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Abstract—FPGAs are a key enabling technology for rapid and
efficient system prototyping and initial commissioning of newly
developed integrated circuits. One major aspect is the setup and
control of interface components between devices under test (DUT)
and the FPGA infrastructure. So, as to maintain high flexibility in
conjunction with the ability to deal with changes of requirements
and use cases, as well as unforeseen or faulty behavior of
the DUT, we propose a novel reconfigurable hardware/software
infrastructure. IP blocks, such as register files or interface
components to external hardware are attached as leafs to a
tree-like communication system optimized for alterations. It is
designed as an Embedded Linux compatible CPU subsystem
to be accessed from user space via a uniform and portable
kernel driver. Thus, it implements transparent access to custom
functionality from user applications without specific knowledge
concerning the hardware/software coupling.

Index Terms—rapid system prototyping, hardware/software
co-design, Embedded Linux, image sensor characterization, ASIC
commissioning, FPGA

I. INTRODUCTION

The design of complex, mixed-signal integrated circuits,
such as image sensors, often requires the implementation and
evaluation of prototypes of crucial subcomponents prior to
system integration. All these blocks need to be tested and
characterized regarding their electrical or optical properties
[1]. The commissioning of prototypes is usually a very chal-
lenging task, because both the analog and digital interfaces
have to be considered. With the use of programmable logic
for the configuration, digital stimulation and readout of re-
sults from DUTs and peripherals, a high flexibility can be
achieved. Standardized interfaces and custom IP for FPGAs
help minimizing the effort necessary for system setup. In
conjunction with image sensor characterization, it is important
to test the DUT under real operating conditions. Integrating
the imager into an experimental, stand-alone camera system
based on the setup during commissioning is necessary. The
control of application-specific hardware blocks and the de-
scription of the test scenarios is done in software, as far as
practicable. Because of its availability for many soft- and
hard-CPUs in FPGAs, Embedded Linux is a very popular
operating system. For every setup, a tailored environment
consisting of hard- and software parts is necessary. Because of
potentially unpredictable behavior or malfunctions of the DUT,
the behavior, the structure, as well as the hardware/software

(HW/SW) interfaces are likely to change several times during
commissioning. The decision to perform a given measurement
task in software or, maybe also partially, in hardware is
being revisited more than once. Consequently, this also has
a significant impact on software development, since hardware
and software parts have to fit together.

In order to simplify and speed up the whole process, a new
hardware/software infrastructure is proposed. It is optimized
for easy design alterations and the possibility to achieve them
without the need for in-depth knowledge of FPGA-based hard-
and software development. Basic components like register files
and I/O blocks are provided as IP that can be used whenever
accessibility by software is needed. A tree-based communica-
tion structure connected to the embedded CPU, and a general-
purpose kernel driver for Embedded Linux [2] provides access
from user space to attached devices. Asynchronous events
generated by the hardware components can be passed to the
application. Because of the frequent use of SystemC models
for the DUT, the whole infrastructure has also been modeled
using this system modeling language, allowing preparation of
commissioning and the necessary development of test software
before physical hardware is available. A user space library acts
as abstraction layer and provides high level interfaces, which
allow the test software to operate on the model the same way
as on real hardware.

II. RELATED WORK

In modern Systems-on-Chip (SoC), the links for the inter-
connection of CPU, memory and peripherals play a central
role. An overview of different buses used today is given
in [3] and [4]. Most SoC bus systems, such as the AMBA
family or CoreConnect, provide different options for high-
speed data transfer on the one hand, and the link of simple
components on the other. This is done by the possibility to
choose an appropriate interface complexity, e.g. a simplified
bus protocol or less signal lines. Each endpoint is assigned to
an individual range in address space, allowing certain access
operations [5]. The selection of components can be done by
a central arbitration device (e.g. Processor Local Bus, PLB
[6]) or by some kind of distributed resolution. In the latter
case, hierarchically arranged arbiters can be used for splitting
the address space into smaller slices and keeping only one



component. In both cases, adding a single device to the design
could result in the need to re-partition the whole address space.
To overcome this, it is possible to utilize a fully distributed
resolution with one arbiter within each endpoint [7].

State of the art universal buses only define the physical
connection and the protocol for data transfer. When accessing
a component attached to a bus system from software, some
kind of abstraction layer is needed. In Linux, a kernel driver
[8], [9] is used, which hides the access to physical memory
from the user. Writing such a driver is an extremely complex
and time consuming task, requiring deep knowledge of kernel
details. During commissioning of newly developed ICs with
changed requirements or unforeseen or faulty behavior of the
DUT, any relevant change made to the interface hardware has
to be applied to the driver. Because driver development is
unreasonable for a hardware engineer, direct low-level access
from user space is desirable. More than that, recovering a
user space application after a crash is much easier than a
kernel driver, which, depending on the design of the operating
system, may require a system reboot. One way to achieve this
is the use of memory mapping (mmap()) on /dev/mem,
which bypasses kernel security measures. Alternatively, the
UIO Framework [10] performs a mapping of only selected
components or address ranges into user space and allows
the implementation of device drivers as regular applications.
Each device is represented by a corresponding device file
accessed by mmap(). UIO also supports the handling of
asynchronous events by blocking a read() on the device
file until an interrupt occurs. Changes made to the address
layout of the underlying hardware are announced to UIO via
its configuration.

The Reconfigurable System-on-Chip (RSoC) [11] frame-
work for hardware accelerators utilizes DMA data transfer for
the communication between user components and the systems
memory. This is done by the RSoC Bridge, which links the
FPGA accelerator to the rest of the system. Depending on
the configuration of the bridge, the RSoC Driver is initialized
automatically and can be configured from user space. For
data exchange, the RSoC Driver provides one device file
per accelerator. The RIFFA framework [12], [13] has been
designed for FPGA-based accelerators placed inside a host PC
and connected via PCIe. It provides basic IP blocks for linking
proprietary components with each other and the host interface.
All the components are connected using Processor Local Bus
(PLB) [6]. There are different bindings for programming lan-
guages to ease the software development. SIRC [14] is another
implementation of a platform for low level hardware access
from application software running on Microsoft Windows. In
contrast to the systems described above, in SIRC an Ethernet
connection is used for that purpose. The MECA system [15] is
a platform consisting of a custom board and a software envi-
ronment based on Embedded Linux. An FPGA, located close to
a dedicated single-chip computer on the same board, provides
several digital I/Os. The purpose is to provide a platform for
educational and hardware experiments. Components on FPGA
can be accessed from user space applications. FrontPanel™

Component Description
register Single N bit value available to am-

bient logic.
reg_file Collection of 2M HW registers

with configurable widths.
reg_connector Decoder and data composition for

2M user defined registers with ar-
bitrary width.

bram Hardware-attached two-port block
RAM with configurable width and
depth .

i2c_bridge,
spi_bridge

Bridge to external serial devices.

info Special module for information on
bus configuration at runtime. Also
build data such as a time-stamp
or SVN1 revision number is made
available.

Table I
OVERVIEW OF BASIC BLOCKS.

[16], another platform designed for fast prototyping, allows
access to user defined HDL modules inside an FPGA, by
a PC connected via USB or PCIe. It provides a graphical
user interface (GUI) as well as an SDK for custom PC-based
applications. One drawback of this solution is that the PC is
essential for operation so it can only be used in laboratory
setups, not as a stand-alone device.

III. HARDWARE PLATFORM

One key component of digital and mixed-signal SoCs is the
HW/SW-interface for the configuration and parametrization of
integrated functional blocks with register files or memories
to hold the setup data. From a software perspective, they
represent memory areas, while for hardware access, a low-
level interface is included. With the implemented scanning
access changes made to the HW/SW interface are visible from
software with almost no additional effort.

One important part of our interconnect infrastructure is a
well-tested and reusable implementation of components for
the encapsulation of the bus connection and the address space
integration. It is a very effective building block to reduce
the implementation effort for parts not being in the primary
research focus. In table I a collection of basic blocks used as
basis for software accessible modules is given. The interface
to the communication infrastructure is built around the generic
endpoint base_slave and always remains the same. In
figure 1, the channels to_slave and to_master represent
this link to the communication infrastructure. All variables
within <<...>> are generics to be assigned during instan-
tiation. Each slave possesses a unique identifier (COMP ID),
a type designator (COMP TYPE), and a unique mapping to a
range in address space, with the corresponding size determined
by ADDR WIDTH. Support for asynchronous events can be
added for each component and is controlled by HAS IRQ.
The maximum count of addressable components as well as
their maximum address width are globally defined for every
design.



<<COMP_ID>>
<<COMP_TYPE>>
<<ADDR_WIDTH>>
<<HAS_IRQ>>
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Figure 1. Generic base_slave used within all basic blocks.
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Figure 2. Simplified diagram of the bus multiplexer module bus_mux.

A typical RTL design consists of a hierarchy of mod-
ules [17] and anywhere within such a hierarchy, software
accessibility may be needed. The proposed communication
infrastructure follows a tree-based approach, spanned over
the design. Every component around the basic slave module
base_slave acts as a leaf within that structure, while
a bus multiplexer module bus_mux (fig. 2) is used for
the respective branch. The left side of this bus_mux can
be connected the same way as regular slaves, allowing the
extension of communication infrastructure where needed. On
the right side, multiple ports are available. For the signal
propagation from the root to the leafs, equivalent to a broadcast
within the whole tree, the outputs s_to_slave[...] are
forwarding information from the input port m_to_slave.
The other direction is equipped with a multiplexer for the
selection of a single path to the master.

To achieve a high flexibility in the extension of the structure
at any point in hierarchy, the decoding of the unique identifiers
is performed locally within leafs. During the selection phase,

1Apache Subversion (SVN), a revision control system mainly used for
software development.
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Figure 3. Demonstration of the selection phase.
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Figure 4. Example of a hierarchical design with spanned communication
infrastructure.

the identifier is being forwarded until the requested slave is
reached. An example for an endpoint indexed by identifier ’3’
is shown in the upper half of figure 3. On the path back to the
root, every bus_mux is configured accordingly (lower half
of figure 3). During the acknowledgement phase, the newly
selected instance transmits its type designator and address
width as payload. Both values are available within the info
component which is also used for scanning the tree. Note
that the access to the selected endpoint is exclusive and any
changes need an additional selection phase.

In Figure 4 the example for a design with three layers of
hierarchy denoted with h1 to h3 is given. In every layer, there
are components accessible from the outside with instances
of basic blocks as specified in table I and one instance of
bus_mux at each level. A special bridge is used to tie the
custom design below h1 to the system bus of the SoC. It
represents the master within the communication infrastructure
and can be considered as the root of the tree. For each leaf,
the corresponding identifier is written in brackets.

First assume, that instance h3 is not contained in the design
and the memory within h2 is linked instead. However, due to
changed requirements, it is decided to insert a third level of
hierarchy to encapsulate and extend the memory by extra logic
and some additional registers. Within the inserted level h3,
another bus_mux instance is now prepended to the memory
and a register file. There is neither a need to reassign any
identifier, nor is there any change necessary within bus_mux
configuration. The assignment of unique identifiers is done
manually and the order of their distribution across the design
is irrelevant.

Another very important feature of the proposed design
infrastructure is the interrupt propagation setup. It has to
stay in operation at any time, even independently on the
selected slave. Because of the limited number of endpoints, it
is possible to utilize a bit-vector with a unique source identifier.
Each instance of base_slave assigns only the bit marked
by its identifier and all the other bits are set to zero. Within
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Figure 5. Decomposition of the driver in frontend and multiple backends.

bus_mux, the interrupt vectors s_to_master[i].irq are
joined to m_to_master.irq using a bitwise OR-operation
across all channels. This will effectively result in a direct
connection from endpoint to the master after synthesis.

IV. SYSTEMC MODEL

In order to support digital and mixed signal modeling of
commissioning setups and to allow starting software devel-
opment without real hardware, the interconnect infrastructure
proposed in section III has been implemented in SystemC [18],
[19], using Transaction Level Modeling (TLM) [20]. There is
no need for a separate bus_mux, because the TLM channels
are routed through the design hierarchy. During elaboration,
a consistency check for the uniqueness of slave identifiers
is performed. Instead of a bridge for linkage to the system
bus, the communication is tunneled through a TCP/IP socket
by a simple text-based protocol. The SystemC model acts
as the server and opens a port for incoming connections.
Any remote access arrives completely asynchronously and
has no reference to simulation time. This is achieved using
the async_request_update() mechanism introduced in
SystemC 2.3 [21].

V. SOFTWARE ARCHITECTURE

The software part consists of a lightweight Linux kernel
driver providing direct hardware access from user space and
an object-oriented abstraction library used for application
development.

A. Kernel driver

The kernel driver is inspired by the UIO framework [10],
enhanced by multiple access to a collection of devices mapped
into a continuous address space. For easier maintenance, the
driver is split (fig. 5) into a frontend, which provides the inter-
face to user space, and a backend for the communication with
the hardware. This allows the definition of virtual backends, to
be used for debugging and verification. Each backend provides
information and access methods for all its components. A
virtual backend mimics the existence of slaves by defining
regions of appropriate size within main memory.

For the ease of change, it is important to allow automatic
setup depending on the hardware configuration. Only very
few additional information are necessary for this process. The
address range is determined by a device tree [22] entry as

hwbus0: hwbus@60000000 {
compatible = "eascbus";
reg = < 0x60000000 0x4 >;
interrupt-parent = <&axi_intc_0>;
interrupts = < 4 4 >;
skipscan = "no";
identifier = "hwbus0";

};

Listing 1. Device tree for a single HW backend.
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Figure 6. State transition diagram for application access to component.

depicted in listing 1, which is evaluated at driver probing
phase. For each matching entry within device tree, one hard-
ware backend is instantiated. It fetches the maximum count
of slaves and the address range from the info component.
During the following scan, all possible identifiers are examined
by issuing appropriate reads. The corresponding result status,
stored automatically within info component, supplies the
driver with information about the endpoint for the given
identifier. After the setup has been finished, all available slaves
are registered in the backend.

For each backend, the frontend generates a corresponding
device file in /dev, which is used for providing the common
character interface [9]. In contrast to UIO, only one device file
is created per master. Within SysFS [23], available information
are supplied to user space. When the device file is being
opened by an application, a corresponding driver instance will
automatically be created by the kernel. However, this instance
is not bound to any slave (fig. 6) and requires a mmap() call
to establish the binding. To select a specific component, the
offset used by mmap() points to the corresponding region in
the address space of the SoC. Note that it is possible to open
the device file by multiple simultaneous applications, but each
individual endpoint can only be bound to a single process at
once. Read and write is carried out using mapped memory
access. For the closing of the connection to a slave, memory-
mapping is terminated and the file-descriptor is deleted as
depicted in figure 6. If an application terminates, this is done
automatically by the operating system.

Asynchronous events generated by any endpoint are passed
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Figure 7. Simplified UML class diagram of user space library.

to the kernel via the SoC’s interrupt mechanism. Each backend
registers an appropriate interrupt handler. When an application
calls read() on an already bound driver instance, the system
call is blocked until the corresponding slave issues an interrupt.
In contrast to UIO, the triggering of asynchronous events can
be controlled for each device separately using the write()
system call on a bound driver instance.

B. Library

To simplify access from custom applications, an object
oriented library acts as abstraction layer. In figure 7, a sim-
plified UML diagram is depicted. The library can be used in
combination with a SystemC model using the infrastructure
given in section IV. However, to access any component, a
Driver object is needed. While the KernelDriver allows
direct hardware access, the SimDriver sets up up a TCP/IP
socket to a remote host running the SystemC model. This
approach makes it possible to run the same application close
to the hardware within an SoC or to control a SystemC model.

The KernelDriver object fetches all available informa-
tion provided by SysFS. For each instantiated component, the
device is opened separately. The Abstract Factory Driver
is passed to any new instance of class Component, which
allows the driver to create the appropriate Strategy of type
Handle. The class Component provides different access
methods for read and write, as well as the possibility to
register a callback-function for asynchronous events. For each
registered callback a separate thread is used, waiting for return
from blocked read system call.

VI. IMPLEMENTATION AND APPLICATIONS

The proposed infrastructure has been implemented in
VHDL [17] and is independent of the FPGA used. Cur-
rently, it is tied to the SoC’s AXI-interface via corresponding
axi_bridge. The data-width is set to 32 bit. For simplicity,
burst-mode a transfer has not been realized yet. For timing
improvement, registers can be placed within the path from
slaves to the master. During elaboration, each instance of
base_slave appends its hierarchical instance name fol-
lowed by the identifier and the size of its memory area to
a report file. This file is checked for duplicated identifiers. By
default, the maximum number of slaves is limited to 32 and
the size of the assigned address space to 16 kiB, but both
values can be easily increased within the global configuration
package.

Operation
Throughput accessing reg file in MiB/s

Spartan-6 Zynq-7020
@100 MHz (MicroBlaze) @667 MHz (ARM)

1 single read 1.4 14.2
2 single write 1.5 16.9
3 block read 19.5 18.2
4 block write 25.8 23.8

5 ping pong 1.3 12.1read

6 ping pong 1.4 15.7write

Table II
RESULTS OF THROUGHPUT MEASUREMENT.

The kernel driver has been implemented in C and supports
one virtual as well as several hardware backends. The code is
practically independent of the processor architecture used for
the execution, and the access library for custom applications
is implemented in C++.

The HW/SW design infrastructure has so far been used in
several projects. As application examples, a camera system
for remote machine monitoring [24] and a custom prototyping
platform for tests and characterization of several prototypical
and commercial image sensors [25] have been implemented.
The framework itself was initially developed for a Xilinx
Spartan-6 FPGA [26] with a MicroBlaze soft-core CPU [27]
and peripherals necessary to run Embedded Linux. Com-
ponents for acquisition control, memory management and
I/O configuration, as well as the setup of the image sensor
itself, utilize software access by the proposed communication
system. Based on the library described in section V-B, the
firmware to control the camera is a regular Linux application.
With the development of SystemC models for the image
sensor and the camera system, it was possible to develop the
firmware without the need of final hardware. This allows the
development of hard- and software in parallel.

Due to its system architecture, the proposed HW/SW infras-
tructure for ASIC commissioning and rapid system prototyp-
ing could easily be ported to Zynq [28], the next generation
of Xilinx FPGA SoCs. The compilation of the kernel driver
and the C++ based user space library for the embedded ARM
CPU was sufficient to prepare the setup for the execution of
existing applications.

To determine the total performance including hard- and
software throughput, several measurements have been carried
out. For example, a 16 KiB memory block was instantiated
and connected to the communication infrastructure, as depicted
in figure 4. The experimental setup consists of two FPGA
systems, one based on Spartan-6 and the other one on Zynq-
7020, with RTL running at 100 MHz. Table II illustrates three
different access modes: single register access (rows 1 and 2),
block access with 16 KiB at once (rows 3 and 4) and ping
pong access (alternating accesses to two different endpoints,
each implying an additional selection phase).

In the MicroBlaze soft-CPU, each access has a latency of
19 (read) or 15 (write) cycles, which results in a theoretical
maximum throughput of 20.1 MiB/s for read and 25.4 MiB/s



for write access at 100 MHz. Due to synchronization issues,
on Zynq there is one additional cycle necessary for both read
and write, resulting in a maximum throughput of 19.1 MiB/s
for read and 23.8 MiB/s for write respectively. The difference
to the data given in the table is due to additional overhead
from function calls and data movement in user space software.
While the theoretical throughput is nearly reached for large
blocks, the overhead has a large impact for single value
access. Especially for the relatively slow MicroBlaze soft-
CPU, this effect is dominating. Additionally, the peak interrupt
rate handled by application software was measured as 2 kHz
for the MicroBlaze soft-CPU and 15 kHz for the embedded
ARM within Zynq device.

VII. CONCLUSION

The hardware of the proposed hardware/software infrastruc-
ture for ASIC commissioning and rapid system prototyping
consists of several IP blocks, and can be used as a foundation
for components to be accessed and controlled by software.
Organized in a tree-based structure, extensions can be added
as leaves without changes to the remaining hierarchy. For
the hardware access from user space applications running on
Embedded Linux, a newly developed kernel driver as well as a
C++-library have been introduced. Implementation details are
hidden from the user, which eases the development of Linux
based firmware without detailed knowledge of kernel internals.
Moreover, the kernel driver has been validated and can be used
as is, even if the RTL of custom hardware is being modified
for different test cases. The integration of SystemC models
into the design process allows software development without
the target hardware being available.

The implemented axi_bridge is fully functional, but
the throughput for consecutive access can be increased by
implementing a burst mode operation.

Currently a Python [29] binding is being developed to
broaden the application options.
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