
An Efficient Non-Blocking Data Cache for Soft Processors

Kaveh Aasaraai and Andreas Moshovos
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada

{aasaraai, moshovos}@eecg.toronto.edu

Abstract—Soft processors often use data caches to reduce
the gap between processor and main memory speeds. To
achieve high efficiency, simple, blocking caches are used. Such
caches are not appropriate for processor designs such as
runahead and out-of-order execution that require non-blocking
caches to tolerate main memory latencies. Conventional non-
blocking caches are expensive and slow on FPGAs as they
use content-addressable memories (CAMs). This work exploits
key properties of runahead execution and demonstrates an
FPGA-friendly non-blocking cache design that does not require
CAMs. A non-blocking 4KB cache operates at 329MHz on
Stratix III FPGAs while it uses only 270 logic elements. A
32KB non-blocking cache operates at 278Mhz and uses 269
logic elements.

Keywords-Soft Processor; Data Cache; Non-Blocking; Runa-
head

I. INTRODUCTION

Soft processors implemented over reconfigurable logic are
increasingly being used in embedded system applications.
Historically, applications evolve in their computation needs
and structure. Embedded applications are not immune to
this trend. Accordingly, it is likely that soft processors will
be called upon to execute applications with unstructured
instruction level parallelism. Previous work has shown that
for such programs, a 1-way OoO processor in an FPGA
environment has the potential to outperform a 2- or even a
4-way superscalar processor [1]. Unfortunately, conventional
OoO processor implementations are tuned for custom logic
implementation and rely heavily on content addressable
memories, multiported register files, and wide, multi-source
and multi-destination datapaths. Such structures exhibit poor
efficiency when implemented in an FPGA fabric. It is an
open question whether it is possible to design an FPGA-
friendly soft core that offers the benefits of OoO execution
without the existing complexities and inefficiencies.

Previous work has shown that Runahead execution offers
most of the benefits of OoO execution while avoiding much
of its complexity on custom implementations [2]. Runahead
relies on the observation that most of the performance
benefits of OoO execution result from allowing multiple
outstanding main memory requests. Runahead extends a
conventional in-order processor with the ability to continue
execution even when a memory operation misses in the

cache, with the hope to find more useful misses and thus
overlap memory requests.

Originally runahead was demonstrated for high-end
general-purpose systems where main memory latencies are
in the order of a few hundred cycles. This work demonstrates
that even under the relatively low main memory latencies (a
few tens of cycles) observed in FPGA-based systems today,
runahead execution still offers most of the OoO execution
performance benefits. Having demonstrated the potential of
runahead execution, this work proceeds to present a non-
blocking data cache design, a key component of a runahead
architecture.

Conventional non-blocking caches are not FPGA-friendly
as they rely on highly-associative content-addressable mem-
ories (CAMs). This work proposes a non-blocking cache
design that does not use CAMs. The design judiciously
sacrifices some of the flexibility of a conventional non-
blocking cache in order to achieve higher operating fre-
quency and superior performance when implemented on an
FPGA. Specifically, the proposed cache sacrifices the ability
to issue secondary misses, that is requests for memory blocks
that map onto a cache line with an outstanding request to
memory (this includes requests for the same block). Doing
so enables the cache to track outstanding misses within
the cache line avoiding the need for associative lookups.
We demonstrate that this simplification does not affect
performance nor correctness under runahead execution.

The rest of this paper is organized as follows: Section II
provides background on non-blocking caches and Runahead
execution. Section III presents the architecture of our non-
blocking cache design. Section IV discusses the FPGA-
implementation of the non-blocking cache design. Section V
presents the evaluation of our design and compares it to
a naı̈ve non-blocking cache implementation. Section VI
reviews related work, while Section VII summarizes our
findings.

II. BACKGROUND AND MOTIVATION

In Runahead execution an inorder processor exploits
memory level parallelism (MLP) by prefetching additional
memory blocks while there is an outstanding cache miss.
Upon encountering a cache miss, the processor creates a
checkpoint of its architectural state (e.g., registers) and



enters runahead execution mode. While waiting for the
memory block to be retrieved, the processor continues
executing subsequent independent instructions. Any result
produced in this execution mode is later discarded. These
intermediate results are solely used for generating additional
cache misses and hence to prefetch memory data.

Upon delivery of the initial cache miss, the processor re-
verts back to the saved state effectively discarding all results
produced during runahead execution. The processor resumes
normal execution starting immediately after the instruction
that missed. Any memory access that was initiated during
runahead mode and brings useful data effectively prefetches
this data and reduces execution time. The runahead refer-
ences that bring useless data represent an overhead and may
hurt performance. In practice runahead execution improves
performance [2].

Runahead execution requires extending a conventional in-
order processor with support for checkpointing, speculative
execution under a miss, and the ability to issue multiple
memory requests. Instructions executed during runahead
mode require access to the data cache while a miss is
pending. Therefore, the data cache must be non-blocking [3].

A conventional non-blocking cache uses Miss Status Han-
dling Registers (MSHRs) to track outstanding misses [3].
MSHRs provide means of combining misses to the same
cache line and of preserving ordering and thus cache data
consistency while allowing multiple outstanding requests.
Conventional MSHR implementations use a CAM-based
structure and they are expensive to build on FPGAs both
in terms of area and frequency.

Runahead execution offers an opportunity to revisit the
conventional non-blocking design by tracking outstanding
requests within the cache lines instead of in MSHRs. The
following observations can be made:

1) Allowing multiple outstanding accesses to the same
memory block during runahead mode has no advantage
as the main purpose of the speculatively executing in-
structions is to overlap the retrieval of distinct memory
blocks.

2) Section V demonstrates experimentally that Runahead
execution is still effective even when multiple outstand-
ing requests to memory blocks that map to the same
cache line are not allowed.

3) Results produced in runahead mode are discarded and
have no impact on the processor architectural state.
Therefore, the processor has the option of simply discard-
ing instructions corresponding to secondary misses (those
described in (1) and (2)) without affecting correctness.
Similarly, no ordering is required among requests send
to memory during runahead execution.

This work presents an FPGA-friendly non-blocking cache
that does away with MSHRs. Instead, outstanding misses
are identified within the cache using a single pending bit
stored along with each cache line. Whenever an address

Request 

Queue
Lookup Request Bus

Tag

Data

Meta Data

System 

Bus

Figure 1. Non-blocking cache structure.

misses in the cache, the corresponding cache line is marked
as pending. Subsequent accesses to this cache line would
observe the pending bit and will be discarded. This simplifies
cache implementation making it suitable for FPGAs.

III. NON-BLOCKING CACHE ARCHITECTURE

This section discusses the non-blocking cache architecture
and the optimizations applied to improve area and frequency.
The cache is designed for single-cycle hits as hits are
expected to be the common case. Cache misses and non-
cacheable requests are handled using separate components
which are triggered exclusively for such events and are off
the critical path for hits. These events complete in multiple
cycles.

Figure 1 depicts the basic structure of the non-blocking
cache. The cache comprises a Lookup, a Request, and a
Bus component. It also contains Data, Tag, Request, and
Metadata storage units. The following subsections describe
the function of each component.

A. Lookup

Lookup is the cache interface that communicates with
the processor and receives load, store and non-cacheable
requests. Lookup performs the following operations:
• For cache accesses, compares the request’s address with

the tag stored in the Tag storage to determine whether this
is a hit or a miss.

• For cache hits, if this is a load, Lookup reads the data
from the Data storage and provides it to the processor in
the same cycle as the Tag access. Reading the Data storage
proceeds in parallel with the Tag access and comparison.
Stores, on the other hand, take two cycles to complete as
writes to the Data storage happen in the cycle after the
hit is determined. Other soft processor caches, such as
those of Altera Nios II, use two cycles for stores [4]. In
addition, the cache line is marked as dirty.

• For cache misses, Lookup marks the cache line as
pending. Subsequent accesses to this line will be discarded
(runahead mode) or blocked (normal mode) if pending bit
is set.

• For non-cacheable requests and cache misses, Lookup
triggers the Request component to generate appropriate



requests. In addition, queues the instruction metadata
in the Metadata storage. Lookup blocks the processor
interface until Request signals it has generated all the
necessary requests.

• For cache accesses, whether the request hits or misses
in the cache, if the corresponding cache line is pending,
Lookup discards the request if the processor is in runahead
mode. In this mode all instructions execute speculatively
and will be discarded. Accordingly, it is safe to discard
such secondary misses. If the processor is in normal
execution mode, Lookup stalls the processor.

B. Request

Request is normally idle waiting for a trigger from
Lookup. When triggered, it issues appropriate requests di-
rected at the Bus component by placing them in the Request
Queue. Request performs the following operations:
• Waits in the idle state until triggered by Lookup.
• For cache accesses, Request generates a cache line read

request. In addition if the evicted line is dirty, Request
generates a cache line writeback request.

• For non-cacheable requests, depending on the operation,
Request generates a read or write request.

• When all necessary requests are generated and queued,
Request notifies Lookup and returns to the idle state.

C. Bus

The Bus component is responsible for servicing the bus re-
quests generated by Request. Bus receives requests through
the Request Queue and communicates through the system
bus with the main memory and peripherals. Bus consists of
two internal modules:

1) Sender: The Sender sends requests to the system
bus. Sender removes requests from the Request Queue and,
depending on the request type, sends appropriate signals to
the bus. A request can be of one of the following types:
• Cache Line Read: Read requests are sent to the bus for

each data word of the cache line. The critical word (word
originally requested by the processor) is requested first.
This ensures minimum wait time for data delivery to the
processor.

• Cache Line Writeback: Write requests are sent to the
bus for each data word of the cache line. Data words are
retrieved from Data storage and sent to the system bus.

• Non-cacheable Read/Write: A single read/write request
is sent to the peripheral through the system bus.
2) Receiver: This module handles the system bus re-

sponses. Depending on the processor’s original request type,
one of the following actions is performed:
• Load from Cache: Upon receipt of the first data word,

Receiver signals request completion to the processor and
provides the data. This is done by providing to the
processor the corresponding metadata from the Metadata
storage. Receiver stores all the data words received in

the Data storage. Upon receipt of the last word, Receiver
stores the cache line tag in the corresponding entry in the
Tag storage, sets the valid bit and clears both dirty and
pending bits.

• Store to Cache: The first data word received is the data
required to perform the store. Receiver combines the data
provided by the processor with the data received from
the system bus and stores it in the Data storage. It also
stores subsequent data words, as they are received, in the
Data storage. Upon the receipt of the last word, Receiver
stores the cache line tag in the corresponding entry in the
Tag storage, sets both valid and dirty bits and clears the
pending bit.

• Load from Peripherals: Upon receipt of the data word,
Receiver signals request completion to the processor and
provides the data. The corresponding metadata is retrieved
from the Metadata storage.

D. Data and Tag Storage

The Data and Tag storage units are tables holding cache
line data words, tags, and status bits. Lookup and Bus both
access Data and Tag storage units.

E. Request Queue

Request Queue is a FIFO memory holding requests gener-
ated by Request for Bus. Request Queue processes requests
in the order they are generated.

F. Meta Data Queue

For outstanding requests, i.e., requests missing in the
cache or non-cacheable operations, the cache stores the
metadata accompanying the request, e.g., Program Counter,
in the Metadata Queue. Eventually when the request is
fulfilled, this information is provided to the processor along
with the data loaded from memory or I/O. This information
uniquely identifies the request. Metadata Queue is a FIFO
memory and processes requests in the order they were
received.

IV. FPGA IMPLEMENTATION

This section presents the non-blocking cache implementa-
tion. It discusses the design challenges and the optimizations
applied to improve frequency and area.

A. Storage

Modern FPGAs contain dedicated block RAM (BRAM)
storage units that are fast and take significantly less area
compared to LUT-based storage. The rest of this subsection
explains the design choices that made using BRAMs for
most of the cache storage components possible.



Tag

One Data Word

{unused, dirty, 

pending}
{unused, valid, Tag}

24 bits8 bits

Data

one cache line

Figure 2. The organization of the Data and Tag storage units. A Cache
line’s data spans over multiple block ram entries. Each entry holds one data
word. Cache line tags are stored along with valid, dirty and pending bits.
Valid and Tag bits are stored in the lower 24 bits, while dirty and pending
bits are stored in the higher eight bits. The rest of the bits are unused.

1) Data: Figure 2 depicts the Data storage organization.
As BRAMs have a limited port width, the entire cache line
does not fit in one entry. Consequently, cache line words are
spread, one word per entry, over multiple BRAM entries.

This work targets the Nios-II ISA [4] which supports
byte, half-word, and word stores (one, two, and four bytes
respectively). These are implemented using the BRAM byte
enable signal [5]. Using this signal avoids two-stage writes
(read-modify-write) which would also increase area due to
necessary multiplexers.

2) Tag: Figure 2 depicts the Tag storage organization.
Unlike cache line data, a tag fits in one BRAM entry. In
order to reduce BRAM usage, valid, dirty and pending bits
are stored with the tags.

Storing dirty and pending bits with the tags creates the
following problem: Lookup makes changes only to the dirty
and pending bits and should not alter valid or tag bits. In
order to preserve valid and tag bits while performing a write,
a two stage write could be used, in which bits are first
read and then written back. This read-modify-write sequence
increases area and complexity and hurts performance. As
Figure 2 shows, storing valid and tag bits in the lower 24
bits, and dirty and pending bits in the higher eight bits, make
single-cycle writes possible using the byte enable signal.
Using the byte enable signal, Lookup is able to change only
the dirty and pending bits.

3) BRAM Port Limitations: Although BRAMs provide
fast and area-efficient storage, they have a limited number
of ports. A typical BRAM in today’s FPGAs has one read
and one write port [5].

As Figure 1 shows, both the Lookup and Bus components
write and read to/from the Data and Tag storage. This
requires four ports. Our design uses just two ports based

on the following observations: BRAMs can be configured
to provide two ports, each providing both write and read
operations over one address line. Despite Lookup and Bus
both performing writes and reads to/from the data and tag
storage, neither performs reads and writes at the same time.

For every Lookup access to the Tag storage, Lookup reads
the tag, valid, dirty and pending bits for a given cache line.
Lookup also writes to the Tag storage in order to mark a line
dirty or pending. However, reads and writes never happen at
the same time as marking a line dirty (for stores) or pending
(for misses) happens one cycle after reading the tag and
other status bits from the Tag storage. Bus only writes to
the Tag storage, when a cache line is retrieved from the
main memory. Dedicating one address line to Lookup and
one to Bus is sufficient to access the Tag storage.

For every Lookup access to the Data storage, Lookup
either reads a word from or writes to a line. Bus may need
to write to or read from the Data storage at the same time.
This occurs if a writeback request is sent at the same time a
cache line is received from memory. To avoid this conflict,
Bus is restricted to sending a writeback data word only when
the system bus is not delivering data. Forward progress is
guaranteed as outstanding writeback requests do not block
responses from the system bus. This restriction minimally
impacts cache performance as words are sent as soon as
the system bus is idle. With this modification, dedicating
one address line to Lookup and one to Bus is sufficient for
accessing the Data storage.

B. State Machine Complexity

Conceptually, a cache comprises a CPU-side and a bus-
side component. The CPU-side component looks up ad-
dresses in the cache, performs loads and stores, handles
misses and non-cacheable operations, and sends necessary
requests to the bus-side component. The bus-side component
communicates with the main memory and system peripherals
through the system bus.

Given the variety of operations that the CPU-side com-
ponent handles, it requires a non-trivial state machine. The
state machine uses numerous input signals and this reduces
performance. The state machine also uses the cache hit/miss
signal, a time-critical signal due to the large comparator used
for tag comparison. As a result, implementing the CPU-side
component as one large state machine leads to long critical
paths and hence low operating frequency.

Higher operating frequency is possible by breaking the
CPU-side component into two subcomponents, Lookup and
Request, which cooperatively perform the same set of opera-
tions. This organization has its own disadvantages, however.
In order for the two state machines to communicate, extra
clock cycles are required for certain actions. Fortunately,
these actions are misses and uncacheable requests which
are relatively rare. In addition, in such cases servicing the
request takes in the order of tens of cycles. Therefore, adding



one extra cycle delay to the operation has little impact on
performance.

C. Latching the Address

We use BRAMs to store data and tags in the cache. As
BRAMs are synchronous, the input address needs to be
available just before appropriate edge (rising in our design)
of the cycle when cache lookup occurs. In a pipelined
processor, the address has to be forwarded to the cache
from the previous pipeline stage, e.g., the execute stage in
a typical 5-stage pipeline. After the first rising clock edge,
the input address to the cache changes as it’s forwarded
from the previous pipeline stage. However, the input address
is required for various operations, e.g., tag comparison.
Therefore, the address must be latched. Since some cache
operations take multiple cycles to complete, the address must
be latched only when a new request is received. This occurs
when the Lookup’s state machine is entering the lookup
state. Therefore, the address register is clocked based on
the next state signal. This is a time-critical signal and using
it to clock a wide register, as is the case with the address
register, negatively impacts performance.

To avoid using this time-critical signal we make the
following observations: The cache uses a latched address
in two phases: In the first cycle for tag comparison, and
in subsequent cycles for writes to Data storage and request
generation. Accordingly, we can use two separate registers,
addr always and addr lookup one per phase. At every clock
cycle, we latch the input address into addr always. We use
this register for tag comparison in the first cycle. At the
end of the first cycle we copy the content of addr always
into addr lookup. We use this register for writes to the
cache and request generation. As a result, the addr always
register is unconditionally clocked every cycle. Also, we
use Lookup’s current state register, rather than its next state
combinational signal, to clock the addr lookup register. In
Section V we show that this technique combined with the
rest of the optimizations improve area and frequency.

V. EVALUATION

This section evaluates our non-blocking cache design.
It first shows the potential performance advantage that
Runahead execution has over an in-order processor using
a non-blocking cache. It then reports area and frequency
measurements for various non-blocking cache sizes using
our design. It also compares our design to a naı̈ve imple-
mentation of the non-blocking cache.

A. Methodology

In order to compare inorder, Runahead and OoO execution
we use a cycle-accurate Nios II full system simulator capable
of booting and running the uCLinux operating system [6].
The simulated processor models include a simple 5-stage
pipeline, a Runahead processor, and OoO processor. The

Table I
ARCHITECTURAL PROPERTIES OF SIMULATED PROCESSORS.

I-Cache Size (Bytes) 32K
D-Cache Size (Bytes) 32K
Cache Line Size 32 Bytes
Cache Associativity Direct Mapped
Memory Latency 20 Cycles
BPredictor Type Bimodal
BPredictor Entries 512
BTB Entries 512
Pipeline Stages 5 (7 for OoO)
No. Outstanding Misses 2

simulated cache resembles our optimized cache design.
Table I details the simulated processor architecture.

We use benchmarks from the SPEC CPU 2006 suite which
is typically used to evaluate desktop system performance [7].
We use these benchmarks as representative of applications
that have unstructured ILP assuming that in the future soft-
core based systems will be called upon to run demanding
applications such as these. We use those benchmarks that
would run without a floating-point unit. We use a set of
reference inputs which are stored in main memory and ac-
cessed through the ramdisk driver. Measurements are taken
for a sample of one billion instructions after skipping several
billions of instructions so that execution is past initialization.

We implement the non-blocking cache in Verilog and use
Quartus II v10.0 for synthesis and place-and-route on the
Altera Stratix III EP3SL150F1152C2 FPGA. We compare
our optimized cache implementation with a naı̈ve cache im-
plementation. The naı̈ve implementation combines the two
Lookup and Request components into a single component.
It also performs two stage writes for changing dirty and
pending bits. Finally, it latches the input address using the
next state signal. We expect that even this straightforward
non-blocking cache will be faster and more area efficient
than a conventional, fully flexible non-blocking cache based
on CAMs.

B. Runahead Execution

Figure 3 compares Runahead execution to a typical 5-
stage in-order pipeline and a 1-way OoO processor. We
use instructions per cycle (IPC) as a frequency independent
metric for comparison. Runahead is able to achieve almost
all of the benefits of OoO execution. On average, Runahead
improves IPC by 14% over in-order execution.

C. Area

Figure 4 reports the number of ALUTs used by the
optimized non-blocking cache for various capacities. For
the optimized design, cache size has a negligible impact
on ALUT usage. We also compare the optimized and naı̈ve
implementations. For large cache sizes, the naı̈ve implemen-
tation uses slightly more area due to its higher complexity.



0.1

0.2

0.3

0.4

0.5

0.6

IP
C

Inorder Runahead OoO

Figure 3. IPC comparison of inorder, runahead and 1-way OoO processors.

150

200

250

300

200

250

300

350

400

4KB 8KB 16KB 32KB

M
H

z

A
L

U
T
s

A-Opt A-Naïve F-Opt F-Naïve

Figure 4. Area and frequency comparison of optimized and naı̈ve non-
blocking cache implementations. Solid and dashed lines show maximum
frequency and area usage respectively.

The bulk of the cache is implemented using BRAMs. The
vast majority of these BRAMs contain the cache’s data, tag
and status bits.

D. Frequency

Figure 4 reports the maximum clock frequency for various
capacities of our non-blocking cache. Frequency decreases
with cache capacity. Frequency decreases by at most 18%
when capacity increases from 4KB to 32KB. The optimized
implementation significantly outperforms the naı̈ve imple-
mentation. The maximum difference is 25% between 4KB
optimized and naı̈ve caches which operate at 329MHz and
262MHz respectively.

VI. RELATED WORK

Yiannacouras and Rose create an automatic cache genera-
tion tool for FPGAs [8]. Their tool is capable of generating a
wide range of caches based on a set of configuration param-
eters, for example cache size, associativity, latency, and data
width. The tool is also useful in identifying the best cache
configuration for a specific application. Coole et. al., present

a traversal data cache framework [9]. Traversal caches are
suitable for applications with pointer-based data structures. It
is shown that, using traversal caches, for such applications a
significant speedup, up to 27x, is possible. PowerPC 470S,
a synthesizable implementation is available under a non-
disclosure agreement from IBM. This core is equipped with
non-blocking caches. A custom logic implementation of this
core, PowerPC 467FP has been implemented by LSI and
IBM.

VII. CONCLUSION

This work presented a highly efficient non-blocking data
cache implementation for soft processors. A conventional
non-blocking cache is expensive to build on FPGAs due to
CAM based structures used in its design. Our non-blocking
cache design exploits key properties of Runahead execution
to avoid CAMs and instead stores information about pending
requests in the cache itself. Additional optimizations have
been described that improve frequency. A 4KB optimized
non-blocking cache operates at 329MHz on Stratix III FP-
GAs while it uses only 270 logic elements. A 32KB cache
operates at 278Mhz using 269 logic elements.

ACKNOWLEDGMENT

This work was supported by an NSERC Discovery grant
and equipment donations from Altera. Kaveh Aasaraai was
supported by an NSERC-CGS scholarship.

REFERENCES

[1] K. Aasaraai and A. Moshovos, “Towards a viable out-of-order
soft core: Copy-free, checkpointed register renaming,” in 19th
Intl. Conf. on Field Programmable Logic and Applications
(FPL), Prague, Czech Republic, September 2009.

[2] J. Dundas and T. Mudge, “Improving data cache performance
by pre-executing instructions under a cache miss,” in ICS ’97:
Proc. of the 11th intl. conf. on Supercomputing. New York,
NY, USA: ACM, 1997, pp. 68–75.

[3] S. Belayneh and D. R. Kaeli, “A discussion on non-
blocking/lockup-free caches,” SIGARCH Comput. Archit.
News, vol. 24, no. 3, pp. 18–25, 1996.

[4] Altera Corp., “Nios II Processor Reference Handbook v10.0,”
2010.

[5] A. Corp., “Stratix III Device Handbook: Chapter 4. TriMatrix
Embedded Memory Blocks in Stratix III Devices.” 2010.

[6] “Arcturus Networks Inc., uClinux,” http://www.uclinux.org/.

[7] Standard Performance Evaluation Corporation, “SPEC CPU
2006,” http://www.spec.org/cpu2006/.

[8] P. Yiannacouras and J. Rose, “A parameterized automatic cache
generator for fpgas,” in Proc. Field-Programmable Technology
(FPT, 2003, pp. 324–327.

[9] G. Stitt, G. Chaudhari, and J. Coole, “Traversal caches: a
first step towards fpga acceleration of pointer-based data
structures,” in Proc. of the intl. conf. on Hardware/Software
codesign and system synthesis, New York, 2008, pp. 61–66.


