
Analysis of a Heterogeneous Multi-Core,  

Multi-HW-Accelerator-Based System Designed  

Using PREESM and SDSoC 

Leonardo Suriano*, Alfonso Rodriguez*, Karol Desnos**, Maxime Pelcat**, Eduardo de la Torre* 

 

*Centro de Electrónica Industrial 

Universidad Politécnica de Madrid, Spain 

{leonardo.suriano; alfonso.rodriguezm; 

eduardo.delatorre}@upm.es 

**IETR, UMR CNRS 6164, UEB 

INSA Rennes. France 

{Karol.Desnos; Maxime.Pelcat}@insa-rennes.fr

 

 
Abstract— Nowadays, new heterogeneous system technologies 

are flooding the market: through the past years, it is possible to 

observe the move from single CPUs to multi-core devices 

featuring CPUs, GPUs and large FPGAs, such as Xilinx Zynq-

7000 or Zynq UltraScale+ MPSoC architectures. In this context, 

providing developers with transparent deployment capabilities to 

efficiently execute different applications on such complex devices 

is important. In this paper, a design flow that combines, on one 

side, PREESM, a dataflow-based prototyping framework and, on 

the other side, Xilinx SDSoC, an HLS-based framework to 

automatically generate and manage hardware accelerators, is 

presented. This integration leverages the automatic, static task 

scheduling obtained from PREESM with asynchronous 

invocations that trigger the parallel execution of multiple 

hardware accelerators from some of their associated sequential 

software threads. An image processing application is used as a 

proof of concept, showing the interoperability possibilities of 

both tools, the level of design automation achieved and, for the 

resulting computing architecture, the good performance 

scalability according to the number of accelerators and sw 

threads. 

Keywords— Heterogeneous computing, scheduling, 

reconfigurable MPSoC, SDSoC, PREESM,  

I. INTRODUCTION 

The advent of reconfigurable Multiprocessor Systems on 
Chip (MPSoCs) equipped with a combination of several 
processing cores with programmable logic, such as the Xilinx 
Zynq-7000 family or, more recently, the Zynq-UltraScale+, 
enables the possibility of building large systems with 
unprecedented complexity and integration levels. However, 
developing efficient implementations requires the execution of 
multiple tasks simultaneously, relying on the use of both 
software (SW) and hardware (HW) computing fabrics at the 
same time, with relatively complex interdependencies among 
them. 

This type of devices may be considered as high-end target 
platforms within the domain of high performance embedded 
systems, but at the same time they are becoming more and 
more important in the high performance computing domain 

itself, with significant developments in big data or cloud 
computing applications, among others. However, their inherent 
heterogeneity and the associated complexity (which forces the 
use of embedded operating systems, often with real-time 
constraints), poses important challenges from the point of view 
of the design methodologies, where a minimum level of 
automation is required. 

High Level Synthesis (HLS) tools have finally paved the 
path from high-level languages to HW, allowing some 
flexibility in selecting the levels of parallelism that HW 
accelerators should have. However, this is not for free, since 
performance has to be traded against resource utilization and 
interface complexity. With this idea in mind, FPGA vendors 
are offering SW-oriented solutions that, starting from SW 
programs, let a relatively unexperienced HW designer to 
implement and use HW accelerators. However, it does not 
directly address the issue of exploiting the concurrency or 
parallelism levels that the multiple HW and SW cores may 
offer.  

A good work on providing SDSoC with Dynamic and 
Partial Reconfiguration (DPR) capabilities was recently 
presented in [30], allowing HW accelerators to be exchanged 
by other ones. Another important issue is the possibility, for 
some reconfigurable architectures, of providing scalability and 
adaptable fault tolerance levels, deciding at runtime the number 
of HW accelerators and the depth of HW redundancy to be 
used in the execution of an accelerated task.  

By using these such features (DPR and HW scalability) 
reconfigurable heterogeneous systems would offer an excellent 
flexibility in the sense that a set of tasks could be mapped into 
an arbitrary number and combination of SW cores and HW 
accelerators, especially when the latter have been obtained 
from HLS processes. In this context, task/thread mapping and 
the choosing of right scheduling may benefit from tools that 
(i): explicitly express the parallelism at function level, (ii): 
provide parameterized specification, (iii): support various 
models of architecture (MoA) to adapt to different platforms 
(and number of HW accelerators) and (iv) are able to produce 
the convenient task scheduling. 



PREESM precisely does this. It provides a graphical 
framework to support the specification of dataflow 
applications, where actors are implemented as tasks and are 
linked with parameterizable communication links. The 
framework contains a mapper that, according to a specified 
architecture, provides the corresponding task/thread mapping 
to cores and the corresponding scheduling (shared memories 
and semaphores for shared memory structures, FIFOs for 
dataflow-like linked actors, etc…). 

In this paper, it is presented a prospection on the use of 
PREESM and SDSoC for building heterogeneous, dynamically 
scalable systems, making use of the actor specification 
(including the parameterization features) and the mapping and 
scheduling generated from PREESM, combined with HLS-
based HW accelerator design as well as all the integration 
provided by SDSoC. The main highlights of this paper are: 

- A proof of concept that shows the possibility of combining 
dataflow oriented specifications and their associated 
mapping and scheduling for a multicore-oriented device 
with HW acceleration using available tools. 

- Changes in the HW handling strategy to more efficiently 
use HW parallelization capabilities may be used to improve 
performance, by using asynchronous HW invocation calls 
from within a thread-based multiple-task scheme. 

The rest of the paper is structured as follows: a brief 
description of the state of the art is given in the second section, 
and in the third and fourth Xilinx SDSoC and PREESM are 
introduced, respectively. Section V contains the description of 
the application used for testing the integration of the tools, as 
well as the experimental results. In the conclusions, the main 
achievements are highlighted together with the future lines of 
the work.  

II. BACKGROUND 

As predicted by Hartestein in 1997 [1], Reconfigurable 
Platforms are becoming crucial devices for developing data-
intensive applications [2] since they leverage both high-
performance and flexibility at the same time, in the same 
package. However, not only performance and flexibility are 
important: energy-efficiency of the devices plays a decisive 
role especially in growing fields such as Internet of Things 
(IoT), sensor networks, wearable devices [5], and even in space 
applications [6]. 

In this context of embedded high computational demand 
and low power consumption, MPSoCs such as Zynq-7000 and 
Zynq Ultrascale+ families, designed by Xilinx, are being 
intensively used [6-10] due to the combination of two ARM 
processors Cortex-A53 surrounded by 28-nm programmable 
logic in the case of Zynq 7000 family and, for the Ultrascale+, 
by four ARM Cortex-A53, two ARM Cortex-R5, a Mali GPU 
and a 16nm FinFET+ programmable logic fabric [11]. 
However, an application running on such heterogeneous 
devices, should guarantee not only the logical correctness of 
the data output but, also, that the data is “provided on a timely 
basis” [3]. Therefore, an efficient task scheduling is needed in 
addition to all the tools already provided to develop 
applications on these complex systems. In the next paragraphs, 

a brief overview of the task scheduling methodologies is given, 
focusing mainly on heuristic methods and on the tools 
available for programming such systems.  

According to the nature where they are applied, task 
scheduling methodologies can be classified into (i) 
homogeneous computing systems, (ii) heterogeneous 
computing systems and (iii) reconfigurable computing systems, 
as explained by Vucha and Rajawat in [12]. 

A. Homogeneous Computing Systems 

Homogeneous computing systems include multiple 
processors, all with the same characteristics. Different 
scheduling techniques were proposed during the 70’s and 80’s 
in really well known works such as [13-15]. One of the most 
popular ones is the Rate Monotonic Algorithm (RM) [14]. This 
is a static priority based algorithm. It assigns a high priority to 
the most recurring task and a low priority to the one that is less 
executed. Due to the limitations of this scheduling, the Earliest 
Deadline First algorithm (EDF) was proposed in [13], where 
the priority of execution is assigned based on the deadline of 
the tasks. The main advantage of this approach is the 
dynamism of the algorithm, compared to the previous one. 
Some of the most important scheduling algorithms are the Task 
Duplication Based scheduling [18], the Maximum Urgency 
First Algorithm [15], the Dynamic Critical Path scheduling 
[16] and the Selective Duplication algorithm proposed in [17]: 
all of them are targeted upon a set of homogeneous processors. 

B. Heterogeneous Computing Systems 

A heterogeneous computing system is, normally, a set of 
processing elements different among them. Therefore, the 
application is spread upon it, taking into account the priorities 
of all the tasks and the time necessary for every processing 
element of the system to process them [12]. The milestone 
strategies of all the heterogeneous system scheduling 
algorithms developed so far are presented in [19]. The 
Heterogeneous Earliest Finish Time (HEFT) and Critical-
Path-On-a-Processor (CPOP) there proposed, are the bases of 
countless recent works like, for example, the Heterogeneous 
Scheduling Algorithm with Improved Task Priority (HSIP) 
proposed in 2015 [20]. 

C. Reconfigurable Computing Systems 

Reconfigurable Computing Systems are “an emerging 
paradigm” [12] where both flexibility and performance are 
met. It gives the programmers the possibility of customizing 
and changing, dynamically, the HW architecture to execute 
concurrently applications and tasks. The problem was studied 
in [4][21][22][23][24] and [25], where different solutions for 
an online scheduler of real-time tasks were also proposed. All 
these solutions have the common aim of “reducing 
configuration overheads through resource reuse and 
minimizing the total execution time in addition to decrease task 
rejection ratio” [12].  

However, the most recent hot topic concerns the 
Heterogeneous Reconfigurable Computing Systems, in which 
the Zynq-7000 and Zynq Ultrascale+ devices can be included. 
In the [26], researchers from Politecnico di Milano show how 



an efficient resource-aware scheduling can improve 
performance on a ZedBoard using DPR. Nevertheless, as 
Vucha and Rajawat highlight in [12], there is still a “need of 
developing scheduling methodologies for Heterogeneous 
Reconfigurable Computing Systems (HRCS), which is an 
emerging high speed computing platform for real time 
applications”.  

The preliminary work presented in this paper should be 
intended as a proof-of-concept in which a manual integration 
of PREESM and SDSoC is proposed, to provide a static 
schedule of a given application together with the automatic 
generation of hardware accelerators by SDSoC, in charge of 
driving the “translation” of C code into IP cores embedded in 
Vivado. 

III. XILINX SDSOC 

The SDSoC development environment is a tool introduced by 

Xilinx [27] in the 2015 for the MPSoCs previously mentioned 

where, using as inputs programming languages such C/C++, it 

is possible to generate applications (standalone or running 

upon an Operating System) that can offload part of the 

computationally-intensive tasks to the reconfigurable fabric of 

the target device. The hardware accelerators are generated 

using High Level Synthesis techniques, and the bitstreams are 

produced by invoking Vivado. In addition, SDSoC provides 

system level profiling techniques for performance estimation, 

as well as estimations on the overheads introduced by data 

communication between Processing System (PS) and 

Programmable Logic (PL).  

Another reason for the choice of such tools lies in future 

evolution of this paper. In fact, Kalb and Göhringer, in [30], 

demonstrate the integration of the DPR in SDSoC achieving 

further acceleration in time performance and, at the same time, 

a reduction of power consumption. This is, clearly, another 

aspect that needs to be considered in the development of 

applications that make use of hw acceleration. 

 

A. Workflow 

The first step for designer is to select the board (featuring a 

Zynq device) where to run the test applications. In our case a 

Zedboard by AVNET was selected, equipped with a 

Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 which 

encloses two ARM processor A53. 

The second step is the choice of the OS: SDSoC can, in fact, 

create application running on an embedded Linux OS or on a 

FreeRTOS real time OS or in bare-metal enviroment. 

The most important element in SDSoC is the SDS compiler 

that is the responsible, after, of calling the tools of Vivado for 

the HLS “translation” of C/C++ code in HDL, the creation of 

the whole system in RTL (including the communication 

infrastructure) and the generation of the bitstreams.  

The final step is the generation of a bootable image (by 

invoking Bootgen tool) that contains the kernel of the eventual 

OS, the bitstrams, the devicetree blob, the application and all 

the other necessary elements for correctly booting the system. 

 

IV. PREESM 

PREESM is an open-source framework developed by 

researchers of INSA in France and Texas Instruments. It is a 

dataflow-based tool for rapid prototyping and simplifying 

multi-core Digital Signal Processing (DSP) programming 

[28]. 

 

 
 

Fig. 1. Rapid Prototyping Process: Workflow example  

for TMS320C6678 [28] 

 

It provides automatic generation of deadlock-free code, and 
features memory and time analysis thanks to the Parameterized 
and Interfaced Synchronous Dataflow (PiSDF) Model of 
Computation (MoC). In [29], the authors describe how an 
application can be divided into actors that communicate 
through FIFOs (i.e. First In First Out data queues) using 
PiSDF: the generation of the code is then performed taking into 
account the System-Level Architecture Model (S-LAM) that 
provides a high-level description of the device. In figure 2 an 
example of PiSDF is shown, whereas in figure 3 an example of 
S-LAM, related with the DSP TMS320C6678 by Texas 
Instrument, can be seen. 

 

Fig. 2. An Example of a PiSDF Model [28] 

 

 
 

Fig. 3. example of S-LAM for TMS320C6678 [28] 

 
The PREESM framework does not provide yet a code 

generation optimized for HLS techniques and the code itself is 

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html


not intended to be exported directly into SDSoC for hardware 
accelerator generation: in the S-LAM is not possible to specify 
the HLS nature of the cores (i.e. it is not possible to specify 
that some specific functions should be executed on the FPGA). 
Therefore, one of the main contributions of this work consist of 
manually adapting, for an image-processing/video-stream 
application, the generated deadlock-free code for Synchronous 
Data Flow computation in SDSoC, applying, when necessary, 
pragma directives to guide the hardware optimization process. 

 

V. VIDEO-IMAGE PROCESSING APPLICATION (DATAFLOW) 

In this section, the different experimental setups are 
presented. Notice that all of them share the same functionality 
(the same high-level definition in PREESM), even though the 
hardware/software partitioning or certain configuration 
parameters (e.g. number of stripes in the image) might be 
different. 

In order to establish a baseline solution, the unmodified 
output of PREESM is executed in the target platform (dual-
core ARM Cortex A9). Every implementation alternative is 
then compared with this reference solution. 

For this first version, where only software is executed, it is 
not possible to perform automatic code instrumentation to track 
the events of the function calls (this feature of SDSoC is 
available only when moving functions to hardware). However, 
it is possible to measure the execution time by manually 
instrumenting the code or by using software-profiling functions 
available in Linux. 

The other versions will contain different number or 
hardware accelerators, different number of threads invoking 
the hardware functions and different strategies of performing 
these hardware calls. 

 

A. SW version 

With the software version, it was possible to reach 150 
frames per second using a video 352 pixels wide and 288 
pixels high. In this case, the video was divided in 8 slices in 
order to exploit data-level parallelism (each image stripe can be 
independently processed by a different instance of a Sobel 
actor). So, to execute a Sobel function with a slice of 352x38 
pixels upon an ARM processor clocked at 667MHz, 300us are 
needed (average over three hundred executions). For this 
“baseline-set” test, only one threads was used in the execution. 

 

B. SW accelerated by HW execution 

The second version of the program uses four hardware 
accelerators generated by SDSoC. In this case, SDSoC is left 
free to handle hardware function calls. In this case, a 115 
frame-per-second (fps) rate is reached when executing the 
whole image pipeline, and it takes 650us to execute every 
instance of the Sobel function in hardware. The frequency at 
which hardware accelerators operate was intentionally left to 
the default value of 142.86 MHz in order to show that, with a 

modified and parallelism-aware manual invocation strategy, 
execution performance can be improved significantly.  

In Fig. 4, a graph reporting the experimental “event 
tracing” is shown. Notice that, by default, SDSoC implements 
hardware-function handling using a blocking approach, i.e. 
each accelerator has to finish before the software can proceed 
executing the rest of the application code. Of course, this leads 
to an inefficient use of FPGA resources (it is possible to obtain 
similar performance values with just one hardware accelerator 
instead of four). 

 
 

Fig. 4. Execution of HW function in the case of automatic handling of 

hardware function calls by SDSoC 

 

C. Indroduction of “pragmas” 

In the third version, the use of #pragma SDS 

async()was introduced. Whit these compiler instructions it 
is possible to call a hardware function in a non-blocking way, 
i.e. without waiting for the outputs to be available. Every 

“async” call is associated with a #pragma SDS 

wait()that has to be placed just before the program needs to 
gather the outputs. In this case it is possible to reach 200 fps on 
the same video elaboration and, in Fig. 5, it is shown that the 
strategy of the asynchronous function call was useful: inside 
only a sequential software thread, another level of parallelism 
can be exploited. In fact, it is easy to note that the execution of 
the image processing functions is overlapped in time. 
Therefore, and although the performance of a single call to 
Sobel accelerator is worse than the one of its software 
counterpart, it is possible to reach a speedup of 25%. 

 

 
 

Fig. 5. Execution of HW function in the case of manual hw handling using 

one thread 

 



Following, it is shown that it is still possible to improve the 
performance adding other optimization to the code and to the 
HLS synthesis (by increasing the clock frequency of the HW 
functions and using more threads to perform the HW calls). In 
addition, as it was described, the frequency of the 
communication bus and the clock signal of the RTL block is 
increased giving better performances in executing the same 
functionalities. 

 

D. Modification of HW accelerators clock frequency 

Bringing the frequency of the clock of the HW accelerators 
from 142.86MHz to 166.67MHz, in the case of the automatic 
hardware-call handling in SDSoC, the execution of the Sobel 
actor is reduced from 650us to 550us and the frame rate of the 
video goes from 115fps to 125fps. Anyhow, in the case of 
manual strategy optimization, it is possible to achieve an 
improvement of 5 fps (from 200 fps to 205fps). 

In table 1, all the results obtained with 1 thread and 4 
hardware accelerators are shown with the different values of 
frequency used in both manual and automatic accelerator 
handling.  

 

Table 1.Performance with 1 thread and 4 HW accelerators 

  1 Thread - 8 Slices 4 Accelerators 

HW freq. [MHz] 142.86 166.67 200 

SDSoC hw 
handling 115 fps 125 fps 135 fps 

Manual hw 
handling 200 fps 205 fps 207 fps 

 
 

E. Improving performance by using two Pthreads 

Now, using again PREESM to generate more threads 
(Pthreads), it is possible to use the two ARM cores available in 
the Zedboard for the concurrent execution of software and, for 
every generated Pthread, offload the computation of the 
different instances of the Sobel actor to one or more hardware 
accelerators. In this case, again, for every Pthread, it is 
necessary to take care of manually performing the 
asynchronous handling of the hardware calls in order to better 
exploit the computational power enabled by the parallel 
resources of the FPGA. 



Fig. 6. Execution of HW function in the case of manual hw handling using 
two threads 

 

In Fig 6, a graph obtained by manual handling of HW calls is 

shown: as expected, the level of parallelism of the execution 

of the functions is even higher due the independence of the 

call inside Pthreads. In contrast, in Fig 4, a graph of the event 

tracing for the case of the default SDSoC HW calls 

management is shown. 
In table 2 al the results obtained using two Pthreads and 

four hardware accelerators are shown. 

 

Table 2.Performance with 2 threads and 4 HW accelerators 

  2 Thread - 8 Slices 4 Accelerators 

HW freq. [MHz] 142.86 166.67 200 

SDSoC hw 
handling 150 fps 160 fps 171 fps 

Manual hw 
handling 211 fps 218 fps 222 fps 





Fig. 7 . Frame per second obtained using 1 or 2 threads in case of manual and 

automatic hw handling  

 

To summarize, in Fig. 7, the software version of the video 

application executed on the ARM processors of the Zynq 

device (dark-blue bar) is compared with other two versions 

where four hardware accelerators are used in each. On the left 

side, only one thread is used and, on the right side, two 

threads.  

The light-green bars show that, leaving SDSoC free to call the 

hardware accelerators, the performance decreases when one 

thread is used while, using two, an improvement is obtained. 

However, the improvement is achieved always if a manual 

managing of the hardware function is performed (yellow bar) 

by using asynchronous calls. 

 



VI. CONCLUSION AND FUTURE WORK 

In this paper it is proposed, as a proof-of-concept, the 

integration of two existing tool for the scheduling and the 

generation of hardware accelerators: PREESM, a data-flow 

based framework for rapid prototyping, and SDSoC, a 

commercial tools developed by Xilinx that generates hardware 

accelerators exploiting HLS techniques. It is demonstrated that 

a careful asynchronous invocation of hardware accelerators 

inside threads (already generated by PREESM) can bring 

benefits, pushing the performance of a video streaming 

application from 150 fps up to 220 fps with an improvement 

of 48% on the execution time.  

However, this is a first step that will lead to an evolution of 

PREESM where it is possible to automatic generate deadlock-

free and scheduled code ready to be compiled by SDSoC with 

the right pragmas in order to generate and call the hardware 

function execution. 

For future work it is possible to consider, also, the energy and 

power consumption 
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