
A Message-passing Hardware/Software Co-simulation Environment to Aid in

Reconfigurable Computing Design using TMD-MPI

Manuel Saldaña

Arches Computing Systems

Toronto, Canada

ms@archescomputing.com

Emanuel Ramalho, Paul Chow

University of Toronto

Toronto, Canada

{eramalho,pc}@eecg.toronto.edu

Abstract

High-performance reconfigurable computers (HPRC)

provide a mix of standard processors and FPGAs to col-

lectively accelerate applications. This introduces new de-

sign challenges, such as the need for portable programming

models across HPRCs, and system-level verification tools.

In this paper, we extend previous work on TMD-MPI to in-

clude an MPI-based approach to exchange data between

X86 processors and hardware engines inside FPGAs that

improves design portability by hiding vendor-specific com-

munication details. Also, we have created a tool called the

Message-passing Simulation Framework (MSF) that we use

to develop TMD-MPI itself as well as an application de-

velopment tool that enables an FPGA in simulation to ex-

change messages with other X86 processors.

As an example, we simulate a LINPACK benchmark

hardware core using an Intel-FSB-FPGA platform to

quickly prototype the hardware, to test the communications

and to verify the benchmark results.

1. Introduction

High-performance reconfigurable computers (HPRC)

are now in a similar stage as supercomputers were before

the appearance of MPI [14]. Every vendor had their own

message-passing API to program their own supercomput-

ers causing a lack of portable designs. Currently there is

no standard API for the interaction between processors and

FPGAs. Companies such as Cray, SGI, Intel, XtremeData,

DRC and SRC provide their own software APIs and their

own hardware interfaces for application hardware engines.

This situation reduces the portability and productivity be-

cause vendor specific details distract designers from focus-

ing on the application algorithm. We believe that in the

same way a standard C program runs in any X86 processor

with most operating systems, a standard VHDL/Verilog de-

sign can be implemented on any FPGA; with the exceptions

of using non-standard code, for example specific resources

on a given chip or non-ANSI C functions.

Additional to the portability issue, the mix of X86 pro-

cessors (X86 from now on) and FPGAs introduces new de-

sign challenges that require new design tools. For example,

testing and debugging procedures for software are differ-

ent from the procedure used in hardware. A typical test-

ing procedure in software is a step-by-step execution or

printing debug information to the screen. In contrast, for

hardware components, such as FPGAs, a detailed behav-

ioral or even timing simulation is required. Both, software

and hardware, can be tested independently up to a certain

extent but system-level features or dynamic interaction be-

tween them is harder to test that way. For example, a bus

functional model (BFM) helps with verifying and develop-

ing low-level interactions with a given communication in-

terface, but higher-level protocols or application-level pro-

tocols cannot be tested, especially if the behavior changes

based on the data received or sent.

In this paper we extend previous work on TMD-

MPI [11], which implements a subset of the MPI stan-

dard targeting multiple computing elements (hardware en-

gines and embedded processors) inside FPGAs to include

X86 processors enabling a uniform and portable MPI-

based communication mechanism for HPRCs. To do this,

we developed the Message-passing Simulation Framework

(MSF) that allows multiple X86 processes, running at full

speed, to exchange messages with computing elements in-

side the FPGAs being simulated. In that way, we exercise

the system-level interaction while having full visibility of

what happens inside the FPGA.

In this paper, we perform a functional, system-level sim-

ulation of the LINPACK benchmark [8] with the purpose

of testing the communications, the simulation environment

and quickly prototyping and verifying the correctness of the

LINPACK hardware engine, which is in the early stages of

development.

The rest of the paper is organized as follows: Section 2

provides a quick overview of previous work on TMD-MPI.

Section 3 contrasts our work to other related co-simulation

environments. Section 4 presents the communication in-

frastructure and its simulation framework. Section 5 de-

scribes an example simulation of the LINPACK benchmark

system using the MSF. Finally, Sections 6 and 7 present fu-

ture work and conclusions.

2. Background

As mentioned before, we use TMD-MPI to provide an

abstraction layer for the communications. TMD-MPI has

been developed as a result of the need for a programming

model for the TMD machine being developed at the Univer-

sity of Toronto [10]. The TMD machine is a scalable Multi-

FPGA configurable system designed to accelerate comput-

ing intensive applications. Previously, TMD-MPI only sup-

ported MPI-based communication between PowerPC em-

bedded processors, MicroBlaze soft-processors and hard-

ware engines (collectively known as computing elements)

across multiple FPGAs, but now with HPRC featuring

tightly coupled FPGAs to X86 processors, we have ex-

tended TMD-MPI to include X86 processors using shared

memory as a medium to exchange messages.

TMD-MPI does not include all the MPI functionality de-

scribed in the standard because it is targeted to embedded

systems with limited resources, as is the case of FPGAs, and

because functionality will be added as needed. However,

it supports blocking and non-blocking communications as

well as some collective operations, which is enough to im-

plement many parallel applications. With the appearance of

HPRC machines, a new window of opportunities arises to

have a more complete implementation of the standard.

The TMD-MPI programming model is based on the as-

sumption that, from the communications perspective, com-

puting elements inside FPGAs can be treated as peers rather

then just co-processing units, which is the way a typical

MPI program works. Also, modern FPGAs have enough re-

sources to host several computing elements interconnected

using an on-chip network, which TMD-MPI also abstracts

from the user.

In an FPGA-as-coprocessor model, an X86 usually acts

as a message relay between computing elements located

in different FPGAs introducing big latencies and limiting

what FPGAs can do in terms of communication. In a peer-

to-peer model, computing elements can exchange data be-

tween them regardless of their physical location and without

intermediaries, which reduces the latency and also simpli-

fies the programming model.

We have used TMD-MPI in multi-FPGA machines based

on Amirix [1] and BEE2 [3] boards to implement Molecular

Dynamics. Currently we are porting the application to use a

HPRC with Intel processors and Xilinx FPGAs attached to

the FSB; it is for the latter case that we created the MSF, to

help us develop and verify our designs.

3. Related Work

There has been abundant research on co-design method-

ologies and co-simulation environments [5]. The research

concludes that the lack of a system-level view of a mixed

HW/SW system leads to difficulties in verifying the entire

system, and hence to incompatibilities across the HW/SW

boundary leading to inefficient designs. However, most of

the research focuses on embedded systems with microcon-

trollers, DSPs, ASICs and FPGAs, but the research does not

address explicitly the High-performance Supercomputing

sector. The appearance of FPGAs in Supercomputers opens

a new window of opportunities to adapt and apply co-design

techniques and co-simulation environments to HPRCs. Our

TMD-MPI and MSF is one step towards that direction by

framing co-simulation into an MPI-based paradigm.

Most of the co-simulation environments typically use

hardware in the form of accelerators to speedup the sim-

ulation itself. For example, in [13], the authors provide a

co-simulation environment where an X86 and an FPGA are

placed on a dual socket motherboard to accelerate a proces-

sor simulation tool called Simplescalar. In [15], the authors

use an FPGA plugged into the PCI bus to accelerate Mod-

elsim’s functional simulations. In contrast, we do not use

the FPGA to accelerate a simulation, we use Modelsim [9]

running in an X86 to simulate and emulate the FPGA, and

let it interact with the X86 processors as if the FPGA were

present. Once the design inside the FPGA has been verified

in simulation it can run at full speed in the real FPGA.

Other vendor-specific simulation frameworks such as

Cray’s simulation framework [4] and SGI’s SSP Stub [12]

only allow a Bus Functional Model (BFM) testing proce-

dure or low-level data transfer primitives. The user can pro-

vide a set of inputs to the FPGA with certain delays and

expected outputs to compare the results against. This static

kind of verification is adequate to test the interaction with a

given interface or for independent FPGA testing, but not as

a system-level approach. Our simulation approach is more

generic and portable, allowing the simulation of multiple

hardware engines interacting with multiple X86 MPI soft-

ware processes concurrently.

4. Simulation Environment

In this section we describe the computing architecture

and the MPI-based communication system. Then we ex-

plain how the MSF enables the simulation of such architec-

tures.

4.1. Message-Passing System Architecture

As a reference architecture, we use an Intel motherboard

that has four sockets, one of them with an Intel quad-core

processor and the second socket has a Xilinx XC5VLX110

FPGA, which shares 8GB of main memory with the proces-

sors via the FSB. The system runs a standard Linux SMP

configuration.

Figure 1 shows an example of a parallel MPI application

mapped to our reference platform. In this case, the applica-

tion has a total of six tasks known as ranks in the MPI jar-

gon. Each rank in the system (logically represented as cir-

cles in Figure 1) has its own private memory space. Three of

the ranks (R0, R1, and R2) are software processes and run

in three X86 cores inside the Quad-core Intel Xeon chip.

The remaining three ranks (R3, R4 and R5) are inside the

FPGA running as hardware engines, although they could be

Microblaze soft-processors or embedded PowerPC proces-

sors as well. The X86 processors exchange messages using

shared memory, and the hardware engines exchange mes-

sages using the Network-on-Chip (NoC). To exchange mes-

sages between X86s and hardware engines the data must

travel through a shared memory MPI bridge (MPI Bridge),

which implements in hardware the same shared memory

protocol that the X86 processors use. This bridge takes

data to/from the NoC and issues read or write memory

requests to the vendor-specific low-level communications

core (LLCC), which executes the request. The MPI Bridge

effectively abstracts the vendor-specific communication de-

tails from the rest of the on-chip network.

FPGA
Low-level

Comm.

Core

MPI

Shared

Memory

Bridge N
et

w
or

k-
O

n-
C

hi
p

Single Host Machine

FSB

Bus

R5
HW TASK

R5’s

MEM

R4
HW TASK

R4’s

MEM

R3
HW TASK

R3’s

MEMR1

x86

core

R2

x86

core

R0

x86

core

Shared

Memory
R0’s MEM R1’s MEM R2’s MEM Message Buffers

Figure 1. Shared Memory Host with three X86

processors and one FPGA, all physically at-
tached to the FSB

For this paper, we used Intel’s FSB Bus as the communi-

cation media but the same concepts can be applied to other

communication media, such as AMD’s HyperTransport [6],

Intel’s QuickPath [7], Cray’s Rapid Array Transport [4],

SGI’s Scalable System Port-NUMA link connection [12],

or even with a standard PCI Express core because they all

provide a physical connection to the main system memory.

The communication media determines what LLCC to use.

In this paper, we use a Xilinx-Intel FSB communication

core that handles the low-level protocol to read and write

to memory as well as the memory coherence control.

However, TMD-MPI’s shared memory message-passing

protocol should be the same across HPRCs or with minor

variations, the only change is the physical interconnection

between the MPI Bridge and the vendor-specific LLCC. By

implementing a MPI Bridge for each type of LLCC we

make the system portable. For example, in this paper we use

a MPI Xilinx FSB Bridge, but we could also implement a

MPI Cray Bridge to use a Cray HPRC machine.

An extension of this approach to a distributed memory

machine (a Cluster) or many HPRC hosts is natural since

message-passing assumes no shared memory. A distributed

memory approach could use an MPI Ethernet Bridge, or

any other point-to-point communication interface to allow

the connection of multiple hosts through the FPGA itself;

however, this remains future work for now and in this paper

we focus only on a single host machine.

4.2. Abstraction Layers

Figure 2 shows the abstraction layers for software and

hardware in the TMD-MPI programming model. A soft-

ware application relies on the MPI library layer to send

and receive data (calls to MPI Send(), MPI Recv(), etc.).

In turn, TMD-MPI uses a kernel driver to allocate mem-

ory for the shared memory buffers and to perform virtual-

to-physical memory translations. Data is then placed in

memory via the FSB and the MPI shared memory bridge

will read it and send it over the NoC, which will route the

packets to the proper destination Message Passing Engine

(MPE). Finally, the MPE will deliver the message to the ap-

plication hardware engine. Data traveling in the opposite

direction is also possible; the FPGA can be a master and

send data without the X86 first having to request it.

Application Software

Processes

TMD-MPI Library

Kernel driver

FSB Bus

Shared Memory

Application Hardware Engines

Message-Passing Engine (MPE)

Network-on-Chip (Noc)

MPI Shared Memory Bridge

Low-level Communication Core

Figure 2. HW/SW abstraction layers

The MPE encapsulates the MPI functionality in hard-

ware. It is responsible for handling requests, acknowl-

edgements and full-duplex data transmission and reception.

Also, it is in charge of packetizing/depacketizing large mes-

sages as well as handling unexpected messages. A hard-

ware engine interacts with its MPE via FSLs, which are Xil-

inx unidirectional FIFOS. An example of the interface be-

tween a hardware engine and the MPE is further discussed

in Section5.

4.3. The MSF FLI Module

By using TMD-MPI, hardware engines and software

processors are isolated from machine-specific communica-

tions hardware. However, it introduces a new challenge for

the design and verification of applications. In a typical MPI

parallel program, an MPI rank is not tested in isolation from

the other MPI ranks, it has to be tested with all ranks run-

ning at once to verify the correct collective operation and

synchronization between them. With FPGAs as containers

of MPI ranks, they must be part of the system-level test-

ing process. As mentioned before, FPGA testing requires a

simulation, so the question now becomes how to simulate

such a system.

The MSF provides a portable simulation environment

based on Modelsim that emulates the FPGA and lets the

MPI ranks inside of the FPGA exchange messages with the

ranks running in X86 processors. Figure 3 shows the simu-

lation scheme of the architecture depicted in Figure 1. Note

that the FPGA in Figure 1 is now an X86 core running Mod-

elsim simulating the FPGA design. For ranks R0, R1 and

R2 running in the X86 processors, the FPGA in simulation

will be seen as a slow FPGA (simulation speed). In this

sense, the FPGA simulation is actually an emulation of the

FPGA. Naturally, the time it takes to send a message will be

drastically reduced when the FPGA is no longer in simula-

tion and runs in the real FPGA. However, keep in mind that

a message-passing paradigm assumes a coarse grain paral-

lelism in which tasks should have reasonable communica-

tion demands to be efficient and also should be latency toler-

ant. In other words, a correct MPI program does not rely on

the time it takes to send or receive a message to produce the

correct results, and therefore the latency introduced by the

simulation should not change the results when the FPGA

design runs in the actual physical FPGA.

The central part of the MSF is the use of Modelsim’s

Foreign Language Interface (FLI), which is a typical way to

perform co-simulations by allowing a C program (actually a

shared library) to have access to Modelsim’s simulation in-

formation, such as signal or register values, components in-

stantiated and simulation control parameters. The MSF FLI

module replaces the vendor-specific LLCC by providing the

required functionality directly to the MPI Bridge. The MSF

FLI accepts the MPI bridge memory requests (address and

data) and performs the reads and writes directly to shared

memory. In the case of the distributed memory environ-

ment, the MSF FLI module would translate the send/receive

requests to socket writes/reads allowing the interaction of

remote machines with the FPGA under simulation.

Shared

Memory

Single Host Machine

FSB

Bus

R0’s MEM

X86 core

FLI

Module

MPI

Shared

Memory

Bridge N
et

w
or

k-
O

n-
Ch

ip

R5
HW TASK

R5’s

MEM

R4
HW TASK

R4’s

MEM

R3
HW TASK

R3’s

MEM

FPGA (ModelSim)

R1’s MEM R2’s MEM Message Buffers

R1

x86

core

R2

x86

core

R0

x86

core

Figure 3. Simulation scheme for the reference

architecture. One X86 core runs Modelsim
with the FLI module for shared memory.

The MSF FLI module uses TMD-MPI’s memory alloca-

tion and memory mapping subroutines to be able to access

the shared memory message buffers. In a typical transac-

tion, the MSF FLI module receives the physical addresses

of a buffer from the MPI Bridge and translates it to virtual

addresses before reading or writing to main memory. This

is required because the MSF FLI module is under the con-

trol of the operating system as a normal user process, which

cannot access memory using a physical address.

Since there can be a variety of MPI Bridges based on the

vendor-specific LLCC, there will be a corresponding FLI

module that Modelsim can load at runtime. That is, there

will be MSF FLI module variations. For example, we use

the FLI Xilinx FSB module, but we could implement the

FLI Cray to simulate the interaction with the FPGA in a

Cray machine. This is convenient because the simulation

itself becomes portable. TMD-MPI and the MSF FLI mod-

ule absorb the platform changes and make the simulation in

different HPRCs transparent to the user.

An additional advantage of the MSF is that there is

no need to simulate the vendor-specific LLCC, which can

be proprietary and not public, such as the Intel FSB sig-

nals. The MSF does not need to know the details of those

vendor-specific internals because the FLI module provides

the MPI Bridge with the same memory access (or network

device access for the distributed version) that the LLCC pro-

vides.

During the simulation the user has full visibility inside

the FPGA at the resolution available in Modelsim, which is

useful when tracking bugs in the design, such as glitches,

signal delays or any other sub-cycle events with the caveat

of reduced simulation speed. Other co-simulation envi-

ronments can be faster but limit the design’s visibility to

its outputs treating it as a black box, and use just cycle-

accurate simulations. Also, in the MSF the user has full

control of the simulation by using Modelsim’s console or

GUI to stop it, pause it and continue it. Even breakpoints

can be asserted to stop executing a particular hardware MPI

rank and the software MPI ranks can continue executing

because they are completely decoupled due to the implicit

asynchronous nature of the message-passing programming

model. Only those MPI ranks that are exchanging messages

with a stopped rank will be automatically blocked if using

MPI blocking calls or if there is a collective operation, such

as a MPI Barrier, MPI Bcast, etc. However, if non-blocking

communications are used, then the ranks can overlap com-

putation and communication.

5. Case Example: LINPACK

This section presents a brief description of our LIN-

PACK benchmark implementation and some insights of the

hardware engine and its communication interface. This pa-

per focuses on the co-simulation environment and not the

performance of the LINPACK benchmark.

5.1. LINPACK Implementation

The LINPACK Benchmark [8] is a widely used algo-

rithm that measures floating-point computing performance

by solving a system of linear equations, Ax=b. It has two

main subroutines: DGEFA (performs an LU decomposi-

tion on the matrix A) and DGESL (solves the system of

linear equations by using vector b). More than 97% of

the time taken to compute the benchmark is spent inside

the DGEFA subroutine. DGEFA comprises three BLAS [2]

level 1 functions, IDAMAX, DSCAL and DAXPY, where the

latter, alone, is responsible for about 95% of the time spent

in the DGEFA subroutine. The original benchmark uses

double precision, but for simplicity we use single precision,

which is acceptable for the purposes of this paper.

To implement a parallel version of this algorithm, we

first parallelized the sequential LINPACK code using MPI

with all the ranks running in X86 processors, and verify the

correctness of the parallel algorithm itself purely in soft-

ware. At this point, high-level application decisions can

be made, such as the communication pattern or data parti-

tioning scheme. For the LINPACK benchmark, DAXPY ac-

counts for most of the time spent inside DGEFA, however,

the DGEFA subroutine was chosen to be the parallelization

focus to reduce the number of messages being sent across

the ranks. As in Figure 3, we use six MPI ranks, all of them

have the same functionality and perform the same compu-

tation, except for rank 0, which also performs the inital data

distribution, stores the results back to the file system and

computes the DGESL subroutine.

After successfully parallelizing the algorithm in soft-

ware, three of the six ranks are targeted to run in the FPGA.

This decision is just to show how software processes (ranks

3, 4 and 5) can be turned into engines without changing

a single line of code for ranks (0,1 and 2), following the

peer-to-peer model between X86 processors and hardware

engines. The DGEFA subroutine is converted to hardware

manually, without using any C-to-gates compiler, however,

nothing in the MSF or TMD-MPI paradigm prevents that.

Since each rank contains a full DGEFA subroutine,

columns of matrix A are cyclically distributed across the

ranks, i.e. 1st column goes to rank 0, 2nd column to rank 1

and so on. This reduces the data communication in each

iteration. After the first data distribution, which is only

done once, only two broadcasts occur in each iteration, one

column of matrix A and the corresponding pivot. These

broadcasts are performed after the DSCAL function is exe-

cuted and done by the rank storing the respective column,

which means that each iteration will have a different broad-

cast source; therefore, there is communication between all

the ranks. Finally, when all the data is computed, it must be

sent back to rank 0, which will run the DGESL subroutine

and end the algorithm with the residual calculation.

5.2. The DGEFA Benchmark Hardware

The DGEFA computing engine, shown in Figure 4, con-

sists of a state-machine that has encoded the DGEFA bench-

mark flow, and a BLAS1 block, which is a special-purpose

fully pipelined engine that calculates the BLAS level 1 func-

tions. The DGEFA state-machine issues send and receive

commands to the MPE, similar to the MPI calls for X86

processors. The MPE implements the TMD-MPI protocol

in hardware and gives the DGEFA engine the ability to com-

municate with all the other ranks in the system. The MPE

has independent command and data FIFOs, that allow the

streaming of data directly into the datapath of the DGEFA

computing engine. Figure 4 shows how the DGEFA engine

connects to the MPE.

MPE

DGEFA Benchmark

Data FSLs
Command

FSLs

To Network-On-Chip

BLAS1

Engine
FSM

Control

Signals

Figure 4. Interface between MPE and hard-

ware engines

5.3. Verification of the results

At the end of the application, rank 0 has the final ma-

trix, which is compared agains the sequential version of the

code. There is a maximum error of 0.64% with an aver-

age error of 0.0011% in the results due to fact that the X86

uses 80- and 64-bit precision floating-point units compared

to only 32 bits in the engine, but that can be improved. The

point being made is that by using the MSF we have a way

to measure further improvements to the engine’s precision

or mixed (X86 + engine) precision calculations.

A caveat of our approach is that the communication la-

tency between X86s and FPGAs is not known because the

MSF FLI module does not simulate the LLCC; therefore,

it is hard to predict the entire application’s performance

exactly. However, we can estimate it based on measuring

the most time consuming part of the application. By using

the LINPACK function second() we know that the DAXPY

loop takes 482µs in the X86 processor (3.4 GHz), compared

to 818µs in the DGEFA engine (100 MHz) measured in sim-

ulation. This is a fair comparison since there is no commu-

nication involved in that loop, just raw computation.

Due to the MPI paradigm and the DGEFA core imple-

mentation it is very easy to increase the number of ranks

in the system, as long as there are enough resources in the

FPGA. The code (C and VHDL) does not need to change at

all to include more ranks. Based on preliminary synthesis

results, we can place around 16 DGEFA engines (exclud-

ing the on-chip network, MPEs and the MPI Bridge) on the

XC5VLX110 FPGA.

6. Future Work

Future work includes the support for external memory

simulation for those systems that have memory chips next to

the FPGA; this will allow us to simulate designs with larger

datasets. Also, we will include the simulation of multiple

FPGAs and multiple hosts, that will enable the development

and simulation of larger systems.

7. Conclusions

In this paper we describe a portable MPI-based approach

to co-simulate multiple hardware engines implemented in

an FPGA communicating with multiple X86 processes for

reconfigurable computers. Although, in this paper, we

use an Intel-FSB-Xilinx-FPGA platform, the same concepts

and ideas can be applied to other platforms, making this pa-

per a first attempt, to the best of our knowledge, to stan-

dardize such communication between X86 processors and

FPGAs, and hide vendor-specific details from the user dur-

ing co-simulation.

To do this, we created the MSF to let X86 processors

interact with an FPGA in simulation. The MSF is demon-

strating its usefulness during the developing of a LINPACK

system. It allows a fast compile-debug-modify-recompile

cycle speeding up the design task because there is no need to

run place and route to test the algorithm. We co-simulated

the system using six MPI ranks, half of them running as X86

processes and the other half as hardware engines in simula-

tion; all exchanging messages in a peer-to-peer fashion.

Acknowledgments

We acknowledge the CMC/SOCRN, NSERC and Xilinx

for the tools and funding provided for this project.

References

[1] Amirix Systems, Inc. http://www.amirix.com/.
[2] C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh.

Basic Linear Algebra Subprograms for Fortran Usage. ACM

Transactions on Mathematical Software (TOMS), 5(3):308–

323, 1979.
[3] C. Chang, J. Wawrzynek, and R. W. Brodersen. BEE2: A

High-End Reconfigurable Computing System. IEEE Des.

Test ’05, 22(2):114–125, 2005.
[4] I. Cray. ”CRAY XD1 FPGA Development”, 2005. pp. 9-11,

pp. 63-66.
[5] H. Hubert. ”A Survey of HW/SW Cosimulation Techniques

and Tools”. Master’s thesis, Royal Inst. of Tech., Stockholm,

Sweeden, June 1998.
[6] HyperTransport Consortium. http://www.

hypertransport.org.
[7] Intel. ”Intel Quick Path Architecture (White Paper)”.

http://www.intel.com/pressroom/archive/

reference/whitepaper QuickPath.pdf.
[8] A. P. J. Dongarra, P. Luszczek. ”The LINPACK Benchmark:

Past, Present and Future”. http://www.netlib.org/

utk/people/JackDongarra/PAPERS/hpl.pdf.
[9] Mentor Graphics, Corp. http://www.mentor.com/.

[10] A. Patel, M. Saldaña, C. Comis, P. Chow, C. Madill, and

R. Pomès. A Scalable FPGA-based Multiprocessor. In

Proceedings of the 13th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, California,

USA, 2006.
[11] M. Saldaña and P. Chow. TMD-MPI: An MPI Imple-

mentation for Multiple Processors Across Multiple FP-

GAs. In Proceedings of the 16th International Conference

on Field-Programmable Logic and Applications, Madrid,

Spain, 2006.
[12] SGI. ”Reconfigurable Application-Specific Computing

Users Guide”, Jan 2008. pp. 9-12, pp. 223-244.
[13] H.-h. S. L. Taeweon Suh. Initial Observations of Hard-

ware/Software Co-Simulation using FPGA in Architecture

Research. In 2nd Workshop on Architecture Research using

FPGA Platforms (WARFP-2006), February 2006.
[14] The MPI Forum. MPI: a message passing interface. In Su-

percomputing ’93: Proceedings of the 1993 ACM/IEEE con-

ference on Supercomputing, pages 878–883, New York, NY,

USA, 1993. ACM Press.
[15] M. Wageeh, A. Wahba, A. Salem, and M. Sheirah. FPGA

Based Accelerator for Functional Simulation. Circuits and

Systems, 2004. ISCAS ’04. Proceedings of the 2004 Interna-

tional Symposium on, 5:V–317–V–320 Vol.5, May 2004.

