
HAL Id: lirmm-02499157
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02499157

Submitted on 5 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Edge-Computing Perspectives with Reconfigurable
Hardware

Pascal Benoit, Loïc Dalmasso, Guillaume Patrigeon, Thierry Gil, Florent
Bruguier, Lionel Torres

To cite this version:
Pascal Benoit, Loïc Dalmasso, Guillaume Patrigeon, Thierry Gil, Florent Bruguier, et al.. Edge-
Computing Perspectives with Reconfigurable Hardware. ReCoSoC 2019 - 14th International Sympo-
sium on Reconfigurable Communication-centric Systems-on-Chip, Jul 2019, York, United Kingdom.
pp.51-58, �10.1109/ReCoSoC48741.2019.9034961�. �lirmm-02499157�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02499157
https://hal.archives-ouvertes.fr

Edge-Computing Perspectives with Reconfigurable
Hardware

Pascal Benoit, Loic Dalmasso, Guillaume Patrigeon, Thierry Gil, Florent Bruguier, Lionel Torres
LIRMM – CNRS UMR 5506,

University of Montpellier
161 rue Ada, 34095 Montpellier, France

Abstract— The Internet of Things is a promise of smarter

technologies, with devices working together in a distributed
manner, to provide more quality of service in many domains, such
as industry, transports, energy, health, etc. Fog/Edge computing is
probably one of the most interesting concepts as it will be a means
to optimize energy and performance. However, beyond the
principle, few works have really demonstrated the real potential of
it, as many challenges need to be addressed at different levels:
hardware design, software APIs, communication protocols, radio
technologies, and so on. In this context, there is a growing interest
in reconfigurable devices, as they bridge the gap between
performance and energy with the advantage of the hardware
flexibility. In this paper, we present a platform with sensor nodes
and gateways relying on FPGAs, and showing that reconfigurable
devices can be an enabling technology for edge-computing.

Keywords—Internet of Things; Fog computing; Gateway; Data
Distribution Service; M2M; FPGA

I. INTRODUCTION
The Internet of Things is a concept that extended 10 years ago

the one of wireless sensor networks, where each node is a device
able to interact with its environment, as a sensor or an actuator,
and connected directly or indirectly to the Internet over TCP/IP.
A further extent of the concept talks about Internet of
Everything, which means that in the future, anything in this
world, will be equipped with a piece of electronic that will
connect it to the global network. Machine to machine (M2M)
communication is strongly bound to IoT, which means that the
devices are able to send/receive data and interact together
autonomously. M2M and IoT can bring revolutionizing
applications in many domains, such as the industry (process
monitoring, predictive maintenance), transports (traffic
optimization, emergency management), energy (production and
consumption balance, resource optimization), health (patient
monitoring), and many others.

IoT is a promise for about ten years now, and despite many
contributions and huge efforts in the research and industry
communities, there are still big challenges to address before
turning it into a reality. One of the reasons is that behind the
concept that is very easy to understand, implementing the IoT
rises many problems: interoperability, security, data storage

management, acceptability, privacy, wireless networks maturity,
scalability, energy, quality of service, etc., as highlighted in [1].
Today, there are successful demonstrations of the concept, but
mostly limited to a very specific application, in a given context,
with customized devices and protocols. But according to CISCO
in 2017, 75% of IoT projects failed before completion, which
shows that it is mandatory to build a strong scientific body to
study, understand, design and optimize the Internet of Things, so
that it fulfils its commitments. Many fundamental questions
arise from a scientific perspective in the context of IoT: what is
the “object” of study, what are the building blocks, how to
model globally, how to model accurately, how to segment, how
to compare centralized vs. distributed approaches, specific vs.
generic, how to optimize the energy, how to address the security,
how to measure the Quality of Service of a given application,
etc.? Eventually, can IoT be apprehended as a whole, as it would
be possibly the connection of everything?

Our ambition is more modest but is an important milestone
in addressing a number of the issues raised above: the objective
is to provide a complete prototyping platform with a set of
flexible and customizable hardware and software, in order to
explore innovative approaches in the context of IoT, such as Fog
computing, where storing and processing capabilities are
decentralized to the edges of the network e.g. nodes or gateways.
The motivation is to rationalize data exchanges, endowing
processing capabilities into edge devices or even sink nodes,
allowing only meaningful information to be communicated. This
approach could enable near-sensor analytics, as the processing
of data would be performed close to the source of information.
There is clearly a growing interest in this concept, as evidenced
by recent research papers [2][3][4]. However, devices like
sensor nodes or gateways required to support this new paradigm,
do not provide the necessary hardware, software and
communication protocols to implement it efficiently, as their
role is generally limited: sense/send/receive data for the nodes,
or bridge the gap between sensors and an IP network for the
gateways.

We have developed an IoT platform composed of a set of
reconfigurable sensors and gateways, which provides all the
building blocks required to explore, design and implement the
concept of Fog Computing. FlexNode is a prototyping board

using an FPGA for design space exploration at the sensor level:
the architecture relies on a generic MCU that can be customized
on purpose, i.e. processor, dedicated blocks, accelerators,
memory, etc. Reconfigurable Gateways are built on a Zynq
FPGA, integrating a Processing System (with a dual core ARM)
and Programmable Logic, that can be configured to offload time
or power-consuming tasks. Gateways are designed to support
M2M communications, to store and to process data in a
distributed manner, allowing potentially more performance,
reliability and scalability. Their design is generic: both software
and hardware are flexible and customizable, so that they can be
adapted to various requirements, easing the same way
interoperability and reducing the costs. In this paper, we present
the building blocks of the platform, and demonstrate with
different use cases the advantages of reconfigurable hardware to
explore the concept of Fog Computing.

The remainder of this article is organized as follows: part II
is dedicated to related works; then we provide a description of
the FlexNode in the third part. Section IV summarizes the
characteristics of the gateway, hardware and software elements,
and the communication protocol used to enable M2M
interactions; case studies are reported in the next section, to
demonstrate the relevance of such an approach, with some
results showing the advantages provided by reconfigurable
computing in the Fog.

II. RELATED WORKS
The utilization of FPGAs in sensor nodes has been

investigated for several years. One approach is to use it directly
in replacement or additionally to an MCU. Recently, [5] have
shown a Zynq FPGA platform used to collect tri-axes vibration
data and performs FFT computations in a high performance
wireless sensor node. In [6] a Virtex-4 FPGA is used to design a
wireless sensor node, with runtime configuration capabilities.
An underwater acoustic module based on FPGA was
demonstrated in [7]. The FPGA can also be used for specific
tasks, like security services at the sensor level, as in [8] where
Hyperchaos Encryption is implemented in the sensor node
within the FPGA. Reconfigurable devices have demonstrated
strong abilities to perform signal and image processing, and are
particularly well suited for vision sensor nodes, as it is shown in
[9], where they integrate a Nios II soft-core processor, image
acquisition and compression circuit on a single FPGA chip,
which meets the design requirements of low-power
consumption, flexibility, low-cost and in small size. A Zigbee
image sensor node is presented in [10] where a tracking
application is demonstrated with 2 sensor nodes. The advantage
of dynamic reconfiguration in the sensor node to reduce
redundant transmission, consumes less power and bandwidth in
the context of a surveillance system was reported in [11].
Another approach is to use the FPGA as an emulator or as a
prototyping platform for hardware/software evaluations. In [12],
the prototyping boards based on an FPGA are used for fast
implementation and verification. SUNSHINE [13] is a

hardware-software emulator allowing the simulation of flexible
sensor nodes.

Gateways have a key role in the context of IoT: they
implement the networking protocols, distribute the storage
resources, allow potentially edge analytics, and secure data from
things to the cloud. In [2], authors discuss the need of extra
functionality in gateways to perform processing on data before
sending to the Internet: they clearly show that adding some
intelligence at the edge would enable a better utilization of
network resources, and improve the performance of applications.
In [14], it is shown that efficient architectures are missing to
provide access to the Internet for low-power devices: for this
purpose, smartphones are suggested to support the gateway
functionalities.

Commercial dedicated gateways instance from Advantech,
Multitech, Huawei, Dell, HPE, etc., feature radio (BLE, WiFi,
GSM, 4G-LTE, 3G, LoRa, etc.) to Internet hardware and
software resources, generally based on general purpose
approaches like embedded PCs (ARM-based or Intel-based
architectures) running Windows (10 IoT enterprise) or Linux
(Ubuntu Snappy, Windriver). But it was shown that traditional
software-based gateways are limited in terms of performance.
The authors of [15] show that a Xilinx FPGA gateway system
was able to reduce up to 94.7% on execution time compared to
related works. In [16], they propose to use an FPGA to perform
protocol conversion and secure transmission between 4G and
PROFIBUS-DP. In [17], the authors present a configurable
vehicular Ethernet gateway utilizing a hybrid FPGA, with
interesting capabilities like run-time adaptability of the switch to
address network security in connected vehicles. Reconfigurable
gateways were also used in the context of Intelligent Home: [18]
reports a hybrid ARM+FPGA system, which realizes the
connection between home appliances and the Internet over
ZigBee and Wi-Fi networks. A similar contribution [19] was
sown over a cellular network. Security is also a big motivation
of reconfigurable gateways, as highlighted in [20] to implement
a VPN and secure data transfers over non-confidential network
areas.

Reconfigurable hardware is considered now for several years
as a relevant approach in the context of WSN and IoT, and is
gaining more and more interest both at the sensor and gateway
levels, as demonstrated in this related works section. However, it
can be noticed that the computations and tasks handled by
reconfigurable devices do not really show the exploration or
implementation of a Fog Computing approach, i.e. the ability of
the building blocks to distribute computation / storage and
communicate over the network in a collaborative manner.

III. FLEXNODE ARCHITECTURE
The FlexNode prototyping platform consists of an elec- tronic

board with a controller slot, peripheral slots, power distribution
and the necessary components to perform power characterization
of each element composing the node. The peripheral slots can be
used to connect sensors, actuators or communication modules.

This platform can be used primarily for the evaluation and
comparison of multiple controller solutions, with different node
architectures, peripherals, sensors, radios and applications. This
node can be used directly as a WSN to perform evaluation while
taking account of communication and network hazards.

The Digilent CmodA7 was chosen as the central unit thanks
to its small size, 48-pin DIP board built around a Xilinx Artix-7
FPGA, the XC7A35T-1CPG236C, which has 20 800 LUTs, 41
600 Flip- Flops, 225 kB of RAM and 1 MSPS ADC. It is
possible to explore different architecture solutions by
reproducing the desired behavior within the FPGA.

Figure 1 : Generic architecture of FlexNode

Typical microcontrollers include at least one processor, a
non-volatile memory (usually Flash for code instructions and
read-only data), a volatile memory (usually SRAM for
application data), a power management unit, a clock management
unit, input/output peripherals, communication modules (UART,
SPI, I2C, USB, CAN. . .) and timers. This typical architecture is
depicted in Fig. 1. Some microcontrollers also include different
types of non-volatile memories (ROM, EEPROM...) or have a
multi-master system (multi-processors, Direct Memory Access
(DMA)...). Depending on the application, this architecture can be
customized, which implies a potential large design space to
explore.

Figure 2 : Customized Flexnode

Figure 3 : One instance of FlexNode with a LoRa radio

As a demonstration example (Fig. 2), we use the ARM
Cortex-M0 r1p0. This is a 3-stage 32-bit RISC processor that
implements the ARMv6-M ISA. It includes a single AHB-Lite
interface, 32 interrupt lines, 1 Non-Maskable Interrupt and a
single-cycle multiplier. The architecture also includes a 2 kB
ROM containing a bootloader code, a 128 kB RAM and a 16 kB
RAM, peripherals for inputs/outputs control (44 I/O, PPS), serial
communication (4x UART, 2x SPI, 2x I2C) and timing modules
(4x 16-bit timers). All these elements are connected together
thank to a single-master AMBA3 AHB-Lite system. A peripheral
called Activity Monitor is also used to report events and
characterize power consumption and performance.

The complete board is depicted in Fig. 3. We use the
ADT7420, a digital temperature sensor with I2C interface, which
is the one used by Digilent on the PmodTMP2. The radio module
is the SX1272 from SEMTECH, a LoRa transceiver with SPI
interface. The SX1272 is configured in LoRa mode with a
spreading factor of 12. This system has also been validated with
the Pmod BLE (Bluetooth Low Energy), Pmod GPS receiver,
Pmod ALS (Ambient Light Sensor) and Pmod HYGRO (Digital
Humidity and Temperature sensors) modules from Digilent.

FlexNode provides therefore a generic hardware architecture
that can be customized, implemented in an FPGA hosted on a
modular board. It is possible to explore the design of the MCU
architecture (processor complexity, pipeline stages, custom
computing units, memory architecture, memory size, peripherals,
…) directly in the context of a WSN, i.e. taking into account the
specificities of the application, sensors/actuators, radio
environment. It enables the assessment in a real context, to
measure/compare performance and energy, make design choices
to choose an existing platform that fits the best tradeoff.
Furthermore, the exploration includes the possibility to perform
custom operations at the Sensor Node level, i.e. implement data
processing (e.g. statistics), signal processing (e.g. filtering),
before transmitting data, including thus edge computing
capabilities at the sensor level thanks to the reconfigurable
hardware.

IV. RECONFIGURABLE HYBRID GATEWAY
Nodes may potentially communicate together, through direct

point to point connections, but in order to widen interaction

Fig. 4. Typical microcontroller architecture

B. Controller architecture

The specifications of an application determine which micro-
controller to use. Manufacturers generally offer a large variety
of microcontrollers to answer to the large number of actual em-
bedded applications and their specific constraints, as it is not
possible to design one microcontroller architecture that will
fit all applications. There are microcontrollers with different
packages, number of input/output pins, processor, operating
frequencies, peripherals, communication interfaces, analogic
modules, low-power modes, memory technologies, memory
capacities, and dedicated to different kind of applications
(automotive for example). However, there are some similarities
between all these different devices. Typical microcontrollers
include at least one processor, a non-volatile memory (usually
Flash for code instructions and read-only data), a volatile
memory (usually SRAM for application data), a power man-
agement unit, a clock management unit, input/output peripher-
als, communication modules (UART, SPI, I²C, USB, CAN. . .)
and timers. This typical architecture is depicted in Fig. 4. Some
microcontrollers also include different types of non-volatile
memories (ROM, EEPROM...) or have a multi-master system
(multi-processors, Direct Memory Access (DMA)...).

C. Architecture overview

Here is an example of a controller implementation we use
in this work. The following system is used in the experiments
described in Section V.

ARM Cortex-M are widely used in commercial low-power
microcontrollers. We use the ARM Cortex-M0 r1p0 in our
evaluations. This is a 3-stage 32-bit RISC processor that
implements the ARMv6-M ISA, with a maximum frequency of
50 MHz. It includes a single AHB-Lite interface, 32 interrupt
lines, 1 Non-Maskable Interrupt and a single-cycle multiplier.
Existing products using this processor can be used as hardware
references for performance evaluation comparison.

The architecture used in this work, depicted in Fig. 5, is
composed of the ARM Cortex-M0 r1p0 processor, a 2 kB

Fig. 5. Architecture example

Fig. 6. Monitor block diagram

ROM containing a bootloader code, a 128 kB RAM and a 16
kB RAM, peripherals for inputs/outputs control (44 I/O, PPS),
serial communication (4x UART, 2x SPI, 2x I²C) and timing
modules (4x 16-bit timers). All these elements are connected
together thank to a single-master AMBA3 AHB-Lite system.
A peripheral called Activity Monitor is used to report events
and will serve as basis for the design evaluation flow described
in Section II.

IV. ACTIVITY MONITOR

A. Hardware

The activity monitor is a set of counters used to capture
events. Its architecture is based on the principle of PMU, as
described in Fig. 6.

In the work we present here, the activity monitor is designed
to capture the following events related to the memory:

• Number of cycles
• Number of executed instructions
• Number of instruction fetches
• Number of RAM read accesses
• Number of RAM write accesses
The activity monitor is connected to the AHB-Lite bus

system, and can be accessed by the processor as a peripheral.
By connecting it to the main bus, it is possible to start, stop

Fig. 4. Typical microcontroller architecture

B. Controller architecture

The specifications of an application determine which micro-
controller to use. Manufacturers generally offer a large variety
of microcontrollers to answer to the large number of actual em-
bedded applications and their specific constraints, as it is not
possible to design one microcontroller architecture that will
fit all applications. There are microcontrollers with different
packages, number of input/output pins, processor, operating
frequencies, peripherals, communication interfaces, analogic
modules, low-power modes, memory technologies, memory
capacities, and dedicated to different kind of applications
(automotive for example). However, there are some similarities
between all these different devices. Typical microcontrollers
include at least one processor, a non-volatile memory (usually
Flash for code instructions and read-only data), a volatile
memory (usually SRAM for application data), a power man-
agement unit, a clock management unit, input/output peripher-
als, communication modules (UART, SPI, I²C, USB, CAN. . .)
and timers. This typical architecture is depicted in Fig. 4. Some
microcontrollers also include different types of non-volatile
memories (ROM, EEPROM...) or have a multi-master system
(multi-processors, Direct Memory Access (DMA)...).

C. Architecture overview

Here is an example of a controller implementation we use
in this work. The following system is used in the experiments
described in Section V.

ARM Cortex-M are widely used in commercial low-power
microcontrollers. We use the ARM Cortex-M0 r1p0 in our
evaluations. This is a 3-stage 32-bit RISC processor that
implements the ARMv6-M ISA, with a maximum frequency of
50 MHz. It includes a single AHB-Lite interface, 32 interrupt
lines, 1 Non-Maskable Interrupt and a single-cycle multiplier.
Existing products using this processor can be used as hardware
references for performance evaluation comparison.

The architecture used in this work, depicted in Fig. 5, is
composed of the ARM Cortex-M0 r1p0 processor, a 2 kB

Fig. 5. Architecture example

Fig. 6. Monitor block diagram

ROM containing a bootloader code, a 128 kB RAM and a 16
kB RAM, peripherals for inputs/outputs control (44 I/O, PPS),
serial communication (4x UART, 2x SPI, 2x I²C) and timing
modules (4x 16-bit timers). All these elements are connected
together thank to a single-master AMBA3 AHB-Lite system.
A peripheral called Activity Monitor is used to report events
and will serve as basis for the design evaluation flow described
in Section II.

IV. ACTIVITY MONITOR

A. Hardware

The activity monitor is a set of counters used to capture
events. Its architecture is based on the principle of PMU, as
described in Fig. 6.

In the work we present here, the activity monitor is designed
to capture the following events related to the memory:

• Number of cycles
• Number of executed instructions
• Number of instruction fetches
• Number of RAM read accesses
• Number of RAM write accesses
The activity monitor is connected to the AHB-Lite bus

system, and can be accessed by the processor as a peripheral.
By connecting it to the main bus, it is possible to start, stop

Paul Leloup Microélectronique et automatique 15/01/2019

 Page 19 sur 54

8. Résultats
8.1. Flex Node

Voici le résultat final du projet (Figure 25) : on voit le CMOD A7, les capteurs et le module radio.

Figure 25 Photo du Smart Sensor

8.2. Terminal
Voici les données qu’affiche le terminal, cela permet de valider le bon fonctionnement des capteurs et
de chaque étape. Juste après « PHASE SEND » on peut voir la trame envoyée puis les données capteurs
affichés de manière plus lisible (Figure 26).

Figure 26 Terminal qui affiche les données capteurs

capabilities and services, giving access to the IP network is a
great opportunity. It is the first role of the gateway, to connect
“radio world” to the “TCP/IP world”: for this purpose, we present
here a generic gateway architecture allowing M2M
communications. It brings all the software and hardware building
blocks to decentralize processing to the edges of the network. In
[21], we were introducing this project combining local
processing, with completely decentralized communications and
configurability, so that a network can cooperate in the most
efficient way. As a point of comparison, the Open IoT gateway in
[22] is very configurable, but operates on a Cloud-based network,
and the Smart Gateway presented in [23] uses Message Queuing
Telemetry Transport as a communication protocol, while we
chose Data Distribution Service as the communication protocol.

The gateway is based on a Zybo board from Digilent (Figure
4). This board integrates a Xilinx Zynq chip, which is a System
on Chip composed of a processing system (PS) and
programmable logic (PL). The PS is based on an ARM Cortex-
A9 dual-core, which runs at 650MHz. The board has several
interfaces: USB, HDMI, VGA, Ethernet, audio, as well as six 12-
pin ports called Pmods. Some of the interfaces are directly linked
to the ARM processor, while others need to be managed in
hardware.

Figure 4: The Gateway based on Zybo board

The USB port and the different Pmod ports can be used to
attach controllers to manage sensors through different radios. The
gateway supports currently Bluetooth Low Energy, ZWAVE and
LoRa. Since the PL is reconfigurable hardware, it can be
customized on purpose, for hardware acceleration, including
statistical analysis, cryptographic primitives, video processing,
etc. The idea is to allow locally extracting information from
heavy data (a video stream for instance), thus reducing the
bandwidth required. PL is also important to keep the gateway
generic: it can be adapted for many use cases. The SoC is built in
a way that makes the exchange of information between PS and
PL efficient.

On top of the Linux system based on Yocto Project [24], the
software architecture that is running on the gateway is depicted in
fig. 5. This architecture is composed of processes that control

different peripherals (Bluetooth, Zigbee, ZWAVE, LoRa, etc.),
enabling sensor data to be collected. In terms of communication
protocol, in the context of IoT especially for edge-computing
purposes, the publish-subscribe pattern is more appropriate than
server-client. It has been demonstrated in [21] that Data
Distribution Service (DDS) outperforms Message Queuing
Telemetry Transport (MQTT) when comparing latencies, which
emphasizes its real-time capabilities, despite that bandwidth
requirements are larger for DDS. However, the fact that data are
potentially processed locally in the gateway decreases bandwidth
needs. An open-source solution has been chosen, namely
OpenDDS, in order to keep our project generic [25]. A DDS
topic consists in a structure of several data fields. These topics
are made by the user, so they are entirely application-specific.
For instance, a temperature topic can be created to transport the
temperature, the node ID and a timestamp. This is how gateways
communicate with one another. The processing unit is
responsible of multiple tasks. It can process data to extract useful
information, store in a database, and transmit data to the sender
(these data will have been pre-computed). Finally, the receiver is
the process that reads data from the TCP/IP network and that
forwards them to the processing unit. These data come from
other gateways in the network. They can be for example data
from distant sensors that can be useful for the local gateway. In
order to store data in a generic, compact and flexible manner, the
SQLite database [26] is used to build a relational database. The
entire database is stored in only one file, and can be managed
either by issuing requests in command-line or directly in a C
code.

 Figure 5: Software architecture of the Gateway

As FlexNode, the Reconfigurable Gateway provides a generic
hardware architecture that can be easily customized. Based on a
SoC FPGA hosted on a modular board, it is possible to generate
a Linux distribution adapted to the implemented hardware, to
customize software in the PS and the design in the PL, adding for
instance dedicated interfaces, or accelerators. It enables gateway
prototyping in a real context to assess performances on a given
application with real wireless sensors. The reconfigurable logic is
a strong advantage in the context of IoT, as it gives the possibility
to implement complex processing at the Gateway level.

Figure 1 : Overview of TrustNet

III. GATEWAY ARCHITECTURE
We present a generic gateway architecture allowing M2M

communications, which brings all the software and hardware
building blocks to decentralize processing to the edges of the
network. This gateway is generic, that is, built with open
software and including reconfigurable hardware that can be
used for specific applications. To the best of our knowledge, it
is the first project that combines all the above-mentioned
features: local processing, completely decentralized
communications and configurability, so that a network can
cooperate in the most efficient way. As a point of comparison,
the Open IoT gateway in [8] is very configurable, but operates
on a Cloud-based network, and the Smart Gateway presented in
[7] uses Message Queuing Telemetry Transport as a
communication protocol, while the Reconfigurable Gateway
uses Data Distribution Service. This choice of communication
protocol is discussed at length in section III-C.

The proposed gateway has three major roles, which are
summarized in fig. 1. The first one is to communicate with
different kinds of sensors. These sensors can be enabled with
multiple radio technologies: short-range technologies can be
used (for example Bluetooth and Zigbee), as well as long-range
technologies such as Low Power Wide Area Networks (like
LoRaWAN, Sigfox, etc). The second role of the gateway is to
store and process data. Useful information will be extracted
from all sensor data. This is done locally, contrary to most
gateways where all data are transmitted to datacenters, and then
processed. Local processing is supposed to increase reactivity
and reduce the amount of messages sent, thus improving
bandwidth utilization, power consumption and security.
Finally, the third attribution of the gateway is to communicate
with a network of gateways. This communication works both
ways: it can send information that can be either raw sensor
data, or data that would have already been processed; and it can
also receive information from other gateways in the network.
This information that is managed in a distributed fashion can
be used to improve local decisions.

A. Hardware
The gateway relies on reconfigurable hardware, such as

FPGAs, enabling both performance and flexibility. The first
prototype of the gateway has been realized with a Zybo board
from Digilent (Figure 2). This board integrates a Xilinx Zynq
chip, which is a System on Chip composed of a processing
system (PS) and programmable logic (PL). The PS is based on
an ARM Cortex-A9 dual-core, which runs at 650MHz. The
board has several interfaces: USB, HDMI, VGA, Ethernet,
audio, as well as six 12-pin ports called Pmods. Some of the
interfaces are directly linked to the ARM processor, while
others need to be managed in hardware.

Figure 2: The first prototype of the Gateway based on Zybo board

Figure 3: Architecture of the reconfigurable hardware

The USB port and the different Pmod ports can be used to
attach controllers to manage sensors. Since the PL is
reconfigurable hardware, it can be customized on purpose, for
hardware acceleration, including statistical analysis,
cryptographic primitives, video processing, etc. The idea is to
allow locally extracting information from heavy data (a video
stream for instance), thus reducing the bandwidth required. PL
is also important to keep the gateway generic: it can be adapted
for many use cases. The SoC is built in a way that makes the
exchange of information between PS and PL efficient.

B. Software
In the aim of keeping the gateway as flexible and generic

as possible, the Yocto Project [10] has been chosen to create a
Linux distribution. The distribution is divided into layers,
which contain recipes. Each recipe can enable a feature,
activate a driver, install packages, etc. There are already many
layers available. After choosing which layers and recipes to
use, and adding customized recipes, the Bitbake tool creates a
Linux image that can be used in the gateway.

On top of the Linux system, the software architecture that is
running on the gateway is depicted in fig. 4. This architecture is
composed of several components. First there are processes that
control different peripherals (Bluetooth, Zigbee, etc.), enabling
sensor data to be collected. These data are then handed to two
processes: the sender and the processing unit. The role of the
sender is simply to send data to the gateway on a TCP/IP
network, via a communication API that will be explained in
part C. This is how gateways communicate with one another.
The processing unit is responsible of multiple tasks. It can
process data to extract useful information, store in a database,
and transmit data to the sender (these data will have been pre-
computed). Finally, the receiver is the process that reads data
from the TCP/IP network and that forwards them to the
processing unit. These data come from other gateways in the
network. They can be for example data from distant sensors
that can be useful for the local gateway.

Six Pmod ports (1 processor-dedicated, 1 dual analog/digital)
GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs

Trimode (1Gbit/100Mbit/10Mbit) Ethernet PHY

128 microSD slot (supports Linux file system)

Dual-role (Source/Sink)
HDMI port

OTG USB 2.0
PHY (supports

host and device)

Zybo Zynq-7000 ARM/FPGA SoC

16-bits per pixel VGA
output port

Figure 7: Block design of the smart camera architecture

Figure 6: Hybrid Gateway

As an example, we explored the possibility to use the design
of the reconfigurable gateway as a Smart Camera. The prototype
called “Hybrid Gateway” is depicted on figure 6. This system
running a custom Linux distribution includes a LoRa pmod
module (designed in our lab), an Ethernet connection, and a
Pcam 5C (5 MP Fixed Focus Color Camera Module), connected
to the ZYBO Z7 board (based on a Zynq Z-7020) with a Pcam
MIPI CSI-2 connector. A simple motion detection accelerator
was designed with VIVADO HLS. This hardware block, which is
mapped in the PL and communicates with PS through AXI
VDMA, handles the video input stream from the camera, the
video output stream (optional) and the detection block that
compares successive images to identify right to left, or left to
right motions. The block design in VIVADO is depicted on
figure 7. Processing the video stream on board enables
opportunities like communicating visual information through
bandwidth limited networks like LoRa, or simply drastically

reduce the bandwidth utilization on a TCP/IP network. This is
also an interesting means to avoid the transport of
private/sensitive data over different networks, by extracting only
the necessary required information.

V. CASE STUDIES
The first purpose of the Flexnode is prototyping, performance

and power consumption assessment. The board was designed in
order to measure easily the power consumed by each subsystem
of the sensor node (FPGA board, sensors, radios, etc.). Four
external peripherals were used in this case study: Pmod ALS,
Pmod HYGRO, Pmod LoRa, Pmod GPS. In figure 8, we observe
4 periods of 5 seconds each (SENSE phase, PROCESS phase,
SEND phase). There is a peak power of 650 mW while during
SLEEP mode the average consumption is 570mW (obviously we
are far from the numbers of general purpose MCUs, but these
numbers can be considered relatively for comparison purposes).
The consumption of the sensors is relatively low (≈130mW)
compared to the one of the CMOD A7 (≈470mW). The
architecture inside the FPGA is instrumented so that we are able
to relate logical events obtained with performance counters, to
the power that is consumed, and estimate the power that would
be consumed on a given technology node. More details on the
methodology can be found in [27]

Figure 8: Power consumption evaluations in Flexnode

A prototype of the whole network has been then developed
for demonstration, which uses three sensor networks: Bluetooth
Low Energy, LoRa and Z-Wave (proprietary protocol developed
by Sigma Designs working on the 868MHz ISM band in
Europe). The main claim is to demonstrate the utilization of
reconfigurable hardware in the context of IoT, to process and
communicate data in a decentralized network, from different
radios over a TCP/IP network. The prototype, shown in fig. 9,

validates and demonstrates the potential of the network of sensors
and gateways in a smart office application. The gateways collect
information from the three sensor networks, and publish them on
different DDS topics. The information shared over the network
are: temperature, humidity, ambient light, door sensors, presence
sensors and video-related data (motions). For each one, a topic is
created; publishers and subscribers are manually configured.
Each sensed data is timestamped and geo-localized when
available.

Another interesting approach in IoT is the capability to access
and aggregate data from different sources. In order to study this
aspect, we developed special programs on the gateways that are
able to collect information from external sources. For
demonstration purposes, we use the data available from the
https://data.montpellier3m.fr/. It is possible to download xml files
that are periodically updated, for instance the number of available
parking spaces in each parking of the city. This opens the
possibility of merging data from different sources in the gateway
databases, which can be used to manage efficiently the network.

The shared information in the network can be visualized at
publication time in the terminals of the gateways, or accessed in
the local databases. In order to provide a user-friendly interface
for visualization, we developed a website hosting Grafana, which
is a platform allowing the monitoring of data. The PC running the
website subscribes to all the topics in the network, and stores all
the timestamped collected data in an infuxDB database. Then, it
is possible to generate a custom dashboard with widgets allowing
to visualize collected data (histograms, charts, etc.). Screenshots
from Grafana are depicted in figure 10 and 11: they show data
from a temperature sensor, a door sensor, a motion sensor, the
number of available parking spaces in the “Comédie parking” in
Montpellier, and its evolution from 10:00 AM to 4:00 PM the
same day.

Figure 9: Demonstrator with 4 gateways and 8 sensors

Total power consumption of Flexnode

Power consumption of the CMOD A7 FPGA

Power consumption of the sensors only

Po
w

er
 (W

)

C
ur

re
nt

 (A
)

Po
w

er
 (W

)

C
ur

re
nt

(A
)

Po
w

er
 (W

)

C
ur

re
nt

(A
)

Current (A)
Power (W)

Current (A)
Power (W)

Current (A)
Power (W)

Figure 10: Visualization of internal data with Grafana

Figure 11: Visualization of external data with Grafana

 Figure 12: Sample latency compared to data payload

Several performance tests have been realized to show the
capabilities of the developed network. A very important metric
to measure performance is the latency, as it impacts the
reactivity of the network for a given application. We made an
experiment to characterize the latency, computed as the total
time of the experience divided by the number of samples
transmitted, with different payload sizes. DDS was configured to
use the RTPS-UDP transport setting. For each data payload,
between 10,000 and 100,000 samples have been used. In the

figure 12, we can notice that for small payloads (less than 2 kB),
sample latency remains approximately the same. However, after
that point, sample latency begins to increase rapidly. At 8 kB,
latency is doubled, and at 16 kB it is again doubled. The goal
here is to observe latency in an absolute way. What this figure
shows is that sending smaller payloads helps achieving better
latencies. Decreasing the order of magnitude of data payload by
processing them locally can bring a significant decrease in
latency. The goal of local processing is to extract useful
information to reduce the payload to its minimum. All
information that would be deemed useless would not be
transmitted. This introduces adaptive capabilities to the whole
network that will be able to tune its behavior according to the
context, which is a big requirement for IoT applications.

Figure 13: Terminal view from the Flexnode showing that the node received
an information of a left to right motion (Mvt droite) from the smart camera

Figure 14: Terminal view from the Gateway showing the publication on the

“Video” topic of a right to left motion (Mvt gauche) event

Another test was realized with the smart camera, a Flexnode
and the whole network of gateways. In this scenario, the smart
camera is able to communicate information with LoRa to the
LoRa Flexnode (Figure 13), and to publish information on the
network about detected motions (Figure 14). This simple
application illustrates the drastic reduction of required
bandwidth: the initial video stream is about 250MB/s. It is in
this case impossible to transmit this over a LoRa network, and it
potentially consumes a lot of the available bandwidth in a
TCP/IP network (25% if Gigabit Ethernet). After video
processing, the data to be transmitted is only 1 Byte on event. It
is a drastic reduction, but as mentioned above, small payloads
are mandatory both for sparing bandwidth and reducing latency,
as it impacts directly the reactivity of the network.

Figure 5: Demonstrator with two Open-Gateways

B. Results
Several performance tests have been realized to show the

capabilities of the developed gateway. The one that is
presented in this paper is a test about the impact of data
payload on latency.

This experience has been realized in the following way: a
sample is published on a particular topic. When the sample is
received by the subscriber, another sample can be written in
the topic. The latency is computed as the total time of the
experience divided by the number of samples transmitted.
DDS is configured to use the RTPS-UDP transport setting. For
each data payload, between 10,000 and 100,000 samples have
been used. Results are shown in fig. 6. Data payloads are
relatively small but common in an IoT scenario. For instance,
a sample about room temperature requires only about 20 bytes
(temperature value, a few identifiers and a timestamp for
example). Furthermore, the role of the gateway is to process
data to reduce it to its useful part.

In this figure, we can notice that for small payloads (less
than 2 kB), sample latency remains approximately the same.
However, after that point, sample latency begins to increase
rapidly. At 8 kB, latency is doubled, and at 16 kB it is again
doubled. The figure should not be misinterpreted though: the
goal is not to compare the ratio latency/payload, but to observe
latency in an absolute way. What this figure shows is that
sending smaller payloads helps achieving better latencies.
Decreasing the order of magnitude of data payload by
processing them locally can bring a significant decrease in
latency. The goal of local processing is to extract useful
information to reduce the payload to its minimum. All
information that would be deemed useless would not be
transmitted. This introduces adaptive capabilities to the whole
network that will be able to tune its behavior according to the
context, which is a big requirement for IoT applications.

V. CONCLUSION AND PERSPECTIVES
The concept of a reconfigurable gateway has been

presented in this article. The available local processing
resources can respond to the challenges of current IoT
networks by reducing the volume of information that transits
through the IP network, thus enabling the promises of Fog
Computing. Our approach is fully distributed, allowing
potentially more performance, reliability and scalability. It
relies on technologies that can be adapted to various

requirements, easing interoperability and costs reduction.
Future works will be focused on developments including the
design and integration of hardware IPs for cryptographic and
statistical analysis for applications in the fog.

Figure 6: Sample latency compared to data payload

REFERENCES
[1] A. Hakiri, P. Berthou, A.Gokhale, and S.Abdellatif, “Publish/suscribe-

enabled software defined networking for efficient and scalable IoT
communications”, IEEE Commun. Mag., vol. 53, n° 9, pp. 48-54, sept
2015.

[2] F. Bonomi "Fog Computing and its Role in the Internet of Things" Proc.
Wksp. Mobile Cloud Computing pp. 13-16 2012-Aug.

[3] Mohammad Aazam, Pham Phuoc Hung, Eui-Nam Huh, “Smart Gateway
Based Communication for Cloud of Things”, In the proceedings of 9th
IEEE ISSNIP, Singapore, 21-24 April, 2014

[4] Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang. 2016.
Fog-computing-based radio access networks: issues and
challenges. Netwrk. Mag. of Global Internetwkg. 30, 4 (July 2016),46-53

[5] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins,
Neal Jackson, and Prabal Dutta, « The Internet of Things Has a Gateway
Problem », In Proceedings of the 16th International Workshop on
Mobile Computing Systems and Applications (HotMobile '15). ACM,
New York, NY, USA, 27-32, 2015.

[6] The Things Network. [Online]. Available at :
https://www.thethingsnetwork.org [Accessed 20 Nov. 2017]

[7] Patrick Steiner, “Red Hat IoT demo – Next generation”. 2016. [Online].
Available at : http://www.opensourcerers.org/red-hat-iot-demo-next-
generation/ [Accessed 20 Nov. 2017]

[8] Shiratech. “Open IoT Gateway”. [Online] Available at :
http://www.shiratech.com/open-iot-gateway/ [Accessed 20 Nov. 2017]

[9] Linux Foundation. “Yocto Project”. [Online]. Available at :
https://www.yoctoproject.org/ [Accessed 20 Nov. 2017]

[10] SQLite, [online] available at : https://www.sqlite.org/ [Accessed 20 Nov.
2017]

[11] V. Karagiannis, P. Chatzimisios, F. Vázquez-Gallego, J. Alonso-Zarate.
“A Survey on Application Layer Protocols for the Internet of Things.”,
Transaction on IoT and Cloud Computing, 2015.

[12] J. F. Inglés-Romero, A. Romero-Garcés, C. Vicente-Chicote, and J.
Martínez, “A Model-Driven Approach to Enable Adaptive QoS in DDS-
Based Middleware,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 1,
no. 3, pp. 176–187, Jun. 2017.

[13] Y. Chen, T.Kunz, “Performance evaluation of IoT protocols under a
contrained wireless access network”, in 2016 International Conference
on Slected Topics in Mobile Wireless Networking (MoWNeT), 2016, pp.
1-7.

[14] Object Management Group. “OpenDDS”. [Online]. Available at :
http://opendds.org/ [Accessed 20 Nov. 2017]

La figure (21) illustre le résultat final de notre travail, dans cet exemple on a effectué
un mouvement vers la gauche que la caméra PCAM a capturé, sur l'écran du PC, un
message est affiché disant qu’un mouvement vers la gauche est détecté.

2. Les performances:

La figure en dessus représente les ressources de la carte FPGA exploitées pour la
réalisation de cette caméra intelligente, en analysant les résultats obtenus, on
constate que notre système à consommer 50% des ressources MMCM (Mixed Mode
Clock Manager) existant sur la Zybo, Le MMCM génère les multiples fréquences
d’horloge utilisée par le système, 30% des ports d’entrées/sorties ont été utilisé…

26

VI. CONCLUSION AND PERSPECTIVES
We presented a complete platform with sensor nodes,

gateways and smart cameras relying on FPGAs, and a
visualization tool based on Grafana, showing that reconfigurable
devices can be an enabling technology for edge-computing.
They primarily provide a prototyping environment that can help
exploring hardware and software at a very fine grain, allowing
thus to define the best trade-offs for a given application that can
be evaluated in a real context. Moreover, FPGAs offer local
processing resources that can be customized, reconfigured and
adapted, which opens great opportunities to respond to the
challenges of current IoT networks by reducing the volume of
information that transits through the IP network, thus enabling
the promises of Edge Computing. We demonstrated that our
approach has many advantages as it is fully distributed, allowing
potentially more performance, reliability and scalability. It relies
on technologies that can be adapted to various requirements,
easing interoperability and costs reduction. Future works will be
focused on developments including the design and integration of
hardware IPs for applications in the fog.

VII. ACKNOWLEDGEMENTS

This	 work	 has	 received	 funding	 from	 the	 European	
Union’s	Horizon	2020	 research	and	 innovation	programme	
under	grant	agreement	No	687973	-	GREAT	(heteroGeneous	
integRated	 magnetic	 tEchnology	 using	 multifunctional	
standardized	 sTack	 (MSS))	 and	 the	 French	 National	
Research	 Agency	 under	 grant	 ANR-15-CE24-0033-01	
(MASTA	project).	

VIII. REFERENCES
[1] A. Hakiri, P. Berthou, A.Gokhale, and S.Abdellatif, “Publish/suscribe-

enabled software defined networking for efficient and scalable IoT
communications”, IEEE Commun. Mag., vol. 53, n° 9, pp. 48-54, sept 2015

[2] F. Bonomi "Fog Computing and its Role in the Internet of Things" Proc.
Wksp. Mobile Cloud Computing pp. 13-16 2012-Aug.

[3] Mohammad Aazam, Pham Phuoc Hung, Eui-Nam Huh, “Smart Gateway
Based Communication for Cloud of Things”, In the proceedings of 9th
IEEE ISSNIP, Singapore, 21-24 April, 2014

[4] Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang. 2016. Fog-
computing-based radio access networks: issues and challenges. Netwrk.
Mag. of Global Internetwkg. 30, 4 (July 2016),46-53

[5] B. BILLEL, O. Z. MOHAMED, C. SAMIR, T. ABDELMOGHNI, M.
MOHAMED and L. SIDAHMED, "High-performance Zynq FPGA-based
wireless sensor node for vibration monitoring systems," 2018 International
Conference on Applied Smart Systems (ICASS), Medea, Algeria, 2018, pp.
1-5

[6] S. Meena and N. K. Prakash, "Runtime reconfiguration of wireless sensor
node using FPGA," Fifth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), Hefei, 2014,
pp. 1-5

[7] Liu and S. Wang, "Design and realization of a QPSK modem module
based on FPGA for underwater sensor node," Proceedings of the 29th
Chinese Control Conference, Beijing, 2010, pp. 4781-4785

[8] J. Tong, Z. Zhang, Q. Sun and Z. Chen, "Design of Wireless Sensor
Network Node with Hyperchaos Encryption Based on FPGA," 2009

International Workshop on Chaos-Fractals Theories and Applications,
Shenyang, 2009, pp. 190-194

[9] C. H. Zhiyong, L. Y. Pan, Z. Zeng and M. Q. -. Meng, "A novel FPGA-
based wireless vision sensor node," 2009 IEEE International Conference
on Automation and Logistics, combine , 2009, pp. 841-846

[10] H. Kikuchi and K. Morioka, "Development of wireless image sensor nodes
based on FPGA for human tracking in intelligent space," IECON 2012 -
38th Annual Conference on IEEE Industrial Electronics Society, Montreal,
QC, 2012, pp. 5529-5534

[11] P. Latha and M. A. Bhagyaveni, "Reconfigurable FPGA based architecture
for surveillance systems in WSN," 2010 International Conference on
Wireless Communication and Sensor Computing (ICWCSC), Chennai,
2010, pp. 1-6

[12] U. Quadri, P. Rangaree and G. M. Asutkar, "FPGA implementation of an
emulator for Wireless Sensor Node with Pt100 temperature sensor," 2013
IEEE International Conference of IEEE Region 10 (TENCON 2013),
Xi'an, 2013, pp. 1-5.

[13] J. Zhang, S. Iyer, P. Schaumont and Y. Yang, "A Simulator for Flexible
Sensor Nodes in Wireless Networks," 2011 Seventhùù International
Conference on Mobile Ad-hoc and Sensor Networks, Beijing, 2011, pp.
373-375

[14] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins,
Neal Jackson, and Prabal Dutta, « The Internet of Things Has a Gateway
Problem », In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications (HotMobile '15). ACM, New York,
NY, USA, 27-32, 2015

[15] T. Lee, C. Kuo and I. Lin, "High performance CAN/FlexRay gateway
design for in-vehicle network," 2017 IEEE Conference on Dependable and
Secure Computing, Taipei, 2017, pp. 240-242

[16] Y. Zhou, W. Xiao, M. Liu and X. Li, "Design of the embedded gateway for
4G and PROFIBUS-DP based on FPGA," 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), Chengdu, 2017,
pp. 748-752

[17] S. Shreejith et al., "VEGa: A High Performance Vehicular Ethernet
Gateway on Hybrid FPGA," in IEEE Transactions on Computers, vol. 66,
no. 10, pp. 1790-1803, 1 Oct. 2017

[18] W. Zhou, Z. Zhang, B. Zou and H. Nei, "Research of Intelligent Home
Heterogeneous Gateway," 2013 International Conference on Computer
Sciences and Applications, Wuhan, 2013, pp. 187-189

[19] W. Tsai, S. Zhu, M. Lu, J. Merzoug, C. Yu and I. Huang, "An
implementation of IoT gateway for home appliances control over cellular
network, »

[20] L. Shaofeng, G. Chaoping and S. Weifeng, "Design and Implementation of
an Enhanced VPN Isolation Gateway," 2017 International Conference on
Robots & Intelligent System (ICRIS), Huai'an, 2017, pp. 82-85

[21] J. Laurent, P. Benoit, L. Dalmasso and T. Gil, "Computing in the Fog with
Reconfigurable Gateways," 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), Florence, 2018, pp. 1-4

[22] Shiratech. “Open IoT Gateway”. [Online] Available at :
http://www.shiratech.com/open-iot-gateway/ [Accessed May 2019]

[23] Patrick Steiner, “Red Hat IoT demo – Next generation”. 2016. [Online].
Available at : http://www.opensourcerers.org/red-hat-iot-demo-next-
generation/ [Accessed May 2019]

[24] Linux Foundation. “Yocto Project”. [Online]. Available at :
https://www.yoctoproject.org/ [Accessed May 2019]

[25] Object Management Group. “OpenDDS”. [Online]. Available at :
http://opendds.org/ [Accessed May 2019]

[26] SQLite, [online] available at : https://www.sqlite.org/ [Accessed May
2019]

[27] G. Patrigeon, P. Leloup, P. Benoit and L. Torres, "FlexNode: a
reconfigurable Internet of Things node for design evaluation," 2019 IEEE
Sensors Applications Symposium (SAS), Sophia Antipolis, France, 2019,
pp. 1-6

