
Design of OpenCL-Compatible Multithreaded
Hardware Accelerators with Dynamic Support

for Embedded FPGAs
Alfonso Rodríguez, Juan Valverde, Eduardo de la Torre

Abstract—ARTICo3 is an architecture that permits to dy­
namically set an arbitrary number of reconfigurable hardware
accelerators, each containing a given number of threads fixed
at design time according to High Level Synthesis constraints.
However, the replication of these modules can be decided at run­
time to accelerate kernels by increasing the overall number of
threads, add modular redundancy to increase fault tolerance,
or any combination of the previous. An execution scheduler
is used at kernel invocation to deliver the appropriate data
transfers, optimizing memory transactions, and sequencing or
parallelizing execution according to the configuration specified
by the resource manager of the architecture. The model of
computation is compatible with the OpenCL kernel execution
model, and memory transfers and architecture are arranged to
match the same optimization criteria as for kernel execution
in GPU architectures but, differently to other approaches, with
dynamic hardware execution support.

In this paper, a novel design methodology for multithreaded
hardware accelerators is presented. The proposed framework
provides OpenCL compatibility by implementing a memory
model based on shared memory between host and compute de­
vice, which removes the overhead imposed by data transferences
at global memory level, and local memories inside each acceler­
ator, i.e. compute unit, which are connected to global memory
through optimized DMA links. These local memories provide
unified access, i.e. a continuous memory map, from the host
side, but are divided in a configurable number of independent
banks (to increase available ports) from the processing elements
side to fully exploit data-level parallelism. Experimental results
show OpenCL model compliance using multithreaded hardware
accelerators and enhanced dynamic adaptation capabilities.

Index Terms—Multithreading, Hardware Accelerators, Dy­
namic and Partial Reconfiguration, Fault Tolerance, OpenCL,
FPGAs

I. INTRODUCTION

The saturation of single core technologies in terms of both
performance and energy efficiency, forces inevitably to explore
different levels of parallelism other than Instruction-Level
Parallelism (ILP) to continue increasing computing power
while at the same time keeping affordable energy consumption
rates. However, parallelism at application, language and archi­
tecture levels must be consistent in order to get the expected
performance by means of an efficient acceleration.

At application level, two different types of parallelism
(apart from ILP) can be identified: Task-Level and Data-Level
Parallelism (TLP and DLP, respectively) [1]. TLP is typically
used in multicore platforms, since it is based on Multiple
Instruction Multiple Data (MIMD) execution. DLP, on the
other hand, is mainly used in manycore architectures, e.g.
GPUs, for it uses Single Instruction Multiple Data (SIMD)
execution. However, the success obtained by GPUs, though
significant, is limited by their power consumption, since, after
all, execution is done in software, which cannot compete with
the lower energy used in dedicated hardware implementations.

At language level, and although there are several alternatives
in the state of the art, OpenCL (Open Computing Language)
is currently gaining more importance, since it supports both
TLP and DLP, as well as heterogeneous platforms. In these
platforms, parallelism has to be explicitly declared by using
the OpenCL programming model. Hence, developers have to
define which is the most efficient way of programming each
platform, always taking into account the underlying hardware.
In addition, the OpenCL specification includes an execution
model that enables efficient implementation on GPUs and,
crucial for the motivation of the present work, on any other
platform which uses a similar Model of Computation (MoC).

At architecture level, this work is based on the ARTICo3

architecture [2], which is an FPGA-based architecture similar
to GPUs, but in which processing to exploit DLP is done in
hardware rather than in software. The ARTICo3 framework
appears in a context where embedded systems tend to be
more adaptive, self-aware and context-aware, with variable
task requirements in terms of dependability, acceleration and
energy along time. Hence, the architecture is able to support
the execution of tasks on a variable number of hardware accel­
erators, which can be dynamically configured to better adapt
to changing fault tolerance and acceleration requirements,
by means of Dynamic and Partial Reconfiguration (DPR).
Moreover, self-aware resource management strategies to select
the optimum operating point for any task provide complete
independence between the task itself and the requirements at
any given instant of time. Self-awareness and adaptivity are

enhanced by accurate prediction models of task execution [3]
that, together with the predictability given by the High Level
Synthesis (HLS) tools proposed for the development of hard­
ware accelerators, are an important step towards predictability
in adaptive multithreaded hardware-accelerated architectures.

The main contribution of this paper is the model of par­
allelism, as well as the underlying hardware architecture,
envisaged to efficiently support the different OpenCL models,
i.e. platform, execution and memory models. Experimental
results showing execution times and energy consumption with
three different fault-tolerance levels using a parallel block
cipher algorithm confirm model compatibility between the
ARTICo3 and OpenCL frameworks, with additional dynamic
adaptation capabilities.

The rest of this paper is organized as follows: section
I I presents the ARTICo3 framework, its architecture, and
establishes the relationships with the different models present
in the OpenCL specification (platform, execution and memory
models); section I I I reviews the current state of the art to
highlight the main contributions of the proposed approach;
section I V details the implementation of the block cipher
example, and the obtained results are exposed and analyzed in
section V, whereas conclusions and future work are presented
in section V I .

I I . A R T I C O 3 FRAMEWORK: OPENCL SUPPORT

ARTICo3 is a bus-based architecture to support multi­
threaded hardware acceleration in SRAM-based FPGAs due
to their DPR capabilities. This is one of the main pillars of the
architecture itself. Moreover, the reconfigurable region makes
use of slot-based reconfiguration. These slots can be loaded
at runtime with different hardware accelerators, which are
application-specific and may consist of one or more parallel
threads, thus having multithreading capabilities.

The static region contains a D M A engine to enable burst
transactions over a dedicated data bus and feed the recon-
figurable accelerators through a unique gateway called data
shuffler, which acts as a bridge between the static and the
reconfigurable regions. Data delivery and processing are done
differently depending on the mode on which the architecture is
working, supporting overlapped execution, or even hardware
redundant execution to deploy fault-tolerance techniques such
as Double and Triple Module Redundancy (D M R and T M R ,
respectively) by adding a voter unit in the returning datapath
from the accelerators. The accelerators to be loaded in each
reconfigurable slot and their corresponding operation mode are
decided at runtime by the resource manager of the architecture,
which takes into account the requirements of each task (either
internal or external to the system), whereas the sequences of
data transfers, as well as the execution sequencing process,
are programmed by an embedded scheduler. Therefore, it is
the resource manager the one in charge of guaranteeing task
and requirements independence, as well as receiving kernel
invocations from the host and offloading the programming of
their execution to the scheduler.

In this section, OpenCL support within the ARTICo3 frame­
work is covered using a bottom-up approach: the underly­
ing hardware, which has already been detailed in previous
paragraphs, acts as the starting point, upon which all specific
OpenCL models are built and their abstraction derived. Fur­
thermore, an additional subsection regarding dynamic adapta­
tion within the framework is included to further explain system
capabilities that are transparent to OpenCL, and thus still
compliant with the standard, but provide additional functional
extensions.

A. Platform Model

In each ARTICo3 implementation there is, at least, one host
microprocessor. Applications running in the host make use of
application-specific hardware accelerators in order to speed
up data intensive program sections. Therefore, the analogy
between the ARTICo3 framework and the OpenCL platform
model is easy to establish, as it can be seen in Fig. 1
(a). The data shuffler, together with the resource manager,
the scheduler and the reconfigurable region constitutes an
OpenCL device. Going down in the hierarchy, each hardware
accelerator can be thought of as an OpenCL compute unit. At
the lowest level of this hierarchy, parallel threads inside each
hardware accelerator behave as OpenCL processing elements.
Notice that some accelerators might have only one thread and
thus, one OpenCL processing element. Also note that in the
ARTICo3 framework, host and OpenCL device share the same
FPGA fabric, thus reducing silicon footprint.

B. Execution Model

The embedded scheduler programs optimized DMA trans­
fers between the external memory and one or more accel­
erators through the data shuffler, making full use of bus
occupancy and memory bandwidth. Hence, the limitation of
hardware accelerators in ARTICo3, which otherwise could not
access the external RAM memory (shared among all acceler­
ators) directly, is eliminated. Furthermore, the combination of
any accelerator, the scheduler and the data shuffler has full
master capabilities regarding the data bus and, therefore, the
external memory.

DPR enables module replication and relocation, and thus,
having more than one copy of the same accelerator. By an
optimized data delivery, these replicated accelerators behave
in SIMD-like fashion, assuming no data dependencies between
them. Since the architecture is bus-based, data transfers are se-
quenced in time through the data bus. Therefore, a whole burst
transaction coming from the external RAM memory can be
split in as many blocks as the number of replicated accelerators
without introducing additional latency. This process, which is
done on-the-fly by the data shuffler once programmed, leads
to an overlapping between the execution and the data transfer
itself, since once each accelerator has its data, it can start
processing.

The relationship between the ARTICo3 MoC and the
OpenCL execution model is shown in Fig. 1 (b) and (c). Each
work-group is mapped into a replicated hardware accelerator,

Fig. 1. ARTICo3 framework: OpenCL model support. Platform and memory models are represented in (a), whereas the execution model is presented in
(b), where all work-groups of a given kernel are executed in an overlapped way; and in (c), where two rounds of work-groups are required to finish kernel
execution. Note that the main difference between (b) and (c) is resource availability (i.e. the number of available compute units). Dynamic support enabling
multikernel execution within the architecture is shown in (d).

and work-items are mapped into the parallel threads inside the
accelerator. Module replication through DPR, and data inde­
pendences between accelerators enable OpenCL support for
NDRange kernel invocation, as well as transparent scalability
during execution within the architecture. Hence, in Fig. 1 (b) a
kernel is invoked with 4 work-groups having 4 available slots,
and executes in one round; in Fig. 1 (c), on the other hand,
another kernel is invoked with 4 work-groups having only 2
available slots, thus leading to a sequential execution of two
rounds to achieve full kernel completion.

C. Memory Model

ARTICo3 relies on an external RAM memory where both
host and the DMA engine of the architecture perform read and
write operations. In order to enhance processing performance,
hardware accelerators have a local memory which, as it is
shown in Fig. 2, can be divided in a configurable number of
independent banks to fully exploit DLP, e.g. several threads
accessing different memory positions at the same time. In­
side each hardware accelerator there is additional logic that
performs address translation so that the independent memory
banks appear as a continuous map from the data shuffler side.
Furthermore, this translation process is also configurable, and
can be tailored to any specific application.

In OpenCL terminology, the external RAM memory would
be both host and device global memory. Being a shared
memory between host and device, the main bottleneck of

Fig. 2. Generic local memory structure inside the hardware accelerators
(compute units), with multibank support to enable parallel accesses from the
processing elements.

other parallel processing devices such as GPUs, i.e. memory
bandwidth between host and device, is clearly mitigated. The
OpenCL specification also defines two additional memory
levels: local memory, which in ARTICo3 is the multibank
memory inside each accelerator; and private memory, which
corresponds to internal storage elements such as registers
inside each work-item. The memory hierarchy of OpenCL
within an ARTICo3 implementation can be seen in Fig. 1 (a).

D. Dynamic Adaptation

The ARTICo3 architecture was initially conceived to dy­
namically change its operating point by establishing a trade­
off between computation, energy consumption and depend­
ability. So far, only computation-related features have been
discussed, focusing on the similarities between the ARTICo3

and OpenCL frameworks. However, the architecture is also
capable of setting up more than one accelerator to work on
the same data, so that fault-tolerant execution is achieved.
Data are delivered strictly in parallel to the accelerators and
the results are read also in parallel but through a voter
unit that is capable of masking faults in any position of
the reconfigurable logic. This operation mode is completely
compatible with the aforementioned overlapped execution to
enhance computation, being the only limitation the overall
amount of physical resources inside the FPGA. Moreover, the
resource manager can change between modes to better adapt
to changing requirements.

Furthermore, the architecture does also provide additional
features that enable self-awareness. The resource manager
has access in real time to runtime metrics such as power
consumption, execution times or even bus occupancy, and it
uses embedded models to achieve energy-efficient or even
predictable execution [3]. As an example, Fig. 1 (d) shows
how two kernels are scheduled to be executed concurrently.
The resource manager detects, by means of a bus monitor,
that kernel A is not making full usage of memory bandwidth
and then tells the scheduler to launch two rounds of kernel B
(already enqueued) work-groups, for it also detects that there
are two available slots.

The main difference between other OpenCL-compliant de­
vices and ARTICo3 is indeed this dynamic adaptation ca­
pability. The use of DPR allows to dynamically change the
computing matrix, or more precisely, to dynamically modify
the number and type of OpenCL computing units, which are
application-specific and thus highly optimized, at runtime in
an autonomous way. Hence, this is what makes ARTICo3 a
powerful, OpenCL-compliant computing platform for embed­
ded systems. To the best of the authors’ knowledge, there is no
other architecture in the state of the art with dynamic support
for multithreaded hardware acceleration and OpenCL support.

I I I . RELATED WORK

Hardware acceleration has become an important feature in
computation-intensive environments due to technology limi­
tations. In order to support this kind of acceleration, and in
the context of reconfigurable computing, it is mandatory to
implement efficient architectures. Moreover, languages and
computing models have to be developed on top of these
architectures to achieve the expected results [4].

Throughout the literature there are several examples of
this integration between architectures that provide hardware
acceleration and computing models. In [5], a multithreaded
computing model to support parallelism in chip multiproces­
sors is proposed. In [6], on the other hand, a slot-based virtual
architecture to support streaming processing in reconfigurable
FPGAs is presented. In the last few years, some architectures
have enabled support for multiple hardware threads, as in [7],
where the processing is also streaming-based.

Apart from the architecture, it is also important the method
by which hardware accelerators are generated. Traditionally,

the approach has been to develop accelerators using Hard­
ware Description Languages (HDLs), as it can be seen in
[8]. Nevertheless, H L S approaches, in which accelerators are
obtained from a high-level language description, have gained
more importance recently [9]. A good example can be found in
[10], where multithreaded hardware accelerators are obtained
by using some extensions over the Nymble framework [11].
In addition, more complex examples can be found in the
literature, such as in [12], where the H L S flow is embedded
in the reconfigurable platform.

Moreover, high-level languages with explicit definitions of
parallelism at different levels are now part of H L S methodolo­
gies, either directly or by using the L L V M framework [13]. For
instance, OpenMP has been used in [14] and in [15]. FPGA
vendors, on the other hand, have decided to include OpenCL
support in their design flows. Both Altera [16] and Xilinx [17]
provide tools to implement OpenCL-compliant applications in
their hardware platforms. Hence, researchers from academia
have also put their effort in working with OpenCL in order
to generate custom accelerators, with tools such as SOpenCL
[18], methodologies based upon commercial tools [19] or by
using L L V M to accelerate synthesis processes [20].

Differently from the aforementioned alternatives, the
ARTICo3 framework provides an architectural model that
enables dynamic adaptation at runtime, with a finer recon­
figuration granularity than other approaches, even though
accelerator generation is also based upon H L S from OpenCL
code, supporting parallelism at different levels.

I V . APPLICATION EXAMPLE

Due to the application-specific nature of the hardware
accelerators, the OpenCL platform and execution model termi­
nologies can be merged into one single entity. Hence, compute
units and processing elements will be referred to as work­
groups and work-items respectively in the following.

In order to demonstrate the integration of ARTICo3 in
the OpenCL framework, a block cipher algorithm has been
selected as testbench. More precisely, the chosen algorithm
is the Advanced Encryption Standard (AES) in its 256-bit
key-length version working in counter mode (CTR), since
it is an operation mode that provides good results in terms
of both confidentiality and parallelization capabilities. Two
implementations of the same algorithm have been developed:
one with 1 work-item per work-group, and another with 2
work-items per work-group.

Local memory partitioning depends on the number of work-
items, even though each hardware accelerator has the same
local memory size (64 kB in this particular example). Fig. 3
shows the partitioning in accelerators containing 1 work-item.
Notice that the general architecture presented in Fig. 2 has
been simplified to ease application understanding. Two banks
are required: one for storing the plain text, and another to store
the cipher text. The work-item accesses sequentially these two
banks until all operations have finished. Fig. 4, on the other
hand, shows the partitioning in accelerators containing 2 work-
items. In this particular case, the number of memory banks is

Fig. 3. Data distribution in local memory of an AES256 CTR work-group
with 1 work-item.

Fig. 4. Data distribution in local memory of an AES256 CTR work-group
with 2 work-items.

T A B L E I
RESOURCE UTILIZATION: AES256 C T R KERNEL

Work-group utilization (%Slot/%FPGA)
Resource 1Work-item 2Work-items

Left Right Left Right

Slices 1115 (40/2.2) 1098 (45/2.1) 2057 (73/4) 2040 (83/4)
BRAMs 16 (67/3.6) 16 (67/3.6) 16 (67/3.6) 16 (67/3.6)

doubled, and the address translation logic distributes workload
in a balanced fashion: 128-bit data blocks are shuffled between
banks 0 and 2 so that each work-item has to process the same
amount of data. Note that the address translation logic only
has to be enabled in the implementation with 2 work-items,
whereas it is idle, i.e. acts as a bypass, when having only 1
work-item. Moreover, address translation logic is synthesized
with the hardware accelerator, and its complexity may range
from address line exchanges for simple cases spanning the
whole bank size, to very complex routing schemes.

The implementation has been made in a KC705 develop­
ment board, which features a Xilinx XC7K325T-2FFG900C
FPGA. Layouts of the placed and routed designs are shown
in Fig. 5. Moreover, Table I contains information regarding
resource utilization in work-groups with 1 and 2 work-items.
Notice that the ARTICo3 architecture in this specific device
has forced the design to be split in two different regions, i.e.
left and right. Therefore, although module relocation can be
performed during reconfiguration, it can only be done in the
same region due to resource heterogeneities between left and
right sides. Hence, partial bitstreams from each region have to
be extracted, increasing memory footprint.

Fig. 5. ARTICo3 layout inside the KC705 development board with no
accelerators loaded (left), with 2 AES256 CTR work-groups with 1 work-
item each (center), and with 2 AES256 CTR work-groups with 2 work-items
each (right).

V . EXPERIMENTAL RESULTS

A comparison between accelerators containing 1 or 2 work-
items is mandatory. In terms of functionality, both implemen­
tations show the same behavior, since the inherent transparent
scalability of OpenCL is shared within the ARTICo3 frame­
work, enabled by the optimized data transfers and the address
translation logic inside local memories. However, in terms of
execution performance, each implementation shows a different
behavior. Take for instance Fig. 6, where power consumption
in the FPGA core and in the external memory, as well as
the execution time are shown for a kernel invocation using
6 accelerators with 1 work-item to cipher 192 kB of raw
data. When compared against Fig. 7, which shows exactly the
same situation but using accelerators with 2 work-items, it is
clear that the power consumption prior to kernel invocation is
quite similar, but during execution these similarities disappear,
showing differences in both power consumption and elapsed
time.

Furthermore, the solution space of the architecture has been
explored using the developed accelerators. This is shown
in Fig. 8, where a fixed amount of 2.5 M B of raw data
is ciphered by a changing number of hardware accelerators
(either containing 1 or 2 work-items), and under chang­
ing requirements that include different fault tolerance levels
(Simplex for no redundancy, D M R , and TMR) . The KC705
development board only has resources to host 6 accelerators,
and therefore the embedded models, previously validated and
verified experimentally with other kernels and FPGA boards
[3], have been used in order to predict the behavior of the
system when the number of accelerators is increased above this
limit (dotted lines in the figures). Hence, the transition from
computing-bounded to memory-bounded execution is clear:
when maximum bus occupancy is reached, no further speedup

Fig. 6. Power consumption in the FPGA core and in the external memory Fig. 7. Power consumption in the FPGA core and in the external memory
during the execution of 6 AES256 CTR work-groups with 1 work-item each. during the execution of 6 AES256 CTR work-groups with 2 work-items each.

can be achieved. Notice that once this memory bandwidth
limitation is reached, the actual bus occupancy is almost 96%
with respect to the theoretical maximum.

Hence, execution speedup in ARTICo3 shows two main
limiting factors, as it can be seen in Fig. 9: on the one hand,
technology limitations, which impose the maximum number of
reconfigurable slots that can be loaded with accelerators; on
the other hand, memory bandwidth limitations, which impose
the maximum data rate that can be delivered to the loaded
accelerators. Regarding the latter, it is possible to compute
the optimal operating point, i.e. the working point immediately
before entering memory-bounded execution, by analyzing the
ratio between accelerator execution and data transfer times
(both measurable at runtime with internal monitors). The
optimal operating points for both accelerators are also shown
in Fig. 9. Notice that these optimal points are not supported
in the KC705 board due to technology limitations.

The aforementioned limitations have an additional impact
on the overall energy efficiency of the system, as it is shown
in Fig. 10. SRAM-based FPGAs still have a large component
of static power consumption, which in most cases is larger
than the dynamic contribution itself. Therefore, the faster the
processing is done, the more energy-efficient the execution
becomes. Once the memory-bounded region is reached, energy
savings start decreasing. In this case, the optimal operating
points have also been highlighted in the graph.

V I . CONCLUSIONS AND FUTURE WORK

The ARTICo3 framework provides native OpenCL-
compliant platform, execution and memory models, being
its architecture similar to other OpenCL devices such as
GPUs. However, the main difference is that compute units
are hardware-based processing units, with DPR support to
enhance system flexibility up to the level of similar software-
based approaches, increasing the virtual number and type of
compute units in the device. Moreover, DPR is part of a set
of tools (system monitors, embedded prediction models, etc.)
that provide dynamic adaptation at runtime, going beyond the
OpenCL specification but being transparent to the developer.

Fig. 8. Solution space of the AES256 CTR implementations with work-groups
of 1 or 2 work-items each in ARTICo3.

Fig. 9. Speedups of the AES256 CTR implementations with work-groups of
1 or 2 work-items each in ARTICo3 (reference value is 1 work-group with 1
work-item).

Fig. 10. Energy savings of the AES256 CTR implementations with work­
groups of 1 or 2 work-items each in ARTICo3 (reference value is 1 work­
group with 1 work-item).

Multibank local memories with address translation units
enable optimized data transferences and grouping (which can
favor coalesced data accesses from work-items), but keeping
full compliance with the OpenCL specification. Experimental
results show that integration of work-groups with variable
number of work-items does not require additional effort on
the software developer side. Moreover, multithreaded hardware
accelerators provide better results in terms of energy efficiency
and execution times in SRAM-based FPGAs.

The proposed architecture and framework provide a balance
between computing performance, dependability requirements
and energy-efficient execution independently on the OpenCL
tasks specified in the application code. This independence is
guaranteed by the resource manager and its dynamic adapta­
tion capabilities.

Currently, the work is focused on providing full support for
the OpenCL programming model. Developers’ code is to be
parsed to extract memory access patterns and program the re­
source manager and the work-group scheduler, and kernel code
is to pass through H L S design flows to generate multithreaded
hardware accelerators. With this, ARTICo3 implementations
will behave as any other OpenCL-compliant device, such as
GPUs or multicore processors, and thus will support functional
portability of applications among them.

ACKNOWLEDGMENTS

The authors would like to thank the Spanish Ministry of
Education, Culture and Sport for its support under the FPU
grant program.

This work was also partially supported by the Spanish
Ministry of Economy and Competitiveness under the project
REBECCA, with reference number TEC2014-58036-C4-2-R.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti­
tative Approach, 5th ed. San Francisco, C A , U S A : Morgan Kaufmann
Publishers Inc., 2011.

[2] J. Valverde, A. Rodriguez, J. Camarero, A. Otero, J. Portilla, E. de la
Torre, and T. Riesgo, “A dynamically adaptable bus architecture for
trading-off among performance, consumption and dependability in
cyber-physical systems,” in Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, Sept 2014, pp. 1–4.

[3] A. Rodriguez, J. Valverde, C. Castañ ares, J. Portilla, E. de la Torre,
and T. Riesgo, “Execution modeling in self-aware fpga-based archi­
tectures for efficient resource management,” in Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2015 10th Inter­
national Symposium on, June 2015, pp. 1–8.

[4] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing archi­
tectures,” Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354, March
2015.

[5] M. Watkins and D. Albonesi, “Remap: A reconfigurable heterogeneous
multicore architecture,” in Microarchitecture (MICRO), 2010 43rd An­
nual IEEE/ACM International Symposium on, Dec 2010, pp. 497–508.

[6] A. Jara-Berrocal and A. Gordon-Ross, “Vapres: A virtual architecture
for partially reconfigurable embedded systems,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2010, March 2010, pp.
837–842.

[7] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng, and J. Tong,
“Spread: A streaming-based partially reconfigurable architecture and
programming model,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 21, no. 12, pp. 2179–2192, Dec 2013.

[8] R. Weber, A. Gothandaraman, R. Hinde, and G. Peterson, “Comparing
hardware accelerators in scientific applications: A case study,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 22, no. 1, pp. 58–
68, Jan 2011.

[9] S. Windh, X. Ma, R. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. Najjar, “High-level language tools for reconfigurable computing,”
Proceedings of the IEEE, vol. 103, no. 3, pp. 390–408, March 2015.

[10] J. Huthmann, J. Oppermann, and A. Koch, “Automatic high-level syn­
thesis of multi-threaded hardware accelerators,” in Field Programmable
Logic and Applications (FPL), 2014 24th International Conference on,
Sept 2014, pp. 1–4.

[11] J. Huthmann, B. Liebig, J. Oppermann, and A. Koch, “Hard­
ware/software co-compilation with the nymble system,” in Reconfig-
urable and Communication-Centric Systems-on-Chip (ReCoSoC), 2013
8th International Workshop on, July 2013, pp. 1–8.

[12] G. Stitt and F. Vahid, “Thread warping: A framework for dynamic
synthesis of thread accelerators,” in Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2007 5th IEEE/ACM/IFIP Interna­
tional Conference on, Sept 2007, pp. 93–98.

[13] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in Code Generation and Optimization,
2004. CGO 2004. International Symposium on, March 2004, pp. 75–86.

[14] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-
Gonzalez, “Openmp extensions for fpga accelerators,” in Systems, Ar­
chitectures, Modeling, and Simulation, 2009. SAMOS ’09. International
Symposium on, July 2009, pp. 17–24.

[15] J. Choi, S. Brown, and J. Anderson, “From software threads to parallel
hardware in high-level synthesis for fpgas,” in Field-Programmable
Technology (FPT), 2013 International Conference on, Dec 2013, pp.
270–277.

[16] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh, “From opencl to
high-performance hardware on fpgas,” in Field Programmable Logic
and Applications (FPL), 2012 22nd International Conference on, Aug
2012, pp. 531–534.

[17] X. Inc., UG1023 SDAccel Development Environment User Guide.
[Online]. Available: http://www.xilinx.com/

[18] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos, “Synthesis of
platform architectures from opencl programs,” in Field-Programmable
Custom Computing Machines (FCCM), 2011 IEEE 19th Annual Inter­
national Symposium on, May 2011, pp. 186–193.

[19] K. Shagrithaya, K. Kepa, and P. Athanas, “Enabling development of
opencl applications on fpga platforms,” in Application-Specific Systems,
Architectures and Processors (ASAP), 2013 IEEE 24th International
Conference on, June 2013, pp. 26–30.

[20] J. Coole and G. Stitt, “Fast, flexible high-level synthesis from opencl
using reconfiguration contexts,” Micro, IEEE, vol. 34, no. 1, pp. 42–53,
Jan 2014.

http://www.xilinx.com/

