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ABSTRACT
Despite all the available commercial and open-source frameworks
to ease deploying FPGAs in accelerating applications, the current
schemes fail to support sharing multiple accelerators among vari-
ous applications. �ere are three main features that an accelerator
sharing scheme requires to support: exploiting dynamic parallelism
of multiple accelerators for a single application, sharing accelera-
tors among multiple applications, and providing a non-blocking
congestion-free environment for applications to invoke the accel-
erators. In this paper, we developed a scalable fully functional
hardware controller, called UltraShare, with a supporting so�ware
stack that provides a dynamic accelerator sharing scheme through
an accelerators grouping mechanism. UltraShare allows so�ware
applications to fully utilize FPGA accelerators in a non-blocking
congestion-free environment. Our experimental results for a sim-
ple scenario of a combination of three streaming accelerators in-
vocation show an improvement of up to 8x in throughput of the
accelerators by removing accelerators idle times.

KEYWORDS
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controller, Accelerator sharing, Dynamic allocation

1 INTRODUCTION
In the era of big data and computational/data-intensive applications,
heterogeneous architectures are promising platforms to tackle high
computational loads. FPGAs have been assisting CPUs as custom
hardware accelerators with their �ne-grain programmable hard-
ware resources. FPGAs are considerably low-power and researchers
have shown an order of magnitude acceleration for various appli-
cations [1–3].

Streaming applications, such as image/video processing applica-
tion, real-time vision algorithms, and network packets encryption
algorithms, are in the category of FPGA-friendly data-intensive
applications [4]. �ese applications process a stream of input data
on FPGA accelerators and send a stream of output data. Multi-level
memory hierarchy model that is used in OpenCL-based platforms
fails to meet their high demanding data throughput [5]. In these
platforms, a global memory is shared between the host and the
accelerator. While the host is sending data to (or receiving data
from) the global memories, they cannot be accessed by the ac-
celerators. Vice versa, when the accelerators are accessing data,
global memories cannot be accessed by the host. �is results in
a considerable performance degradation, especially for streaming
applications. Ruan [5] has shown that a point to point data transfer
from main memory to FPGA BRAMs can signi�cantly improve
the performance of the streaming accelerators comparing to an
OpenCL hierarchy memory model.

When multiple accelerators on FPGA are deployed to accelerate
various streaming applications, shared hardware resources incur
more stringent constraints on high throughput data movement
between FPGA and the main memory. While point-to-point data
transfer between FPGA local memory and main memory is nec-
essary, a scalable and e�cient high-throughput data movement
infrastructure between the host and the FPGA accelerators is re-
quired. �is paper proposes such a framework to enable accelerator
sharing among multiple streaming applications.

Accelerator allocation is a crucial taskwhenmultiple accelerators
on an FPGA device are shared among various applications. For
every single request from the host, an accelerator on the FPGA
is allocated to the request until the result is sent back to the host.
To the best of our knowledge, all the current FPGA accelerator
frameworks [5–10] follow a static accelerator allocation scheme; it
means that so�ware developers have to exactly specify the target
accelerators for any access request in the so�ware code. �is can
lead to a poor utilization of accelerators when being shared among
various applications.

In this paper, we propose UltraShare, an open-source RTL level
framework, which enables a scalable and e�cient FPGA-based
accelerator sharing. Unlike the currently available frameworks,
UltraShare invokes a dynamic accelerator allocation to requests.
UltraShare also reduces the idle time of the accelerators through
deploying an accelerator grouping mechanism which results in a
considerable improvement in the performance of FPGA accelerators.
In addition, the data size and throughput can vary from one group
of accelerators to another. UltraShare provides a fair or priority-
based data transfer to/from accelerators. We brie�y summarize the
contributions of this paper as follow:

• For the �rst time, we introduce a non-blocking FPGA-
based accelerator sharing framework, called UltraShare,
by proposing a hardware controller to enable dynamic
sharing,

• we propose an accelerator grouping architecture to en-
able e�cient access to accelerators shared among multiple
streaming applications,

• we propose an algorithm for dynamic accelerator allocation
and data transfer scheduler for streaming applications,

• We developed UltraShare in Verilog hardware program-
ming language which makes it compatible with all the
FPGA vendors and RTL synthesis tools. UltraShare is an
open-source framework and can be used and contributed
by other research groups,

• We evaluated UltraShare with the standard IP-cores inter-
facing standard AXI-Stream protocol on a Xilinx® Virtex 7
FPGA.
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�e rest of this paper is organized as follows. In section 2 we
introduce FPGA-based accelerator sharing and investigate the cur-
rently available frameworks. In section 3 we introduce UltraShare
and its composing components. Section 4 represents our experimen-
tal results to show the functionality of UltraShare and the impact
of dynamic allocation and accelerator grouping in the performance
of the FPGA accelerators. Finally, section 5 concludes the paper.

2 BACKGROUND AND MOTIVATION
Unlike GPUs that provide multiple instances of a single type acceler-
ator, FPGAs provide a single platform that can implement multiple
accelerators regardless of their types. In data centers and edge com-
puting platforms, di�erent applications use available accelerators
on FPGAs to accelerate their computational intensive kernels. �e
accelerators must be accessed through an underlying infrastructure
that interfacing host and FPGA accelerators. �ere are currently
a few numbers of academic [5, 8–11] and industrial [6, 7] frame-
works that are designed to connect a host to the FPGA accelerators.
However, they either do not support or fail to provide a seamless
interface to multiple accelerators accessed simultaneously by var-
ious applications. An e�cient multi-accelerator management is
necessitated to �rst provide the possibility of accessing accelerators
by the host applications and then minimizing the access overheads
and accelerator idle times.

One of the most important requirements of a multi-accelerator
system is the capability of sharing accelerators among di�erent host
applications. An e�cient accelerator sharing mechanism addresses
the following features:

• Exploit dynamic parallelism: All the requests from one
application are distributed among the available accelera-
tors. �us, through a dynamic request to accelerator al-
location, an application can bene�t from all the available
accelerators to reach the maximum possible performance.

• Sharing accelerators amongmultiple applications: Mul-
tiple application can share a single accelerator. Regardless
of the source of submi�ing a request, accelerators must be
exploited by the requests.

• Non-blocking congestion-free accelerators: While an
acceleration request is ge�ing processed, other applications
are able to submit requests for the same accelerator and
would not be blocked until the accelerator is idle.

�rough a static accelerator allocation [5–10] exploiting paral-
lelism is not practically possible, since applications are not aware
of the status of all the accelerators on FPGAs.

While using so�ware level blockingmechanisms, like semaphore,
allows some of the currently available frameworks support sharing
accelerators among multiple threads in one application [5, 8–10],
they fail to support accelerator sharing among multiple applica-
tions. OpenCL based frameworks like Xilinx® SDAccel [6] and Intel
SDK [7], support sharing accelerators among multiple applications.
However, all the OpenCL-based platforms do not support a non-
blocking congestion-free accelerator invocation. In the OpenCL
programming model the �ow of invoking the accelerators is con-
structed of three main routines: 1) writing input data to the FPGA
board, 2) initiating the accelerator, and 3) reading back the results
from FPGA board to the host. When the �rst routine is called the
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Figure 1: Target platform

corresponding accelerator will be reserved for that process and
no other application can call the accelerator until the third rou-
tine is completed. In addition, all the existing frameworks rely on
user accelerator allocation and lack a hardware controller to enable
dynamic acceleration allocation and sharing on FPGA devices.

In this paper, we focus on FPGA-based multi-accelerator systems
for streaming applications. Our target platform, as shown in Figure
1, is composed of a host with the main memory which has access
to multiple accelerators on an FPGA board through a PCIe connec-
tion. We consider a single-level bu�er-based data movement from
the main memory to FPGA Block RAMs (BRAMs). In our target
platform, multiple accelerators of various types or functions are
deployed on the FPGA and there can be multiple instances of the
same type of accelerators on FPGA device. �is is referred to as a
group of accelerators of the same type.

In this paper, we propose an adaptable scalable hardware con-
troller, called UltraShare, to address the three aforementioned fea-
tures of accelerator sharing along with an e�cient data movement
between the host and FPGA. In most of the available frameworks, a
�nite-state machine in the so�ware stack keeps the host interacting
with accelerators and does not allow a new request to be issued for
the same accelerator. To address a congestion-free non-blocking
accelerator sharing we employ a single command-based mecha-
nism for each accelerator request that eliminates all the interactions
between a host and accelerators a�er the request is issued. �is
mechanism is used in NVMe [12] protocol and adapted by MQMAI
[11] for FPGAs to minimize the interaction between a host and
FPGAs. �e command-based mechanism allows a single command
to contain all the information needed by the accelerators to accom-
plish an FPGA-acceleration. �us, UltraShare hardware controller
receives a stream of commands from the host. UltraShare dynami-
cally allocates the commands to the accelerators. UltraShare is fully
hardware-based and is located between accelerators and PCIe data
interface.

3 MULTI-ACCELERATOR MANAGEMENT
UltraShare is composed of �ve main parts (Figure 2): 1) multi-
queue accelerator request, 2) dynamic accelerator allocation, and 3)
sca�er-gather, 4) accelerators controller, and 5) data transfer. �e
inputs to the hardware controller are streams of commands from
the host main memory. UltraShare is an interaction-free framework
that a�er receiving commands from the host all the operations are

2



executed and initiated in the hardware controller. In the following
we explain di�erent components of each part in detail.

3.1 Multiple Command�eues
Accelerator allocation is responsible for assigning commands to
accelerators dynamically. In a single-queue non-grouping mecha-
nism, always the command at the head will be processed. If there is
no accelerator available for this command, it would block the rest
of commands to be processed. �us, the single-queue mechanism
may result in a severe accelerator underutilization due to the block-
ing requests among multiple applications requesting accelerators
of di�erent types. In order to tackle this, UltraShare proposes an
accelerator allocation based on an accelerator grouping mecha-
nism instead of a single-queue non-grouping scheme. Each group
of accelerators has a unique command queue FIFO. Accelerator
allocation part includes the following components.

Command Detector: A command includes all the information
required to process the associated request without any interaction
with the host. �is information includes: 1) command ID, 2) CPU
core ID that submi�ed the request, 3) requested accelerator type,
and 4) all the addresses and lengths of sca�er-gather lists for all
the inputs and outputs. When a command arrives, the command
detector pushes the command into one of the command queues. To
determine the target command queue, the command detector uses
the command type �eld and a so�ware re-con�gurable accelerator
grouping table. In this paper, we only consider a one-level acceler-
ator grouping which is based on the accelerators types, however,
UltraShare framework allows more sophisticated strategies, e.g. a
two-level priority-based grouping the �rst level of which is based
on the priority of the accelerators and the second level is based on
the accelerators types. In this regard, some of the accelerators can
be reserved for high-priority requests.

Command �eues: Command queues are simple FIFOs imple-
mented with BRAMs. For each group of accelerators, there is one
dedicated command queue.

3.2 Dynamic Accelerator Allocation
Accelerator Allocation Unit: �e main unit of the dynamic ac-
celerator allocation part is an accelerator allocator unit. �is unit
assigns an accelerator to the command which is on the head of
a command queue. �e accelerator allocator travels between the
queues in a round-robin scheduling mechanism. If there is no accel-
erator available for a selected command, the next command queue
will be selected. In an accelerator type-based grouping mechanism,
if an accelerator is idle and there is at least one command available
for that type of accelerator, the command will be assigned to the
accelerator.

Algorithm 1 represents the pseudo-code of the accelerator al-
location unit. �e inputs to the accelerator allocation unit are:
1) the status of all accelerators, and 2) the output of accelerator
group table that represents the mapping of accelerator numbers to
the accelerator groups. Accelerator group table is re-con�gurable
through con�guration commands from the host applications. It al-
lows regrouping of accelerators without the FPGA re-con�guration
cost.

In Algorithm 1, k is the number of accelerators and t is number of
accelerator groups. acc status is an array with the size of the num-
ber of accelerators. If acc status[i] is equal to 1 then accelerator i is
idle and can be allocated to a request. acc map is a two-dimensional
matrix. Each accelerator group is related to a row of acc map matrix
and each accelerator is related to a column. If an element of a row
is 1, then the accelerator number with the column number is in
that accelerator group. In Algorithm 1, accelerator allocation unit
travels in a round-robin scheduling among the command queues
to allocate accelerators. For each selected queue (Q) the array of
idle accelerators are determined. If this array has more than one 1,
the command on the head of the selected queue will be assigned
to one of the idle accelerators. We always pick the idle accelerator
with the smallest accelerator number �rst (rightmost position in
the idle acc array).

Algorithm 1: Accelerator allocation
Input: bool acc status[k], bool acc map[t][k]
Output: bool allocated acc[k]

1 Q ← 0;
2 while true do
3 select queue number Q ;
4 idle acc ← acc status & acc map[Q];
5 if idle acc , 0 then
6 In idle acc keep the rightmost 1 and make the rest of

the bits 0;
7 allocated acc ← idle acc;
8 end
9 Q ← next Q ;

10 end

Accelerator Group Table: Accelerator group table is a lookup
table that provides the information of matching accelerators to the
accelerator groups. �is lookup table is re-con�gurable through
so�ware APIs, and a user can regroup accelerators, remove an
accelerator from a group, or add accelerators to di�erent groups.

CommandRequester: A�er allocating an accelerator to a com-
mand, command requester unit submits a request to the DMA to
fetch input data (RX) and output data (TX) sca�er-gather lists.
When the DMA request is submi�ed, a signal will be sent to the
accelerator allocation unit to process the next command.

Request Information�eue: �e information related to each
processed command (including the allocated accelerator number,
length of the sca�er-gathers list) will be stored in a queue to be
used when the associated sca�er-gather lists arrive.

3.3 Scatter-Gather
�e sca�er-gather part is responsible for receiving and decoding
sca�er-gather lists, and distributing them into their associate accel-
erators. �e data management part is composed of the following
components.

Scatter-Gather Decoder: A sca�er-gather list is constructed of
a list of memory page addresses with their associated data length;
while usually, the length of the �rst and last sca�er-gather is less
than a memory page size, the length of the other sca�er-gathers is
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equal to the page size. To shorten the size of the sca�er-gather list,
we compact it with skipping the length of middle sca�er-gathers.
When a sca�er-gather list arrives, sca�er-gather decoder extracts
pairs of addresses and lengths from a sca�er-gather list. We call
each pair of address and length a sca�er-gather element.

Scatter-Gather Distributor: �e inputs to sca�er-gather dis-
tributor are sca�er-gather elements and the information from re-
quest information queue. Using the information in the request infor-
mation queue, sca�er-gather elements are submi�ed to the allocated
accelerator controller.

3.4 Accelerators Controller
Acc Controller: In an accelerator controller, for each input, one
RX data bu�er and for each output, one TX data bu�er exists. Figure
3 shows a detailed block diagram of the accelerator controller and
data transfer parts. Conventionally, RX/TX bu�ers must be large
enough to store all the data for one accelerator request. Considering
the rate of input/output data from PCIe and the rate of the data
process in the accelerator, bu�ers could be more optimized. How-
ever, the optimization requires a careful pro�ling of the accelerators
processing rate and the data rate transfer. On the other hand, still
for most of the accelerators with a low processing rate, the size of
the bu�ers would be relatively large. De�ning large bu�ers in the

BRAMs for the accelerator invocation framework does not leave
enough space for designers to place more accelerators in an FPGA.

To overcome this problem, we de�ne one RX sca�er-gather
queue and one TX sca�er-gather queue for each input and output,
respectively. �us, each accelerator controller stores the whole
list of sca�er-gather elements. �en, an accelerator issues one RX
request if there is enough space available in the RX data bu�er, also
issues one TX request if there is enough data available in the TX
bu�er. �is mechanism allows de�ning RX/TX data bu�ers with
much smaller sizes. �is size must be at least equal to the size of
one memory page of the host which is the maximum length of
one sca�er-gather element. To prevent an accelerator stall due to
waiting for RX data or a free TX bu�er, we de�ne bu�ers with the
size of a few numbers of memory pages.

Other than resolving the problem with large bu�er sizes, our
mechanism of handling sca�er-gather list allows providing a sched-
uling strategy for serving di�erent accelerators. It allows serving
sca�er-gather elements from di�erent accelerators in any order.
We provide a scheduler in the data management part (section 3.5)
based on a con�gurable priority list.
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3.5 Data Transfer
�e data transfer part is responsible for providing RX/TX data for
accelerators. Together with the accelerator controller part, the
RX/TX data would be fetched/submi�ed from/to the DMA engine
for each sca�er-gather element. It is notable that the path for RX
and TX data is completely separated and at the same time an RX
and a TX request can be responded to and the data movement be
accomplished. In the following di�erent components of the data
transfer part are introduced.

Data Request Scheduler�is component uses a data priority
table to serve di�erent accelerators. �ere are two di�erent data
request scheduler, one for RX data and one for TX data. Algo-
rithm 2 represents the functionality of the data request scheduler.
In Algorithm 2, acc weiдht[acc] represents the priority weight re-
lated to accelerator number acc and this weight comes from the
data priority table. If acc req[acc] is equal to 1 it means that ac-
celerator number acc has a data transfer request and is waiting
to be served. Accelerator number acc is served when an ACK it
receives an ACK from the scheduler. �e data priority table can be
con�gured through submi�ing a con�guration command which is
provided by so�ware developers. In the experimental section we
provide the results for two di�erent scheduling strategies: 1) fair
bandwidth sharing among accelerators and 2) weighted data rate
distribution among accelerators.

RX/TX SG Requester: �ese components submit a request
related to one sca�er-gather element to the DMA. �e request
includes an address and a length.

Algorithm 2: sca�er-gather scheduler
Input: byte acc weight[k], bool acc req[k]
Output: bool accepted req[k]

1 acc ← 0;
2 while true do
3 for i : 0 to acc weiдht[acc] do
4 if acc req[acc] = 1 then
5 Accept the request and send an ACK to the

accelerator acc;
6 end
7 end
8 acc ← next acc;
9 end

Data Request Information: For each RX request, a data re-
quest information queue stores the information related to the re-
quest to be used when the corresponding data arrives. �is infor-
mation allows the data distributor component to submit the data to
the correct accelerator.

4 EXPERIMENTAL RESULTS
4.1 Experimental setup
To synthesize and implement UltraShare, we use Xilinx® Vivado®
2018 design tool. We exploit a 7v3-alpha-data board which has a
Xilinx® Virtex 7 FPGA with a PCIe Gen3 connector. Our host is a
PC with an Intel® CoreTM i5-4590 CPU @ 3.30GHz.
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Figure 4: pseudo-code of an application invoking FPGA ac-
celerators

We have implemented UltraShare in the pure Verilog program-
ming language. �us, UltraShare is not limited to any speci�c
vendor tool or platform to be used. We have deployed a command-
based data interface scheme in our so�ware stack similar to [11],
including multi-core parallel access to accelerators. UltraShare can
easily be used with other available command-based so�ware plat-
forms to access FPGA accelerators such as Xilinx SDAccel. It only
requires the so�ware stack to submit single commands that follow
UltraShare command structure including an accelerator type �eld
for managing accelerators.

Figure 4 shows the pseudo-code of the application that we used
to call the accelerators. We use two APIs for calling accelerators
and waiting for their completions. We measure the throughput of
the accelerators by measuring the end-to-end delay of processing
requests. In Figure 4, line 4 and 12 are the places that we start and
�nish measuring the end-to-end delay.

4.2 Benchmarks
To evaluate UltraShare, we exploit two streaming accelerators: an
image/video processing accelerator and a network packet encryp-
tion algorithm.

Image processing: An image/video processing accelerator re-
ceives a stream of image/video frames, process them, and generates
the associated stream of outputs. A wide range of image process-
ing algorithms applies a two-dimensional stencil computation over
streams of frames. We exploit a standard image processing IP core
fromXilinx® which is an RGB to YCbCr converter with the standard
AXI4-Stream interface. �is accelerator can be con�gured, before
the implementation, for di�erent resolutions of images/videos. We
de�ne three di�erent type of RGB to YCbCr converter, resolution
240 × 180, resolution 480 × 320, and resolution 960 × 640. While
for these accelerators the computation algorithm is the same, the
input/output sizes and the computation latency over a single input
are di�erent.

Network packet encryption: Encryption is a streaming com-
putation intensive algorithm that can be a good candidate to be
accelerated on FPGAs. We use an AES-128 encryption algorithm
from MVD® cores over di�erent videos with di�erent resolutions.
Unlike the RGB to YCbCr accelerator, the same AES accelerator can
operate over di�erent input sizes.

4.3 Results
4.3.1 Dynamic accelerator allocation. To explore the im-

pact of dynamic versus static accelerator allocation, we compare
UltraShare with Ri�a [8]. Ri�a is the only open-source framework
which is available to be used. While ST-Accel, a recently proposed
framework, has automated the process of generating and connect-
ing accelerators to the applications, the mechanism of accelerator
allocation and data transfer in ST-Accel is very similar to Ri�a.

Ri�a is not capable of handling multiple requests from di�erent
applications to a single accelerator. �us, to compare with Ri�a, we
use onemulti-threaded application and use a semaphoremechanism
to manage requests to the same accelerators. Figure 5 shows the
total throughput in processed frames per second for an application
with three simultaneous threads requesting for two instances of
a single type of accelerator. �e chosen accelerator is an RGB to
YCbCr 480 × 360. In Figure 5, for Ri�a, di�erent scenarios of static
accelerator allocation are shown on top of the related bars. For
example, (3, 0, 0) means that all the three threads are requesting
only for the �rst accelerator and (2, 1, 0) means two of the threads
are requesting for the �rst accelerator and one of the threads is
requesting for the second accelerator. Comparing to the worst case
of the static accelerator allocation in Ri�a, we observe more than 3x
improvement in throughput. It is notable that this is just a simple
scenario to show the impact of a dynamic accelerator allocation.
In a more complicated scenario, a static accelerator allocation can
drastically degrade the performance.

4.3.2 multi-queue grouping accelerators. To show the im-
pact of multi-queue grouping accelerators on removing accelerators
idle times, we implemented three types of accelerators: two from
RGB to YCbCr converter, for resolutions 240 × 180 and 480 × 320,
and one AES accelerator that we submi�ed video frames with the
resolutions of 240 × 180 to it. From each of these accelerator types,
we implemented 3 instances. �us, totally 9 accelerators are imple-
mented on our FPGA.

Table 1 compares the throughput of UltraShare versus a non-
grouping single-queue implementation. As we described in section
3.1 the multi-queue mechanism that is proposed by UltraShare
decreases the idle times of accelerators and allows them to process
a request when at least one request is available. In this experiment,
we used three di�erent applications, each requesting to one of the
accelerator types. In a single-queue non-grouping implementation,
the slowest accelerators will block other accelerators to be assigned
to the available requests. �us, all the accelerators will be limited
to the throughput of the slowest accelerator. It is notable that in
our experiment, RGB to YCbCr 240 × 180 accelerator has a slightly
higher throughput. �e reason is that for this accelerator, due to
smaller input sizes, the associated user application can prepare and
submit more requests comparing to the other applications. �us,
more requests from this application will be ended in the shared
command-queue. As Table 1 shows UltraShare with a uniformed
priority weights provides around 8x improvement in the throughput
of the fastest accelerator type by removing the idle times caused
by the slower accelerators.

Table 1 also represents a priority based PCIe bandwidth sharing
provided by the data request scheduler component. Table 1 shows
that how changing data priority weights, presented in Algorithm
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Table 1: �roughput of di�erent accelerators for UltraShare
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Figure 6: PCIe bandwidth sharing among the accelerators
for di�erent values of scatter-gather requests weights

2, can adjust the throughput of the accelerators when the PCIe
bandwidth is the bo�leneck. Figure 6 shows the distribution of
PCIe bandwidth among the accelerators for the uniformed weights,
represented as (1, 1, 1, 1, 1, 1, 1, 1, 1), and a throughput ratio-based
weights, represented as (1, 1, 1, 4, 4, 4, 8, 8, 8). As Figure 6 shows, a
uniform priority weights provides a fair bandwidth sharing among
the accelerators; while, by changing the priorities we can allo-
cate more bandwidth to speci�c accelerators. It is notable that the
throughput of the AES accelerator is limited to its computation;
thus, it cannot use its dedicated bandwidth portion; thus, the sched-
uler allows the other accelerators to use more bandwidth to fully
utilize the PCIe bandwidth.

4.3.3 Scalability. To show the scalability of UltraShare, we
measured the resource utilization with a various number of accel-
erators and a various number of accelerator groups. Among all the
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Figure 7: LUT utilization
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Figure 8: BRAM utilization

resources, only the utilization and variation of LUTs and BRAMs
are considerable. Figure 7 and Figure 8 show the number of utilized
LUTs and BRAMs, respectively (the given percentages are based
on our Xilinx® Virtex 7 FPGA). As Figure 7 shows increasing the
number of accelerators and accelerator groups have almost the
same e�ect on the number of LUTs and it is linear with a low slope.
�e variation of BRAM utilization is higher because all the bu�ers
and queues are implemented in the BRAMs. As Figure 8 shows, the
number of accelerators has a greater impact on the BRAM utiliza-
tion and it is because of all the bu�ers and queues that are used in
each accelerator controller versus only the number of command
queue utilization of BRAMs for each additional accelerator group.

4.3.4 Exploiting dynamic parallelism. To show the capabil-
ity of supporting parallelism that UltraShare supports, we provided
three separate experiments. In each experiment, we implemented
three instances of only one type of accelerators. Figure 9 shows the
end-to-end delay of submi�ing requests from a single application to
the target accelerators. As Figure 9 shows, when the number of re-
quests increases, requests will be distributed among the accelerators
and for each factor of three, there is a jump in the end-to-end delay.
�e reason is that there are no more accelerators available for a new
request a�er all the three accelerators are processing three di�erent
requests. It means that the forth request needs to wait until at least
one accelerator is idle. �us, the delay is increased a�er passing a
factor of three request which is the number of accelerators.
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Figure 10: AES accelerator sharing among di�erent applica-
tions submitting three di�erent video resolutions

4.3.5 Accelerator sharing. To show the accelerator sharing
feature of UltraShare among di�erent applications, we implemented
three instances of AES encryption accelerator on the FPGA. �en
we provided three di�erent applications: application 1 that submits
requests for a video with the resolution of 240 × 180, application 2
that submits requests for a video with the resolution of 480 × 360,
and application 3 that submit requests for a video with the resolu-
tion of 9600 × 640. �en we considered three di�erent scenarios
(Figure 10). In scenario a, we ran only one of the applications at
a time and measured the throughput of the accelerators for each
application. In scenario b, we ran two di�erent applications simul-
taneously and we considered all the three possible combinations
of two applications from three applications. In scenario c, we ran
all the applications simultaneously. Considering the throughput of
the processed frames for each application in these three scenarios,
presented in Figure 10, we can see how the accelerators are evenly
shared among the applications. Although due to the di�erent input
sizes the number of processed frames for the di�erent applications
are di�erent (when the input size is larger, it takes longer time to
be processed), Figure 11 scenario c shows that the accelerator usage
for all the three applications are equal. On the other word, the
di�erence in throughput is due to the di�erent request sizes which
require di�erent computation latency.

5 CONCLUSIONS
In this paper, we proposed UltraShare, an FPGA-based accelerator
hardware controller to enable dynamic accelerator sharing among
multiple host applications. UltraShare provides a scalable dynamic
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Figure 11: Normalized AES accelerators usage by three dif-
ferent applications submitting three di�erent video resolu-
tions

accelerator allocation scheme to exploit dynamic parallelism for the
requests from a single application. Using an accelerator grouping
scheme, UltraShare removes accelerator idle times to improve the
total throughput gained from a multi-accelerator system. Ultra-
Share also deploys a single command-based request mechanism
that addresses a non-blocking accelerator sharing environment for
di�erent host appellations to share FPGA accelerators. UltraShare
follows a sca�er-gather based point-to-point data transfer from the
main memory to/from the FPGA to avoid data-intensive streaming
accelerators being stalled due to an ine�cient data transfer in a hier-
archical memory model. Experimental results show that in a simple
scenario with 9 accelerators from 3 di�erent types, UltraShare pro-
vides up to 8x throughput improvement for streaming applications
comparing to a single-queue non-blocking implementation.
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