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Abstract—ARTICo3 is an architecture that permits to dy­
namically set an arbitrary number of reconfigurable hardware 
accelerators, each containing a given number of threads fixed 
at design time according to High Level Synthesis constraints. 
However, the replication of these modules can be decided at run­
time to accelerate kernels by increasing the overall number of 
threads, add modular redundancy to increase fault tolerance, 
or any combination of the previous. An execution scheduler 
is used at kernel invocation to deliver the appropriate data 
transfers, optimizing memory transactions, and sequencing or 
parallelizing execution according to the configuration specified 
by the resource manager of the architecture. The model of 
computation is compatible with the OpenCL kernel execution 
model, and memory transfers and architecture are arranged to 
match the same optimization criteria as for kernel execution 
in GPU architectures but, differently to other approaches, with 
dynamic hardware execution support. 

In this paper, a novel design methodology for multithreaded 
hardware accelerators is presented. The proposed framework 
provides OpenCL compatibility by implementing a memory 
model based on shared memory between host and compute de­
vice, which removes the overhead imposed by data transferences 
at global memory level, and local memories inside each acceler­
ator, i.e. compute unit, which are connected to global memory 
through optimized DMA links. These local memories provide 
unified access, i.e. a continuous memory map, from the host 
side, but are divided in a configurable number of independent 
banks (to increase available ports) from the processing elements 
side to fully exploit data-level parallelism. Experimental results 
show OpenCL model compliance using multithreaded hardware 
accelerators and enhanced dynamic adaptation capabilities. 

Index Terms—Multithreading, Hardware Accelerators, Dy­
namic and Partial Reconfiguration, Fault Tolerance, OpenCL, 
FPGAs 

I. INTRODUCTION 

The saturation of single core technologies in terms of both 
performance and energy efficiency, forces inevitably to explore 
different levels of parallelism other than Instruction-Level 
Parallelism (ILP) to continue increasing computing power 
while at the same time keeping affordable energy consumption 
rates. However, parallelism at application, language and archi­
tecture levels must be consistent in order to get the expected 
performance by means of an efficient acceleration. 

At application level, two different types of parallelism 
(apart from ILP) can be identified: Task-Level and Data-Level 
Parallelism (TLP and DLP, respectively) [1]. TLP is typically 
used in multicore platforms, since it is based on Multiple 
Instruction Multiple Data (MIMD) execution. DLP, on the 
other hand, is mainly used in manycore architectures, e.g. 
GPUs, for it uses Single Instruction Multiple Data (SIMD) 
execution. However, the success obtained by GPUs, though 
significant, is limited by their power consumption, since, after 
all, execution is done in software, which cannot compete with 
the lower energy used in dedicated hardware implementations. 

At language level, and although there are several alternatives 
in the state of the art, OpenCL (Open Computing Language) 
is currently gaining more importance, since it supports both 
TLP and DLP, as well as heterogeneous platforms. In these 
platforms, parallelism has to be explicitly declared by using 
the OpenCL programming model. Hence, developers have to 
define which is the most efficient way of programming each 
platform, always taking into account the underlying hardware. 
In addition, the OpenCL specification includes an execution 
model that enables efficient implementation on GPUs and, 
crucial for the motivation of the present work, on any other 
platform which uses a similar Model of Computation (MoC). 

At architecture level, this work is based on the ARTICo3 

architecture [2], which is an FPGA-based architecture similar 
to GPUs, but in which processing to exploit DLP is done in 
hardware rather than in software. The ARTICo3 framework 
appears in a context where embedded systems tend to be 
more adaptive, self-aware and context-aware, with variable 
task requirements in terms of dependability, acceleration and 
energy along time. Hence, the architecture is able to support 
the execution of tasks on a variable number of hardware accel­
erators, which can be dynamically configured to better adapt 
to changing fault tolerance and acceleration requirements, 
by means of Dynamic and Partial Reconfiguration (DPR). 
Moreover, self-aware resource management strategies to select 
the optimum operating point for any task provide complete 
independence between the task itself and the requirements at 
any given instant of time. Self-awareness and adaptivity are 



enhanced by accurate prediction models of task execution [3] 
that, together with the predictability given by the High Level 
Synthesis (HLS) tools proposed for the development of hard­
ware accelerators, are an important step towards predictability 
in adaptive multithreaded hardware-accelerated architectures. 

The main contribution of this paper is the model of par­
allelism, as well as the underlying hardware architecture, 
envisaged to efficiently support the different OpenCL models, 
i.e. platform, execution and memory models. Experimental 
results showing execution times and energy consumption with 
three different fault-tolerance levels using a parallel block 
cipher algorithm confirm model compatibility between the 
ARTICo3 and OpenCL frameworks, with additional dynamic 
adaptation capabilities. 

The rest of this paper is organized as follows: section 
I I presents the ARTICo3 framework, its architecture, and 
establishes the relationships with the different models present 
in the OpenCL specification (platform, execution and memory 
models); section I I I reviews the current state of the art to 
highlight the main contributions of the proposed approach; 
section I V details the implementation of the block cipher 
example, and the obtained results are exposed and analyzed in 
section V, whereas conclusions and future work are presented 
in section V I . 

I I . A R T I C O 3 FRAMEWORK: OPENCL SUPPORT 

ARTICo3 is a bus-based architecture to support multi­
threaded hardware acceleration in SRAM-based FPGAs due 
to their DPR capabilities. This is one of the main pillars of the 
architecture itself. Moreover, the reconfigurable region makes 
use of slot-based reconfiguration. These slots can be loaded 
at runtime with different hardware accelerators, which are 
application-specific and may consist of one or more parallel 
threads, thus having multithreading capabilities. 

The static region contains a D M A engine to enable burst 
transactions over a dedicated data bus and feed the recon-
figurable accelerators through a unique gateway called data 
shuffler, which acts as a bridge between the static and the 
reconfigurable regions. Data delivery and processing are done 
differently depending on the mode on which the architecture is 
working, supporting overlapped execution, or even hardware 
redundant execution to deploy fault-tolerance techniques such 
as Double and Triple Module Redundancy ( D M R and T M R , 
respectively) by adding a voter unit in the returning datapath 
from the accelerators. The accelerators to be loaded in each 
reconfigurable slot and their corresponding operation mode are 
decided at runtime by the resource manager of the architecture, 
which takes into account the requirements of each task (either 
internal or external to the system), whereas the sequences of 
data transfers, as well as the execution sequencing process, 
are programmed by an embedded scheduler. Therefore, it is 
the resource manager the one in charge of guaranteeing task 
and requirements independence, as well as receiving kernel 
invocations from the host and offloading the programming of 
their execution to the scheduler. 

In this section, OpenCL support within the ARTICo3 frame­
work is covered using a bottom-up approach: the underly­
ing hardware, which has already been detailed in previous 
paragraphs, acts as the starting point, upon which all specific 
OpenCL models are built and their abstraction derived. Fur­
thermore, an additional subsection regarding dynamic adapta­
tion within the framework is included to further explain system 
capabilities that are transparent to OpenCL, and thus still 
compliant with the standard, but provide additional functional 
extensions. 

A. Platform Model 

In each ARTICo3 implementation there is, at least, one host 
microprocessor. Applications running in the host make use of 
application-specific hardware accelerators in order to speed 
up data intensive program sections. Therefore, the analogy 
between the ARTICo3 framework and the OpenCL platform 
model is easy to establish, as it can be seen in Fig. 1 
(a). The data shuffler, together with the resource manager, 
the scheduler and the reconfigurable region constitutes an 
OpenCL device. Going down in the hierarchy, each hardware 
accelerator can be thought of as an OpenCL compute unit. At 
the lowest level of this hierarchy, parallel threads inside each 
hardware accelerator behave as OpenCL processing elements. 
Notice that some accelerators might have only one thread and 
thus, one OpenCL processing element. Also note that in the 
ARTICo3 framework, host and OpenCL device share the same 
FPGA fabric, thus reducing silicon footprint. 

B. Execution Model 

The embedded scheduler programs optimized DMA trans­
fers between the external memory and one or more accel­
erators through the data shuffler, making full use of bus 
occupancy and memory bandwidth. Hence, the limitation of 
hardware accelerators in ARTICo3, which otherwise could not 
access the external RAM memory (shared among all acceler­
ators) directly, is eliminated. Furthermore, the combination of 
any accelerator, the scheduler and the data shuffler has full 
master capabilities regarding the data bus and, therefore, the 
external memory. 

DPR enables module replication and relocation, and thus, 
having more than one copy of the same accelerator. By an 
optimized data delivery, these replicated accelerators behave 
in SIMD-like fashion, assuming no data dependencies between 
them. Since the architecture is bus-based, data transfers are se-
quenced in time through the data bus. Therefore, a whole burst 
transaction coming from the external RAM memory can be 
split in as many blocks as the number of replicated accelerators 
without introducing additional latency. This process, which is 
done on-the-fly by the data shuffler once programmed, leads 
to an overlapping between the execution and the data transfer 
itself, since once each accelerator has its data, it can start 
processing. 

The relationship between the ARTICo3 MoC and the 
OpenCL execution model is shown in Fig. 1 (b) and (c). Each 
work-group is mapped into a replicated hardware accelerator, 



Fig. 1. ARTICo3 framework: OpenCL model support. Platform and memory models are represented in (a), whereas the execution model is presented in 
(b), where all work-groups of a given kernel are executed in an overlapped way; and in (c), where two rounds of work-groups are required to finish kernel 
execution. Note that the main difference between (b) and (c) is resource availability (i.e. the number of available compute units). Dynamic support enabling 
multikernel execution within the architecture is shown in (d). 

and work-items are mapped into the parallel threads inside the 
accelerator. Module replication through DPR, and data inde­
pendences between accelerators enable OpenCL support for 
NDRange kernel invocation, as well as transparent scalability 
during execution within the architecture. Hence, in Fig. 1 (b) a 
kernel is invoked with 4 work-groups having 4 available slots, 
and executes in one round; in Fig. 1 (c), on the other hand, 
another kernel is invoked with 4 work-groups having only 2 
available slots, thus leading to a sequential execution of two 
rounds to achieve full kernel completion. 

C. Memory Model 

ARTICo3 relies on an external RAM memory where both 
host and the DMA engine of the architecture perform read and 
write operations. In order to enhance processing performance, 
hardware accelerators have a local memory which, as it is 
shown in Fig. 2, can be divided in a configurable number of 
independent banks to fully exploit DLP, e.g. several threads 
accessing different memory positions at the same time. In­
side each hardware accelerator there is additional logic that 
performs address translation so that the independent memory 
banks appear as a continuous map from the data shuffler side. 
Furthermore, this translation process is also configurable, and 
can be tailored to any specific application. 

In OpenCL terminology, the external RAM memory would 
be both host and device global memory. Being a shared 
memory between host and device, the main bottleneck of 

Fig. 2. Generic local memory structure inside the hardware accelerators 
(compute units), with multibank support to enable parallel accesses from the 
processing elements. 

other parallel processing devices such as GPUs, i.e. memory 
bandwidth between host and device, is clearly mitigated. The 
OpenCL specification also defines two additional memory 
levels: local memory, which in ARTICo3 is the multibank 
memory inside each accelerator; and private memory, which 
corresponds to internal storage elements such as registers 
inside each work-item. The memory hierarchy of OpenCL 
within an ARTICo3 implementation can be seen in Fig. 1 (a). 

D. Dynamic Adaptation 

The ARTICo3 architecture was initially conceived to dy­
namically change its operating point by establishing a trade­
off between computation, energy consumption and depend­
ability. So far, only computation-related features have been 
discussed, focusing on the similarities between the ARTICo3 



and OpenCL frameworks. However, the architecture is also 
capable of setting up more than one accelerator to work on 
the same data, so that fault-tolerant execution is achieved. 
Data are delivered strictly in parallel to the accelerators and 
the results are read also in parallel but through a voter 
unit that is capable of masking faults in any position of 
the reconfigurable logic. This operation mode is completely 
compatible with the aforementioned overlapped execution to 
enhance computation, being the only limitation the overall 
amount of physical resources inside the FPGA. Moreover, the 
resource manager can change between modes to better adapt 
to changing requirements. 

Furthermore, the architecture does also provide additional 
features that enable self-awareness. The resource manager 
has access in real time to runtime metrics such as power 
consumption, execution times or even bus occupancy, and it 
uses embedded models to achieve energy-efficient or even 
predictable execution [3]. As an example, Fig. 1 (d) shows 
how two kernels are scheduled to be executed concurrently. 
The resource manager detects, by means of a bus monitor, 
that kernel A is not making full usage of memory bandwidth 
and then tells the scheduler to launch two rounds of kernel B 
(already enqueued) work-groups, for it also detects that there 
are two available slots. 

The main difference between other OpenCL-compliant de­
vices and ARTICo3 is indeed this dynamic adaptation ca­
pability. The use of DPR allows to dynamically change the 
computing matrix, or more precisely, to dynamically modify 
the number and type of OpenCL computing units, which are 
application-specific and thus highly optimized, at runtime in 
an autonomous way. Hence, this is what makes ARTICo3 a 
powerful, OpenCL-compliant computing platform for embed­
ded systems. To the best of the authors’ knowledge, there is no 
other architecture in the state of the art with dynamic support 
for multithreaded hardware acceleration and OpenCL support. 

I I I . RELATED WORK 

Hardware acceleration has become an important feature in 
computation-intensive environments due to technology limi­
tations. In order to support this kind of acceleration, and in 
the context of reconfigurable computing, it is mandatory to 
implement efficient architectures. Moreover, languages and 
computing models have to be developed on top of these 
architectures to achieve the expected results [4]. 

Throughout the literature there are several examples of 
this integration between architectures that provide hardware 
acceleration and computing models. In [5], a multithreaded 
computing model to support parallelism in chip multiproces­
sors is proposed. In [6], on the other hand, a slot-based virtual 
architecture to support streaming processing in reconfigurable 
FPGAs is presented. In the last few years, some architectures 
have enabled support for multiple hardware threads, as in [7], 
where the processing is also streaming-based. 

Apart from the architecture, it is also important the method 
by which hardware accelerators are generated. Traditionally, 

the approach has been to develop accelerators using Hard­
ware Description Languages (HDLs), as it can be seen in 
[8]. Nevertheless, H L S approaches, in which accelerators are 
obtained from a high-level language description, have gained 
more importance recently [9]. A good example can be found in 
[10], where multithreaded hardware accelerators are obtained 
by using some extensions over the Nymble framework [11]. 
In addition, more complex examples can be found in the 
literature, such as in [12], where the H L S flow is embedded 
in the reconfigurable platform. 

Moreover, high-level languages with explicit definitions of 
parallelism at different levels are now part of H L S methodolo­
gies, either directly or by using the L L V M framework [13]. For 
instance, OpenMP has been used in [14] and in [15]. FPGA 
vendors, on the other hand, have decided to include OpenCL 
support in their design flows. Both Altera [16] and Xilinx [17] 
provide tools to implement OpenCL-compliant applications in 
their hardware platforms. Hence, researchers from academia 
have also put their effort in working with OpenCL in order 
to generate custom accelerators, with tools such as SOpenCL 
[18], methodologies based upon commercial tools [19] or by 
using L L V M to accelerate synthesis processes [20]. 

Differently from the aforementioned alternatives, the 
ARTICo3 framework provides an architectural model that 
enables dynamic adaptation at runtime, with a finer recon­
figuration granularity than other approaches, even though 
accelerator generation is also based upon H L S from OpenCL 
code, supporting parallelism at different levels. 

I V . APPLICATION EXAMPLE 

Due to the application-specific nature of the hardware 
accelerators, the OpenCL platform and execution model termi­
nologies can be merged into one single entity. Hence, compute 
units and processing elements will be referred to as work­
groups and work-items respectively in the following. 

In order to demonstrate the integration of ARTICo3 in 
the OpenCL framework, a block cipher algorithm has been 
selected as testbench. More precisely, the chosen algorithm 
is the Advanced Encryption Standard (AES) in its 256-bit 
key-length version working in counter mode (CTR), since 
it is an operation mode that provides good results in terms 
of both confidentiality and parallelization capabilities. Two 
implementations of the same algorithm have been developed: 
one with 1 work-item per work-group, and another with 2 
work-items per work-group. 

Local memory partitioning depends on the number of work-
items, even though each hardware accelerator has the same 
local memory size (64 kB in this particular example). Fig. 3 
shows the partitioning in accelerators containing 1 work-item. 
Notice that the general architecture presented in Fig. 2 has 
been simplified to ease application understanding. Two banks 
are required: one for storing the plain text, and another to store 
the cipher text. The work-item accesses sequentially these two 
banks until all operations have finished. Fig. 4, on the other 
hand, shows the partitioning in accelerators containing 2 work-
items. In this particular case, the number of memory banks is 



Fig. 3. Data distribution in local memory of an AES256 CTR work-group 
with 1 work-item. 

Fig. 4. Data distribution in local memory of an AES256 CTR work-group 
with 2 work-items. 

T A B L E I 
RESOURCE UTILIZATION: AES256 C T R KERNEL 

Work-group utilization (%Slot/%FPGA) 
Resource 1Work-item 2Work-items 

Left Right Left Right 

Slices 1115 (40/2.2) 1098 (45/2.1) 2057 (73/4) 2040 (83/4) 
BRAMs 16 (67/3.6) 16 (67/3.6) 16 (67/3.6) 16 (67/3.6) 

doubled, and the address translation logic distributes workload 
in a balanced fashion: 128-bit data blocks are shuffled between 
banks 0 and 2 so that each work-item has to process the same 
amount of data. Note that the address translation logic only 
has to be enabled in the implementation with 2 work-items, 
whereas it is idle, i.e. acts as a bypass, when having only 1 
work-item. Moreover, address translation logic is synthesized 
with the hardware accelerator, and its complexity may range 
from address line exchanges for simple cases spanning the 
whole bank size, to very complex routing schemes. 

The implementation has been made in a KC705 develop­
ment board, which features a Xilinx XC7K325T-2FFG900C 
FPGA. Layouts of the placed and routed designs are shown 
in Fig. 5. Moreover, Table I contains information regarding 
resource utilization in work-groups with 1 and 2 work-items. 
Notice that the ARTICo3 architecture in this specific device 
has forced the design to be split in two different regions, i.e. 
left and right. Therefore, although module relocation can be 
performed during reconfiguration, it can only be done in the 
same region due to resource heterogeneities between left and 
right sides. Hence, partial bitstreams from each region have to 
be extracted, increasing memory footprint. 

Fig. 5. ARTICo3 layout inside the KC705 development board with no 
accelerators loaded (left), with 2 AES256 CTR work-groups with 1 work-
item each (center), and with 2 AES256 CTR work-groups with 2 work-items 
each (right). 

V . EXPERIMENTAL RESULTS 

A comparison between accelerators containing 1 or 2 work-
items is mandatory. In terms of functionality, both implemen­
tations show the same behavior, since the inherent transparent 
scalability of OpenCL is shared within the ARTICo3 frame­
work, enabled by the optimized data transfers and the address 
translation logic inside local memories. However, in terms of 
execution performance, each implementation shows a different 
behavior. Take for instance Fig. 6, where power consumption 
in the FPGA core and in the external memory, as well as 
the execution time are shown for a kernel invocation using 
6 accelerators with 1 work-item to cipher 192 kB of raw 
data. When compared against Fig. 7, which shows exactly the 
same situation but using accelerators with 2 work-items, it is 
clear that the power consumption prior to kernel invocation is 
quite similar, but during execution these similarities disappear, 
showing differences in both power consumption and elapsed 
time. 

Furthermore, the solution space of the architecture has been 
explored using the developed accelerators. This is shown 
in Fig. 8, where a fixed amount of 2.5 M B of raw data 
is ciphered by a changing number of hardware accelerators 
(either containing 1 or 2 work-items), and under chang­
ing requirements that include different fault tolerance levels 
(Simplex for no redundancy, D M R , and TMR) . The KC705 
development board only has resources to host 6 accelerators, 
and therefore the embedded models, previously validated and 
verified experimentally with other kernels and FPGA boards 
[3], have been used in order to predict the behavior of the 
system when the number of accelerators is increased above this 
limit (dotted lines in the figures). Hence, the transition from 
computing-bounded to memory-bounded execution is clear: 
when maximum bus occupancy is reached, no further speedup 



Fig. 6. Power consumption in the FPGA core and in the external memory Fig. 7. Power consumption in the FPGA core and in the external memory 
during the execution of 6 AES256 CTR work-groups with 1 work-item each. during the execution of 6 AES256 CTR work-groups with 2 work-items each. 

can be achieved. Notice that once this memory bandwidth 
limitation is reached, the actual bus occupancy is almost 96% 
with respect to the theoretical maximum. 

Hence, execution speedup in ARTICo3 shows two main 
limiting factors, as it can be seen in Fig. 9: on the one hand, 
technology limitations, which impose the maximum number of 
reconfigurable slots that can be loaded with accelerators; on 
the other hand, memory bandwidth limitations, which impose 
the maximum data rate that can be delivered to the loaded 
accelerators. Regarding the latter, it is possible to compute 
the optimal operating point, i.e. the working point immediately 
before entering memory-bounded execution, by analyzing the 
ratio between accelerator execution and data transfer times 
(both measurable at runtime with internal monitors). The 
optimal operating points for both accelerators are also shown 
in Fig. 9. Notice that these optimal points are not supported 
in the KC705 board due to technology limitations. 

The aforementioned limitations have an additional impact 
on the overall energy efficiency of the system, as it is shown 
in Fig. 10. SRAM-based FPGAs still have a large component 
of static power consumption, which in most cases is larger 
than the dynamic contribution itself. Therefore, the faster the 
processing is done, the more energy-efficient the execution 
becomes. Once the memory-bounded region is reached, energy 
savings start decreasing. In this case, the optimal operating 
points have also been highlighted in the graph. 

V I . CONCLUSIONS AND FUTURE WORK 

The ARTICo3 framework provides native OpenCL-
compliant platform, execution and memory models, being 
its architecture similar to other OpenCL devices such as 
GPUs. However, the main difference is that compute units 
are hardware-based processing units, with DPR support to 
enhance system flexibility up to the level of similar software-
based approaches, increasing the virtual number and type of 
compute units in the device. Moreover, DPR is part of a set 
of tools (system monitors, embedded prediction models, etc.) 
that provide dynamic adaptation at runtime, going beyond the 
OpenCL specification but being transparent to the developer. 

Fig. 8. Solution space of the AES256 CTR implementations with work-groups 
of 1 or 2 work-items each in ARTICo3. 

Fig. 9. Speedups of the AES256 CTR implementations with work-groups of 
1 or 2 work-items each in ARTICo3 (reference value is 1 work-group with 1 
work-item). 



Fig. 10. Energy savings of the AES256 CTR implementations with work­
groups of 1 or 2 work-items each in ARTICo3 (reference value is 1 work­
group with 1 work-item). 

Multibank local memories with address translation units 
enable optimized data transferences and grouping (which can 
favor coalesced data accesses from work-items), but keeping 
full compliance with the OpenCL specification. Experimental 
results show that integration of work-groups with variable 
number of work-items does not require additional effort on 
the software developer side. Moreover, multithreaded hardware 
accelerators provide better results in terms of energy efficiency 
and execution times in SRAM-based FPGAs. 

The proposed architecture and framework provide a balance 
between computing performance, dependability requirements 
and energy-efficient execution independently on the OpenCL 
tasks specified in the application code. This independence is 
guaranteed by the resource manager and its dynamic adapta­
tion capabilities. 

Currently, the work is focused on providing full support for 
the OpenCL programming model. Developers’ code is to be 
parsed to extract memory access patterns and program the re­
source manager and the work-group scheduler, and kernel code 
is to pass through H L S design flows to generate multithreaded 
hardware accelerators. With this, ARTICo3 implementations 
will behave as any other OpenCL-compliant device, such as 
GPUs or multicore processors, and thus will support functional 
portability of applications among them. 
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