Real-Time Systems," in IEEE
Transactions on Software Engineering, vol. SE-13, no. 5, pp. 564-577,
May 1987.

[16] Y.K. Kwok And I. Ahmad, “Dynamic Critical Path Scheduling: An
Effective Technique For Allocating Task Graphs To Multiprocessors”,
Ieee Trans. Parallel Distributed Systems, Vol. 7, No. 5, Pp. 506-521,
May 1996.

[17] An Improved Duplication Strategy For Scheduling Precedence
Constrained Graphs In Multiprocessor Systems, Ieee Trans. Parallel And
Distribution Systems, Vol. 14, No. 6, June 2003.

[18] S. Darba And D.P. Agarwal, “Optimal Scheduling Algorithm For
Distributed Memory Machines”, Ieee Trans. Parallel And Distributed
Systems, Vol. 9, No. 1, Pp. 87-95, Jan. 1998.

[19] H. Topcuoglu, S. Hariri And Min-You Wu, Performance Effective And
Low-Complexity Task Scheduling For Heterogeneous Computing, Ieee
Transactions On Parallel And Distributed Systems, Vol. 13, No. 3, Pp.
260 – 274, March 2002.

[20] G. Wang, H. Guo and Y. Wang, "A Novel Heterogeneous Scheduling
Algorithm with Improved Task Priority," 2015 IEEE 17th International
Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and
Security, and 2015 IEEE 12th International Conference on Embedded
Software and Systems, New York, NY, 2015, pp. 1826-1831.
doi: 10.1109/HPCC-CSS-ICESS.2015.48.

[21] Xue-Gong Zhou, Ying Wang, Xun-Zhang Haung And Cheng-Lian
Peng, On-Line Scheduling Of Real Time Tasks For Reconfigurable
Computing System, International Conference On Computer Engineering
And Technology, Pp 59-64, 2010.

[22] M. M. Bassiri And H. S. Shahhoseini, A New Approach In On-Line
Task Scheduling For Reconfigurable Computing Systems, In
Proceedings Of 2nd International Conference On Computer Engineering
And Technology, Pp. 321-324, April 2010.

[23] K. Dane And M. Platzner, A Heuristic Approach To Schedule Real-
Time Tasks On Reconfigurable Hardware, In Proceedings Of
International Conference On Field Programmable Logic And
Applications, Pp 568 – 578, 2005.

[24] S. Raju Kota, C. Shekhar, A. Kokkula, D. Toshniwal, M. V. Kartikeyan
And R. C. Joshi, “Parameterized Module Scheduling Algorithm For
Reconfigurable Computing Systems” In 15th International Conference
On Advanced Computing And Communications, Pp 473-478,.2007.

[25] Ali Ahmadinia, Christophe Bodda And Jurgen Teich, A Dynamic
Scheduling And Placement Algorithm For Reconfigurable Hardware,
Arcs 2004, Lncs 2981, Pp. 125 – 139, 2004.

[26] A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto and M. D. Santambrogio,
"Resource-Efficient Scheduling for Partially-Reconfigurable FPGA-
Based Systems," 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Chicago, IL, 2016, pp.
189-197.

[27] Xilinx Inc., “SDSoC Environment User Guide (UG1027)”,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_
4/ug1027-sdsoc-user-guide.pdf

[28] Pelcat, Maxime; Desnos, Karol; Heulot, Julien; Guy, Clément; Nezan,
Jean-François; Aridhi Slaheddine (2014) "PREESM: A Dataflow-Based

Rapid Prototyping Framework for Simplifying Multicore DSP
Programming". EDERC 2014, Milan, Italy.

[29] Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.:
Pimm: Parameterized and interfaced dataflow meta-model for MPSoCs
runtime reconfiguration. In: SAMOS XIII (2013)

[30] T. Kalb and D. Göhringer, "Enabling dynamic and partial
reconfiguration in Xilinx SDSoC," 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), Cancun, 2016, pp.
1-7.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_%204/ug1027-sdsoc-user-guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_%204/ug1027-sdsoc-user-guide.pdf
http://hal.archives-ouvertes.fr/docs/01/05/93/13/PDF/ederc2014.pdf
http://hal.archives-ouvertes.fr/docs/01/05/93/13/PDF/ederc2014.pdf
http://hal.archives-ouvertes.fr/docs/01/05/93/13/PDF/ederc2014.pdf

