
Architecture for Emergency Control of Autonomous UAV Ensembles*

Martin Schörner1, Constantin Wanninger2, Alwin Hoffmann3, Oliver Kosak4, and Wolfgang Reif5

Institute for Software and Systems Engineering, University of Augsburg, Germany
Email: {schoerner1, wanninger2, hoffmann3, kosak4, reif5}@isse.de

Abstract— Applying unmanned aerial vehicles (UAV) has
benefits for many different use-cases. Existing implementations
of ground control stations (GCS) to manage UAVs in such
scenarios already provide some support for the operation of
multi-unit systems, i.e., ensembles. However, since they are
usually designed for the operation of only one copter at
once, this is often not sufficient to react quickly in dangerous
situations, e.g., search and rescue scenarios. To address this
problem, we propose an approach for easy observation and
control of complete autonomous UAV ensembles: The Intention
of our approach is to greatly reduce the number of personnel
required for the operation of an UAV ensemble. Thereby, we
generate the possibility for rapid intervention in potentially
dangerous situations in order to prevent damage to the UAVs
and the environment. In this paper, we present a software
architecture for this safety-critical multi UAV ground control
station including a fully implemented prototype which we also
tested in a realistic environment.

I. INTRODUCTION

Whether used for package delivery by Amazon and DHL,
applied in search and rescue missions [1], for monitoring
large areas [2], or as a light show in the night sky [3],
mobile flying robots or unmanned aerial vehicles (UAV)
currently become more important for research and industry.
Due to their low cost, increasing availability, and flexibility,
UAVs are well suited as participants in ensembles This is
described in some of our earlier work [4], where UAVs coop-
eratively accomplish tasks in groups: When operating several
independent devices in parallel instead of the operation of
a single UAV, new requirements arise for the control and
monitoring of the ensemble. In contrast to the ever increasing
possibilities for different applications of UAV ensembles,
approaches for their intuitive control unfortunately are still
very limited. To fill this gap, we propose our approach of
an Ensemble Control (ECO) ground station for UAV ensem-
bles integrating possibilities for the intuitive identification,
selection, and control of UAV groups. We intend ECO to be
easily usable by a single operator that can achieve full control
over the whole ensemble when necessary. This is relevant
for all applications of UAV ensembles that are similar to
the running example of our project COMBO that we also
use to illustrate our findings in this article. Our goal in
COMBO is to support rescue forces in major catastrophe
scenarios, e.g., chemical accidents [4]. Tasks in this scenario
are manifold, e.g., surveying an endangered area, searching
and informing for civilians at risk, monitoring local weather

* This work is partly funded by the German Research Foundation (DFG)
under the COMBO grant.

conditions, or collectively transporting fragile materials [5]
In all these tasks, being able to intuitively react to situations
that call for user interaction is urgently needed. To achieve
this, we illustrate our development of an appropriate user tool
in the following. Therefore, we first identify the resulting
challenges and highlight our objectives in Section II to
be able to appropriately classify related work on current
approaches in Section III. In the following Section IV,
we introduce our concept for tackling the challenges and
achieving our objectives with an UAV ensemble. We further
illustrate a concrete implementation of our concepts with a
prototype in Section V, which we subsequently evaluate in
Section VI within several scenarios. Finally, we conclude our
findings in Section VII.

II. PROBLEM DEFINITION

Compared to a single UAV, the increased number of
devices involved in the operation of an ensemble of UAVs
increases the error susceptibility of the entire system. There-
fore a system for monitoring the entire ensemble and reacting
to malfunctions is necessary. One way to monitor a group
of UAVs is to have one pilot per unit who, if a problem
occurs, has the option of manually controlling his UAV to
bring it back under control. This procedure scales poorly due
to the increasing need for ground personnel in proportion
to the number of units. In order for the ground personal
to react to malfunctioning UAVs, a way for identifying the
correct one in the ensemble needs to be found. Particularly in
an experimental environment, faulty software and hardware
can lead to undesired behavior, which is why strategies are
needed to react promptly and appropriately to defects and
malfunctions. Additionally, existing ground control software
for UAVs often combines the mission planning and execution
software with the emergency control. This approach is not
optimal as it requires the safety pilot to execute and monitor
the mission as well. A similar separation of safety-critical
and operational roles can be found in the architecture of
autonomous driving vehicles [6]

In this paper, we present a solution for monitoring an
entire ensemble and controlling it in case of a malfunction.
Our contribution is a solution to display all data of the
ensemble in a clear way without overwhelming the safety
operator. If a malfunction is detected, we provide strategies
to identify and selecting the malfunctioning UAV. We also
present ways to react to malfunctions in appropriate ways.
Our approach is merely a safety control and agnostic to the
mission control used in order to provide more flexibility to



the task of the ensemble. This also reduces the workload of
the safety operator. Task definition and deduction, distinct
from this paper, as well as synchronization mechanisms
between UAVs in a multi-agent framework were presented
in previous work [4].

III. EXISTING SOLUTIONS FOR CONTROLLING UAVS

In conventional ground stations for the control of commer-
cially available flight controllers, the status of UAVs can be
queried and their parameters can be set in a graphical user
interface. Examples are the software QGroundControl [7] or
APM Planner [8]. Autonomous flights can also be planned
and monitored using these tools. Often the interface is
primarily designed for the use of one or only a few UAVs [9].
Paparazzi [10] is a combination of GCS software, flight
controller and associated software. The system, which has
been in existence since 2003, was designed for robustness
and security from the outset. The correctness of the safety-
critical parts of the flight controller code was formally proven
and outsourced to a dedicated micro-controller of the flight
control system [11].

The Fraunhofer Institute presents the Karlsruhe Generic
Agile Ground Station, a GCS for various robot and sensor
platforms [2], [12]. The system, which is designed for
monitoring large or inaccessible areas, is operated by two
pilots who are responsible for evaluating the transmitted
image and sensor data and for controlling the individual
mobile robots. Bürkle et al. [13] present a ground control
solution for UAV swarms. Multiple operators monitor safety-
critical aspects of the swarm as well as the mission status.
The solution of Haque et al. [14] replaces the single laptop
running a GCS software with a dedicated micro-controller
to handle basic control of the UAV. A connected laptop
is only used for the display of telemetry data and weather
information. This architecture allows the operator to control
the UAV even if the laptop fails.

The plugin for the ground control software QGroundCon-
trol developed by Dousse et al. [9] extends its functionality
by the possibility to control more than 15 UAVs with
a clearly arranged user interface. An operator selects the
devices to be commanded and controls commands such as
landing, an emergency stop or assigning manual control by a
pilot’s remote. The only task of the pilot is the manual control
of the copters assigned to him by the operator. The operator
thus takes over tasks for controlling and planning the mission
as well as for emergency control of the copters in case of
failure. With this approach, when a fault occurs, the operator
must tell the pilot which copters he is controlling and the
pilot must identify them by means of color markings [9]. For
light shows with UAVs, Intel uses the self-developed UAV
Shooting Star, which is controlled by a central software [3].

IV. CONCEPT

In this section, concepts for controlling and monitoring
groups of mobile flying robots are presented. Identifying
individual members of a group and displaying their status
is often essential for assigning tasks to the UAVs. Therefore,

concepts are presented that allow the identification and
selection of a single or multiple participants of a group and
to visualize the status of the ensemble. In addition, methods
will be developed to reduce the time from the detection of
an error to the initiation of an action to correct it or even to
detect errors before they occur.

A. Overview of the status information of all UAVs

Many problems can be detected by ground personnel
even before they occur, if important status information of
the UAVs is displayed live and in a concise way. This
can be done because the information can be used to draw
conclusions about errors that will occur soon. For example,
if a pilot detects the low battery status of a UAV at an
early stage, he can land it and replace either the battery or
the entire UAV with another one before the battery voltage
reaches a critical level. This problem can be avoided if all
battery states are clearly displayed at runtime. It can also
make it easier to identify the device with low battery status.
A common solution to this is to attach piezo speakers to
the UAVs, which generate an acoustic warning signal when
the battery level is low. However this solution scales poorly,
because with increasing swarm size the allocation of the
warning signal to a UAV becomes more difficult. The display
of parameters such as battery status and GPS reception for
each UAV in a GCS can, in combination with a possibility
to land it automatically, reduce the time until the error is
detected and corrected.

B. Identification of individual Robots

In the event of a malfunction in a group of UAVs, the
affected participants must be quickly and reliably put into a
state in which they do not negatively affect the functionality
of the remaining swarm or harm their environment. For this
purpose, ways have to be found to identify the malfunc-
tioning UAVs and to make them distinguishable from each
other as well as to display their current state (orientation,
battery status, etc...) as intuitively as possible for the user.
In conventional ground control stations, the data from a UAV
are transmitted by radio to a computer and displayed there
in a graphical user interface [11]. In addition to the current
position, important data such as GPS reception, battery status
and mission data can be viewed on the screen. In the software
QGroundControl a map giving an overview of the position
of individual UAVs is displayed as well as a list of connected
UAVs and their status. However, this data is often not
presented and arranged clearly which makes it difficult to get
an overview of the status of the whole group [9]. Dousse
et al. [9] suggest a color assignment in the user interface
which depends on a value stored in the UAV. If the physical
UAV is provided with a marking of the same color, there is
a possibility to connect it with its representation in the user
interface. However, this solution does not scale well, because
with increasing swarm size, the colors of the UAV become
more and more similar and thus a reliable differentiation
gets more difficult. A possibility to extend this process is
the attachment of LED indicators to the individual UAVs to



provide additional feedback and to allow the pilot to see if
the correct vehicles were selected. If different colored LEDs
are attached to different places on the UAV, its orientation
can be determined. The use of addressable RGB LEDs allows
the additional display of different states (for example, blue
for selected, flashing red for low battery).

C. Reduction of the reaction time

If a UAV in the ensemble should get out of control, it is
important for the operator to be able to intervene quickly. In
order to be able to control a swarm reliably even with an
increasing number of participants, control commands need
to be sent to several participants at the same time. In many
existing ground control stations, control commands are sent
to each UAV individually [9]. For each UAV it is necessary
to select the UAV itself first and then the respective action.
Often a parallel execution of a command is also mandatory.
For example, if the UAVs fly in a close formation one after
another, it would be fatal if the first UAV stops while the
others continue their flight and collide with the first UAV.
A synchronous and parallel execution of the commands is
therefore essential. Global execution of commands can also
be useful in cases like a global emergency stop.

D. Reaction to malfunctions

If the malfunction of a UAV is detected and the correct
UAV is identified, it is essential to provide the operator with
a means to react to the error. When a UAV is malfunctioning
it can be required to stop from moving any further by
using Loiter (Position-Hold) mode. This can be useful if
the UAV is flying towards an area where it could damage
its environment. If a UAV is in the Loiter mode, it tries to
maintain its position in space via the internal position control
(see [15]). Disturbing influences, for example by light wind,
are compensated by the position controller.

a) Landing: Executing the Land action causes the UAV
to steadily reduce its altitude in a slow descent without
continuing to fly in other directions (see [15]). To prevent
drifting and to detect the distance to the ground, it is
necessary that the UAV knows its position in space and
actively counteracts a position deviation.

b) Return to Home: In Return to Home (RTH, also
Return to Launch / RTL) mode, the UAV first climbs to a
height where it cannot collide with obstacles near the ground.
It then flies back to a Home point previously defined by the
pilot, which is usually near the launch site. With this strategy,
a UAV which is too far away from the group to be flown
back safely manually (e.g. in case of loss of visual contact)
can automatically fly back to the ground crew (see [15]).

If the UAV has no possibility to determine its position
or if this is disturbed, then its position control no longer
functions. The control possibilities are then limited to the
following two basic functionalities

c) Full Manual Control: The UAV can be moved in
all directions by manual control, i.e. by setting the direction
of flight using a remote. However, due to the omission of
position control, the UAV can drift and the position and

altitude must be maintained manually. This control option
can be used as a strategy to safely land a UAV with disturbed
position sensors.

d) Emergency Stop: If a UAV becomes completely
uncontrollable, an emergency stop can be used to prevent the
aircraft from continuing its flight and thus endangering the
environment. The function is similar to that of an emergency
stop switch in industrial machinery. In the case of the UAV,
this means that power to all motors is turned off, which
results in an immediate crash. Since the crash is highly
likely to cause damage to the machine, this control option is
intended as a last resort.

E. Interface for exchangeable mission control software

When developing software to be tested in combination
with a group of UAVs (e.g. swarm algorithms, mission
flights, connection of the hardware to other systems or further
development of existing hardware and software features),
errors in software and hardware cannot be ruled out. These
can lead to UAVs getting out of control or not reacting to
mission control commands. In this case, a safety controller
decoupled from the development system can often still inter-
vene and land the UAV safely. In scientific or development
scenarios where the mission control software is under heavy
development, it is essential to provide a separate system that
can intervene on its own communication channel in case the
main mission control program fails.

V. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of our ground station Ensemble Control (ECO). This GCS
allows for a reaction to various malfunctions in the ensemble
in a way that minimizes the damage to UAVs and the
environment.

A. Ground Control Station

The GCS consists of a tablet PC connected to a radio
remote control. UAVs can be selected and deselected using
this tablet mounted over the remote control. It is also possible
to perform tasks such as landing or an emergency stop.
The wireless remote control is used to manually control the
selected UAVs after the tablet has transferred control. The
design of the GCS implements the reaction strategies defined
in subsection IV-D.

The graphical user interface of the GCS was programmed
in Java and is shown in Figure 1. On the left side of
the screen, a list of all connected UAVs and their status
information is displayed. For each UAV, there are buttons
that allow the actions Return to Home, Position-Hold, Land,
Manual Control, and Emergency Stop for that UAV to be
started from a single user input. The buttons have large,
colorful and uniform icons to help the operator find them
quickly. The icons also have a white bar at the bottom to give
feedback on what action is currently active. A selection of
the corresponding UAVs is possible by selecting list entries.
Afterwards, a menu on the right-hand side allows the same
actions, which are also applicable to individual UAVs, to be



Fig. 1. Graphical user interface of the tablet application: On the left side is
a list of all available UAVs with their status information. For each UAV, the
color, battery level, status of the position determination and IP and MavLink
address are displayed.

carried out on all selected UAVs. It is also possible to execute
all actions globally, i.e. for every UAV simultaneously. A
corresponding menu is also located on the right side of the
user interface.

If the pilot wants to influence a single device, for example
control it manually, he presses the Control button in the list
entry of the UAV. If several devices are to perform an action,
he first selects them in the list before selecting an action
(for example Country) in the Selection Actions menu. To
control all UAVs at once, an action is selected in the Global
Actions menu. For example, a global emergency stop can
be executed by pressing the Stop button. In order to avoid
accidentally triggering an emergency stop, a pilot must press
an emergency stop button twice in quick succession. With the
first press a warning signal sounds, with the second press the
emergency stop is executed. All other controls also give the
user both visual and audible feedback to make the use more
efficient.

In addition, the user interface displays the parameters
of each UAV that are important for the pilot. Thus the
battery level, the status of the position tracking and the
Armed / Disarmed status are directly visible for each UAV.
Additionally, the parameters change their color depending
on their value. For example, the voltage of a full battery
is displayed in green. If it drops, the color of the display
also changes from yellow to red. This is intended to make
it easier to identify critical values. For the transmission of
status information the MAVLink-Protocol [16] was used.

B. Selection Feedback

In order to quickly assign the individual UAVs to their
representation in the graphical user interface, they were
provided with colored markers on all sides. The color of the
markings is stored in the configuration of the flight controller
of the respective device and can be read by the GCS, which
then displays this color value in the GUI representation of
the UAV (see Figure 1).

In order to give the pilot visual feedback on his actions at
the UAV, individually addressable RGB LEDs were installed
on each UAV. The LEDs of the UAV fulfill multiple func-
tions. On the one hand, one set of LEDs per arm indicate the
orientation of the UAV. Similar to the headlights of a car, the
two rear arms shine red and the front ones yellow. Compared

Fig. 2. Extension of the existing hardware architecture.

to other solutions like differently colored propellers in the
front and back, the LEDs provide better visibility, especially
at long distances and at night. On the other hand, status
information can be displayed directly on the device via
additional LEDs. If the status LEDs light up green, this
indicates that the UAV is currently being controlled by the
pilot or is carrying out an action. When selecting devices,
a blue light makes the pilot understand that all blue UAVs
are currently selected. If the status LEDs are off, the UAV is
neither selected nor controlled. The ESP8266 module filters
the LED control packets from the MAVLink data stream sent
by the GCS and drives the LED modules accordingly.

C. Separate communication channel

The GCS uses a tablet to control an Arduino Nano
micro-controller via a serial interface (see fig. 2). The latter
generates a PPM (pulse-pause modulation) signal, which
is fed into the remote control via the teacher input. The
extension makes it possible to overwrite channels of the
remote control and thus to forward control signals from the
tablet to the UAV.

The control signals of the UAV are coded into channels
7 and 8 of the radio remote control. It only feeds through
channels 7 and 8 from the teacher input. For all other
channels the stick or switch values of the remote control
are used. Channel 7 is responsible for addressing the UAVs
while channel 8 represents the action the UAV needs to
execute. It is possible to address a single UAV, all currently
selected UAVs or every UAV in the ensemble. The action
can be selecting or deselecting a UAV or executing one of
the reaction strategies defined in subsection IV-D.

To interpret the additional remote control signals the
firmware of the flight controller was extended. The UAV
checks channel 7 to see if it is currently addressed by the
remote. If it is, it executes the action determined by channel
8. The ESP8266 module is used as the return channel for
telemetry data. It is connected to the tablet via WiFi, but
can still be used for communication with other devices. The
separation between emergency control and mission control
allows the user to use his own infrastructure for controlling
the UAVs independently of the emergency control and to ex-
change them as required. When designing the GCS, care was
taken to not block the use of any means for controlling the



UAV by external programs. The communication interfaces to
the ESP module and the Odroid were not used exclusively
and are still available for control by external software. This
approach is in contrast to most other, which rely on the
combination of both functionalities into one unit.

VI. PROOF OF CONCEPT

In the following section the prototype is tested using two
scenarios based on real applications for UAV ensembles.
First the failure of a single UAV in a building inspection
and then the failure of several UAVs carrying a payload are
considered. For both scenarios, the reaction time from the
occurrence of the fault until the system is transferred to a safe
state and the covered distances are measured. For illustration,
we provide a video of both setups1.

A. Inspection of a building with a UAV

A possible application for UAVs is the inspection of
buildings [17]. Here, a UAV films the building from dif-
ferent perspectives. In the example considered, a UAV with
mounted camera is to automatically patrol parallel to a side
of a building at a constant height in order to inspect it. In this
scenario there is a no-fly zone, which includes the building
and directly adjacent areas. A randomized error in the UAV’s
autonomous control software causes it to abort its mission at
a random time and fly in a different direction causing it to
either head for the no-fly zone or move away from it. In order
to ensure a safe test environment, the test was carried out on
a field without directly adjacent buildings, which was divided
into different areas. Along this zone a UAV flies parallel to
one side of the building between two points, which are about
15 m apart. It is oriented towards the building to inspect it
with a camera. Its speed was limited to 2 m/s for the outdoor
experiments. In addition, the firmware of the FC has been
extended in such a way that the UAV deviates from this path
after an arbitrary time and shows one of the following two
malfunctions.

In situation 1, the UAV unexpectedly moves away from the
building in a direction where there are no obstacles or people.
In this case it is safe to try to bring it back under control. The
reaction strategy Position-Hold prevents the UAV from flying
away. The UAV can then be retrieved using the Return to
Home function and landed either manually or automatically
using the Land. In situation 2 the UAV moves towards the
no-fly zone. Here the pilot has to decide if the UAV can be
brought under control again. If this is not possible, the UAV
will continue to enter the no-fly zone during the unsuccessful
attempt. In this case, it is generally advisable to prevent the
UAV from causing damage to its environment by making an
emergency stop directly.

The two situations were tested and both a video and GPS
position data of the UAV were recorded. For each situation
the worst case scenario was considered, i.e. the drift of the
UAV perpendicular to its flight path either into the no-fly
zone or away from it. The speed of the UAV was limited

1https://video.isse.de/eco

to 2 m/s. In the first scenario, the pilot executed the reaction
strategy Stay after about 1.2 s. The transmission of the signal
to the UAV took about 0.8 s. The maximum deviation from
the target position was reached about one second later. The
UAV then flew back a little and came to a complete stop
after another 2.7 s. The total time from the occurrence of the
error until the UAV stopped was 5.7 s. In the second case
of failure, the UAV flew into the no-fly zone at a maximum
speed of 2 m/s after an undefined time and had to be brought
to a standstill with an emergency stop. The reaction time of
the pilot and the transmission time of the command is very
similar to the first situation. Due to the changed reaction
strategy, the UAV reached a standstill in less than 3.5 s after
the error occurred. However, this was achieved by crashing
the UAV. After some lateral movements the UAV breaks
out in positive direction of the Y-axis into the no-fly zone.
After about 4.5 m it comes to a standstill due to the crash.
In comparison to the first situation, the maximum deviation
from the target position is increased by about one meter. This
behavior can be explained by the fact that in the first case
the UAV brakes actively and thus reduces speed, whereas
in an emergency stop the motors are switched off and the
UAV continues falling in its original direction until it hits
the ground.

B. Collaborative transport of a payload with several UAVs

In the second experiment the complexity of the setup
was increased by using several UAVs. In this experiment
four UAVs cooperatively transported a sensitive cable at
a constant height. Four UAVs (Q1-Q4) alternately flew to
two waypoints. They carried a cable which can be damaged
by excessive tension. For this reason, they synchronized
themselves so that they always flew in a line formation
while keeping their distance from each other constant. After
an indefinite period of time, some of the UAVs stopped
due to a synthetically introduced software error, the others
continued to fly. In order not to damage the cable, all UAVs
first had to be stopped and then manually returned to the
line formation to be able to land. The experiment was
performed in an indoor flight laboratory. It is equipped with
a Vicon camera tracking system and thus allows the exact
positioning of the UAVs. The four UAVs were flying at an
altitude of about 0.8 m and at a distance of about 1.5 m
from each other. The distance between the two waypoints
was two meters and the UAVs flew at a maximum speed
of 0.45 m/s. The mission control was performed by a test
program which was connected to the Robotics API [18].
This program let the UAVs fly to the waypoints in turn
and made sure that some UAVs stop at a random time.
The prototype of the GCS was running in parallel to the
mission and allowed the pilot to intervene in case of an
error. When the latter happened, the Stay action was first
performed globally to prevent the UAVs from moving further
apart. Then the stopped UAVs could be selected and their
position in space could be changed by manual control to
restore the line formation. Thus, by reducing the distance
between the UAVs, a transported cable could be relieved.



Afterwards the action Land could be executed globally to
land the UAVs synchronously and automatically. Like in
the previous experiment, the time and distance from the
occurrence of the error to the standstill of all UAVs were
measured. The determination of the times was done by video
recordings. For the distances covered, the position data of
all UAVs were recorded in the Vicon Tracker software and
then evaluated. The times required for the transmission of
the control command average at 0.65 s and are thus very
similar to the values of the previous attempts. It is important
that the transmission time does not increase with the number
of UAVs like it would in existing solutions where the action
has to be performed for each UAV individually. The reaction
time of the pilot is on average somewhat lower, but varies
between 0.6 s and 1.5 s. The reduction of this time span can
possibly be explained by the fact that in this attempt the
remote control was placed on the table and did not have
to be held by the pilot as in the two previous attempts.
This left both hands free for the pilot to intervene more
quickly. The UAVs covered an average distance of one meter
after the error occurred before they came to a standstill. The
maximum distance covered by a continuing UAV compared
to a stopped one was 1.5 m.

VII. CONCLUSION

In this paper first problems of solutions for the control of
mobile robot ensembles were identified. In addition, existing
solutions to the problem were presented. We then presented
approaches for monitoring an ensemble as well as for the
identification of individual participants of the ensemble. In
addition, suitable reaction strategies for error cases and
reasonable control possibilities for robot ensembles were
discussed. Furthermore we demonstrated our implementation
and realization of a GCS for monitoring and controlling sev-
eral UAVs with only one pilot. This was successfully tested
in the form of a proof of concept in two different scenarios
with the occurrence of a partially expected error. The benefits
that our system provides over preexisting solutions are the
clear separation of experimental mission-specific code from
safety-critical systems and a fast and user-friendly way to
monitor and control a small ensemble of UAVs by only a
single pilot.

During the evaluation of the prototype, potential improve-
ments were identified. For example, the workload for the
pilot could be further reduced when the swarm is larger by
dividing it into sub-swarms, each of which is monitored by
one pilot. However, this would require a way to separate the
sub-flocks in addition to the individual UAVs, so that each
pilot can identify his swarm. Depending on the application,
this can be done, for example, by spatial separation of the
sub-flocks or by defining different groups that can be quickly
selected. Estimating the position of the UAV is especially
difficult during outdoor missions. An overview of the overall
situation from a bird’s eye view, which can be very helpful
to show the position of the UAVs. It would also be possible
to enter reactions directly into the map and have the program
automatically perform an action, for example an emergency

stop, when the UAV enters a no-fly-zone. On the other hand,
this automation may make wrong decisions due to its limited
perception of the environment. Therefore, when automating
such a system, care must be taken to ensure that a human
operator remains in place to monitor the system.

VIII. DATA AVAILABILITY

The code and results of the proof of concept can be
accessed at https://dl.isse.de/eco

REFERENCES

[1] J. Penders, L. Alboul, U. Witkowski, A. Naghsh, J. Saez-Pons,
S. Herbrechtsmeier, and M. El-Habbal, “A robot swarm assisting a
human fire-fighter,” Advanced Robotics, vol. 25, no. 1-2, pp. 93–117,
2011.

[2] A. Bürkle, F. Segor, and M. Kollmann, “Towards autonomous
micro uav swarms,” Journal of Intelligent & Robotic Systems,
vol. 61, no. 1, pp. 339–353, 2011. [Online]. Available: http:
//dx.doi.org/10.1007/s10846-010-9492-x

[3] Intel shooting star drone project page. Accessed on: 2020-01-
12. [Online]. Available: https://www.intel.co.uk/content/www/uk/en/
technology-innovation/aerial-technology-light-show.html

[4] O. Kosak, C. Wanninger, A. Hoffmann, H. Ponsar, and W. Reif,
“Multipotent systems: Combining planning, self-organization, and
reconfiguration in modular robot ensembles,” Sensors, vol. 19, no. 1,
2018. [Online]. Available: http://www.mdpi.com/1424-8220/19/1/17

[5] O. Kosak, “Facilitating planning by using self-organization,” in 2017
IEEE 2nd International Workshops on Foundations and Applications
of Self* Systems (FAS*W), Sept 2017, pp. 371–374.

[6] A. C. Serban, E. Poll, and J. Visser, “A standard driven software ar-
chitecture for fully autonomous vehicles,” in 2018 IEEE International
Conference on Software Architecture Companion (ICSA-C). IEEE,
2018, pp. 120–127.

[7] Qgroundcontrol. [Online]. Available: http://qgroundcontrol.com/
[8] Apm planner. [Online]. Available: http://ardupilot.org/planner2/
[9] N. Dousse, G. Heitz, and D. Floreano, “Extension of a ground

control interface for swarms of small drones,” Artificial Life and
Robotics, vol. 21, no. 3, pp. 308–316, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10015-016-0302-9

[10] Paparazzi ground control station. [Online]. Available: http://wiki.
paparazziuav.org/wiki/GCS

[11] P. Brisset, A. Drouin, M. Gorraz, P. Huard, and J. Tyler, “The Paparazzi
Solution,” in MAV 2006, 2nd US-European Competition and Workshop
on Micro Air Vehicles, Sandestin, United States, 2006.

[12] S. Leuchter, T. Partmann, L. Berger, E. Blum, R. Schönbein, and
J. Beyerer, “Karlsruhe generic agile ground station,” in Future Security.
2nd Security Research Conference, 2007, pp. 12–14.

[13] A. Bürkle and S. Leuchter, “Development of micro uav swarms,” in
Autonome Mobile Systeme 2009, R. Dillmann, J. Beyerer, C. Stiller,
J. M. Zöllner, and T. Gindele, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 217–224.

[14] S. R. Haque, R. Kormokar, and A. U. Zaman, “Drone ground control
station with enhanced safety features,” in 2017 2nd International
Conference for Convergence in Technology (I2CT), April 2017, pp.
1207–1210.

[15] Ardupilot documentation - flight modes. [Online]. Available:
https://ardupilot.org/copter/docs/flight-modes.html

[16] Mavlink documentation. [Online]. Available: https://mavlink.io/en/
[17] Industrial skyworks - building inspections. [Online]. Available:

http://industrialskyworks.com/drone-inspections-services/
[18] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif,

“Robotics api: Object-oriented software development for industrial
robots,” Journ. of Software Engineering for Robotics, vol. 4, no. 1,
pp. 1–22, 2013.


