
Research Challenges on Engineering Service-Oriented Applications

E. Di Nitto∗, D. Meiländer, S. Gorlatch†, A. Metzger‡, H. Psaier, S. Dustdar§, M. Razavian, D.A. Tamburri, P. Lago¶
∗Politecnico di Milano, Italy

dinitto@elet.polimi.it
†University of Münster

Germany
{d.meil, gorlatch}@uni-muenster.de
‡University of Duisburg-Essen

Germany
andreas.metzger@paluno.uni-due.de
§Technical University of Wien

Austria
{H.Psaier, dustdar}@infosys.tuwien.ac.at

¶VU University Amsterdam
The Netherlands

{m.razavian, d.a.tamburri, p.lago}@vu.nl

Abstract—This paper focuses on providing an overview of
the research challenges that have been identified toward the
end of the S-Cube network in the area of service engineering.
These challenges concern the need for agility and dynamicity
of the development process for service-based applications,
the importance of focusing on proper approaches to support
migration of legacy application into service-based applications
and the role of humans and of teams of humans in service-
based applications.

Keywords-Engineering of service-based applications, agile
approaches, self-adaptation, evolution, Agile Service Networks,
human-provided services, real-time applications.

I. INTRODUCTION

When referring to Service Oriented Architecture (SOA)
as a paradigm, SOA typically constitutes a set of guiding
principles for building Service-Based Applications (SBAs).
Thanks to these principles, services can be (re-)used in many
different settings and service-based applications can meet the
requirements for dynamism and flexibility.

SOA enables us to build software systems with a high
degree of flexibility. Software services separate ownership,
maintenance and operation from the use of the software.
Service users thus do not need to acquire, deploy and run
software, because they can access its functionality from
remote through service interfaces. Ownership, maintenance
and operation of the software remains with the service
provider [1].

Third-party software services enable organizations to
flexibly outsource business functions (typically commodity
functions) and to focus on the innovative functions, which
differentiates one organization from another.

Thus, SOA promises huge benefits in terms of dynamism
and flexibility. However, service-based applications also

need to become resilient to their services changing, disap-
pearing or violating their expected quality. Especially in the
case of third-party services, the service users do not have
control over such changes, thus, calling for novel solutions
to address this new dimension of changes.

One of the main missions of S-Cube, the European Net-
work of Excellence on software, services and systems1 has
been to investigate and support the flexibility and dynamism
of SOA. In particular, the network has defined a life-cycle
that highlights the central role of evolution and adaptation
for service-based applications and has experimented the
usage of the life-cycle not only in the development of typical,
business-oriented applications, but also in the context of
real-time applications deployed on the Cloud. This roadmap
summarizes the life-cycle in Section II and highlights some
challenges that we have identified while applying it to the
real-time application case (Section III). Moreover, the paper
elaborates on the importance of agility in the evolution and
adaptation of SBAs (see Section IV). It also focuses on
the type of support research should offer to the migration
of legacy applications into SBAs (see Section V), and
introduces humans-offered services as an integral part of a
SBA by highlighting the issues that arise in this case (see
Section VI). Finally, the paper brings the idea of humans
participating into a SBA to the extreme and suggests that
heavily human-based processes, such as Global Software
Development, could be seen as executed by Agile Service
Networks where humans are the main executors of services
(see Section VII).

1http://www.s-cube-network.eu/

978-1-4673-1807-5/12/$31.00 c© 2012 IEEE S-Cube 2012, Zurich, Switzerland14



Requirements
Engineering

Design

Realization
Deployment &
Provisioning

Operation &
Monitoring

Identify 
Adaptation 

Need (Analyse)

Identify 
Adaptation 

Strategy (Plan)

Enact Adaptation 
(Execute)

Design‐time 
Development

Run‐time  Management
(„MAPE“ loop)

Adaptation Evolution

Figure 1. The S-Cube Service Life-Cycle Model

II. THE S-CUBE LIFECYCLE

The S-Cube service life-cycle model [2] defines the rele-
vant activities for self-adaptive service-oriented systems and
integrates these into a coherent framework. It consists of
the following two loops, which are typically executed in an
incremental and iterative fashion (see Figure 1):

1) The Evolution loop builds on the more traditional de-
velopment and deployment activities, including require-
ments engineering, design, realization, and deployment.
However, it extends those activities with “design-for-
adaptation” steps, such as to define and implement how
the system should monitor and modify itself when en-
tering the left-hand side of the life-cycle (e.g., see [3]).

2) The Adaptation loop explicitly defines activities for
autonomously addressing changes during the operation
of service-oriented systems. The activities in the adapta-
tion loop follow the steps of the MAPE loop (Monitor-
Analyze-Plan-Execute), which is typically found in
autonomic systems [4].

It should be noted that in some cases also adaptation
requires human intervention. This is often called human-
in-the-loop adaptation [2]. Human-in-the-loop adaptation is
different from evolution in the sense that the activities
performed by the humans and the artifacts that are modified
differ; e.g., the change of requirements documents certainly
requires to go through the evolution loop, while the choice
between two possible candidate services can be performed
as human-in-the-loop adaptation.

III. ADOPTING THE S-CUBE LIFECYCLE TO SUPPORT
REAL-TIME PROVISIONING OF ROIA IN THE CLOUD

An important application service area which benefits from
the design-for-adaptation approach is concerning Real-Time
Online Interactive Applications (ROIA), like online games,
interactive e-learning, etc. In ROIA, there are typically
multiple users who access a common application state and
interact with each other concurrently within one virtual
environment. The users connect to the application from
different client machines and interact with other users. ROIA

are highly distributed applications with challenging QoS
demands, such as: short response time to user actions (about
0.1-1.5 s), high update rate of the application (up to 50 Hz),
large and frequently changing number of users in a single
application instance (up to 104 simultaneously). Because
of the very high performance requirements of ROIA, the
application processing is performed on multiple servers.

In our previous work [5] we have shown that incorporating
design-for-adaptation activities into the ROIA development
process as proposed by the S-Cube Lifecycle Model helps
application developers to address these challenging QoS
demands. At the same time, Cloud Computing opens new
opportunities for ROIA to serve very high numbers of users
and still comply with QoS demands by leasing Cloud re-
sources on demand, particularly for offloading computations
from mobile devices to more powerful Cloud resources.
Despite a variable number of users, Cloud resources can be
used efficiently if the application supports adding/removing
resources during run-time. Hence, using Cloud Computing
for resource provision and the Lifecycle model for imple-
menting adaptable ROIA complement each other.

In the following, we briefly discuss three main challenges
for adaptable ROIA development and provisioning, aiming
at Clouds and mobile devices.

A. ROIA Adaptation Along the S-Cube Lifecycle

In order to adapt ROIA to changing workloads, applica-
tion developers need to implement suitable monitoring and
adaptation mechanisms. Our work on ROIA development
along the S-Cube Lifecycle Model identified three main
scenarios that require adaptation [5]: (i) Change in Quality of
Service, e.g., QoS violations caused by unreliable Cloud re-
sources; (ii) Change in computational context, e.g., increased
costs for calculating the application state caused by increas-
ingly frequent interactions between users; (iii) Change in
business context, e.g., changing user preferences, e.g., many
new and concurrent user connections at the same time.

Hence, an important research area is the integration of
high-level monitoring and adaptation mechanisms into ex-
isting development platforms for ROIA, like the Real-Time
Framework (RTF) 2. In particular, monitoring mechanisms
need to provide information about hardware utilization, ap-
plication processing and future user load in order to address
all three types of changes described above.

Furthermore, we identified the demand for balancing run-
time adaptation and application redesign. Particularly, the
continuous adaptation on Cloud resources may lead to an
inefficient application structure which requires redesign.

B. ROIA Provisioning on Cloud Resources

In our previous work [6], we showed that the performance
of ROIA can be strongly affected by the virtualization of

2http://www.real-time-framework.com

15



Cloud resources. In order to combine physical and virtual
resources (from potentially multiple Cloud systems) for
ROIA provisioning, it is important to investigate the impact
of virtualization on ROIA and develop prediction models for
ROIA performance on different Cloud systems.

Cloud platforms offer services that provide monitoring
and adaptation mechanisms for their Cloud resources, e.g.,
Amazon Cloud Watch or Amazon Elastic Load Balancing 3.
However, these services only provide generic system infor-
mation about resource utilization (CPU, memory, bandwidth,
etc.). This information is not sufficient for up- and down-
scaling of ROIA sessions since ROIA have a specific runtime
behaviour: e.g., regardless of the current number of users,
an online game may run with a constant CPU load of 100%
in order to deliver the highest state update rate possible.

Since Cloud resources may require a long startup time (up
to several minutes), proactive resource management is partic-
ularly important for ROIA provisioning on Clouds in order
to address changes in computational and business context.
For example, neural networks can be used for predicting
the variable user load. Hence, another important research
area is the development of proactive resource management
strategies for ROIA in Cloud environments that take into
account real-time communication QoS and the impact of
Cloud virtualization on latency, jitter, throughput, fragmen-
tation, etc. Furthermore, cost-effective resource management
requires mechanisms for resource buffering that address
static leasing periods of Cloud resources.

C. ROIA on Mobile Devices

Mobile devices are highly desirable for many ROIA in
order to improve the mobility and interactivity between
users in virtual worlds and augmented reality. However,
the comparatively low CPU and memory capacity, as well
as limited battery life of mobile devices, combined with
potentially non-reliable, high-latency wireless networks for
communication imposes new challenges.

Since mobile devices have limited CPU and memory
capacities, application processing should be offloaded to
more powerful Cloud resources. Hence, application develop-
ers need transparent high-level development tools that take
into account real-time sensitive data streaming, congested
mobile access links, roaming communication endpoints and
migration, switch or aggregation of streaming sources.

IV. AGILITY IN EVOLUTION AND ADAPTATION OF
SERVICE-BASED APPLICATIONS

When the system evolves, it goes through a reenginering
phase in which it is permanently modified. In the age of
globalization changes need to be handled in a timely fashion.
If the execution of the evolution loop is not able to quickly
address changes, there is a risk of delivering a solution that
addresses a certain change when this change is not relevant

3http://aws.amazon.com

any longer, for instance, because it has been superseded
by other new changes. Agile development approaches [7],
[8] are often mentioned as a way to address changes in a
fast and interactive way, if developers are able to work in
close collaboration with the owners of new requirements or
with those who have a deep knowledge about the occurred
context changes. This statement has an initial evidence in
the work of Capiluppi et al. [9] where authors have shown
that agile methods have resulted in a ”smooth evolution
while avoiding the problems of increasing complexity or
decreasing customer satisfaction”. In the context of SOA,
companies such as IBM [10] and OutSystems [11] are
suggesting the adoption of an agile approach. Moreover, a
technological advancement that pushes agile development of
SOA to the extreme is offered by mashups [12].

Mashups constitute the integration of different web appli-
cations and services which have the purpose of serving the
specific needs of some users. They are usually short lived
systems intended to be built not only by expert developers
but also by less-experienced people. To this end, proper
development environments are being developed. These offer
a specific component and composition models and are usu-
ally associated to some runtime environment. While these
environments promise to shorten the development cycle in a
significant way, they are still not well integrated into a proper
full-fledged development methodology. From a completely
different perspective, another interesting step toward agility
is the integration of the service selection phase within
requirement engineering [13].

Even though it has not been designed with agile processes
in mind, agile methods could be mapped to the S-Cube life-
cycle. Using Scrum [14] we could assume that each iteration
of the evolution loop is performed as a Sprint which aims at
delivering an increment of a service-oriented system. Given
that services represent a natural unit of functionality, each
such Sprint could aim at incorporating a new service in the
service-oriented system up to the point where the complete
functionality is offered to the system’s users.

As the aim is to build self-adaptive systems, an agile
approach targeted at service-oriented systems needs to take
into account that the redesign and redevelopment of the soft-
ware system has to incorporate the “design for adaptation”
principle in a seamless way. This is an issue which surely
deserves further research.

While the behavior of a non-adaptive system is only con-
trolled by user input, adaptive systems consider additional
information about the system (machine) and its context. Self-
adaptive behavior is realized through methods and tools that
realize control loops. In addition to the degree of automation,
the point in time when a change can be detected impacts on
the agility of the system in responding to that change; e.g.,
if the system can forecast an imminent change, more time
and thus more options remain for the adaptation than if the
system can only detect changes once they actually occur.

16



The following three types of adaptation [15] exemplify
the impact that the point in time when changes are detected
has on the agility of the system:

• Reactive adaptation refers to the case in which the
system is modified in response to external failures that
have actually occurred, i.e., failures that are actually
observed by the users of the system. This approach
is the most common one in the literature, but, being
reactive, can have a severe impact on how agile a
system can respond to changes [16].

• Preventive adaptation refers to the case in which an
actual local failure or deviation is repaired before its
consequences become visible to the user in the form of
an external failure.

• Proactive adaptation refers to the case in which the
system is modified even before a local failure occurs.
In this case, neither repair nor compensation activities
would be necessary as part of the adaptation, as no
failure has actually occurred.

In a nutshell, the more agile the service-oriented system
is to become, the stronger the role of proactiveness in the
adaptation loop becomes. This means that already during
design (i.e., within the evolution loop), decisions need to
be made about how to predict failures during the execution
of the service-oriented system. However, selecting the right
technique can be quite a challenging task due to the highly
dynamic nature of service-oriented systems (see [15] for an
in-depth discussion on this issue).

V. MIGRATION OF LEGACY SYSTEMS TO
SERVICE-BASED APPLICATIONS

Companies have extensive experience in both in-house
migration of their own legacy information systems to a more
agile, reusable service-oriented paradigm, and consultancy
migration to support customer organizations to port their
systems to modern service-oriented technologies, make them
available as added-value services, often with the goal of
creating new market opportunities. Researchers have inves-
tigated aspects of SOA migration for the past decade. While
in SOA migration academics take a reverse engineering
approach and propose methods, tools and techniques to
port old systems to service-oriented ones, enterprises take a
forward engineering approach, mostly by eliciting important
knowledge about the requirements supported by the legacy
software and re-engineering them into services that fulfill an
ideal SOA [17], [18].

The question is: why this gap between SOA migration
approaches by academic and practitioners exists? In our
earlier work we have argued that this is due to the fact that
academic approaches do not fit the fundamental problems,
goals, strategies and weaknesses of practice [18]. Having
identified the theory-practice gaps we now turn our attention
to the future. Out of the results of a number of case
studies, industrial surveys and panel with experts we found

out that, in practice, there is a need for SOA migration
strategies that are simple enough to be pragmatic and have
very wide applicability. The best strategies are those that
are based on a gradual migration approach. They have
to be in-line with the mental models of practitioner, and
eventually offer choices, possibilities and alternatives for
important problems that are typical in SOA migration. We
call such promising approaches as Lean & Mean Migration
Strategies [19]. Considering this generic need, we believe the
following represents major challenges for industry-relevant
SOA migration approaches in the years ahead:

• Aligning risks, costs and value with migration strat-
egy: One of the issues that was repeatedly stated by
practitioners was the importance of risks and cost
management in SOA migration decision making. We
found risks and cost management to be in fact one of
the main drivers of migration and influential on most
decisions. This further confirms a recent interest toward
risk-, cost- and value-aware methods [20], [21] that
needs further research.

• Providing decision making tools to support selection
of migration solutions: Industry needs tools to support
planning and decision making for migration. For this
purpose, the interviewed practitioners indicated as very
beneficial to associate the practices or extensions with
typical risks, costs and pre-requisites. This calls for em-
pirical research studies to identify and isolate practices
and associate them with important decision criteria such
as risks, costs and pre-requisites.

• To-Be-driven migration approaches: Migration in in-
dustrial approaches migration is mainly driven by To-
Be state (i.e., ideal target service-based system) [18].
Inadequate support for To-Be driven approaches in
academia highlights promising opportunities for re-
search. In particular, future research should focus on
how to systematically elicit and capture the migration
drivers and how to shape the migration process using
those drivers.

• Legacy understanding without reverse-engineering:
The industrial migration approaches do not use re-
verse engineering techniques to understand the legacy
systems. The required knowledge is elicited from the
stakeholders who own the knowledge. Elicitation of the
knowledge about the legacy system, however, is crucial
for a successful migration. In this regard, research
can benefit practice by providing methods, techniques,
or guidelines that facilitate elicitation of migration-
relevant knowledge from different sources.

VI. HUMANS PROVIDING SERVICES

Major industry players have already been working on
standardizing protocols and languages which allow people
to interface with WS environments. The SOA community
has recognized the emerging requirement of human skills

17



and knowledge in service compositions. Some of the pro-
cesses steps mapped to services still require support in
complex decision making, and as a result, human expertise
or knowledge to proceed. To address the lack of a possi-
bility of human interactions in service-oriented businesses
processes [22], specifications including BPEL4People [23]
and WS-HumanTask [24] have been defined.

Our latest studies relate to environments with charac-
teristics of open service environments involving humans
providing their skills as a service.

Open service environments involving humans: Open
Enterprise Systems (OES) are open collaborative networks
organized in communities. Communities are established by
members with the same interests and skills. This information
is provided by the members’ profile. A typical scenario
includes a requester that requires human assistance with
an activity. The profiles help to find the matching expert.
The requester selects the expert, submits the activity and
awaits the response. Examples of OES employing SOA
infrastructures have been studied in [25], [26]. These in-
clude small and medium-sized companies and their bilateral
alliances to compete with global players. This protects the
partners against the dynamics of economy and business,
supporting them also to harvest business opportunities that
a single partner cannot take. The result of these associations
is referred to as virtual organizations supporting enterprise
collaboration. Particular instances have been explored in
[27]. The example outlines a science collaboration net-
work. It comprises scientists, members from national and
international research labs, and experts from the industry.
Furthermore, professional virtual communities are discussed
in [28] that provide help and support on requests of each
other, e.g., law firms and insurance companies.

Crowdsourcing Environments. The recent trend towards
collective intelligence and crowdsourcing can be observed
by looking at the success of various Web-based production
platforms that have attracted a huge number of users. Crowd-
sourcing applications [29] are online, distributed problem-
solving and production models that have emerged in recent
years. They are typically open Internet based platforms
where problem-solving tasks are distributed among a group
of humans. Crowdsourcing follows the open world assump-
tion and generally comprises three roles identified in [30].
First, there is the crowdsourcing platform and its owner, also
referred to as the platform provider. A crowd customer is
interested in outsourcing tasks to the crowd. The registered
vast number of crowd workers with different skills offers
then individual solutions to the outsourced problem. Apart
from its benefits of multiple redundant workforce and collec-
tive intelligence, many of the challenges of crowdsourcing
are related to its distributed and open nature. The main
challenges remain how to organize and manage the crowd
and identify potentially missing skills [29]. In the following
different types of crowdsourcing environments are described.

Alignment with Mixed Systems: A possible integration
of the aforementioned environments into an SOA infras-
tructure includes the roles of the service consumer. The
consumer usually considers outsourcing an activity to the
environment because of the lack of in-house skills related
to the activity. Considering the environment itself as based
on a WS technology, the mixture of services includes
two different types. The Human-provided Services (HPS)
are the services which represent interaction humans in the
service system and the Software-based Service (SBS) are the
traditional WS. In some of our previous works [31], [32] we
took an approach from the environment provider’s point of
view. As our results show, with their standardized formats
for communication, WS allow monitoring and analyzing
the interactions in a straightforward manner. One possible
application which can be regarded as a starting point for
several future evaluations is the extraction of areas of interest
and social relations.

VII. APPLYING A SERVICE MODEL IN GLOBAL
SOFTWARE ENGINEERING

Global Software Engineering (GSE) involves a complex
interplay of globally distributed virtual teams. Space, time
and social distances typical of the GSE condition, create
problems in teams collaboration (which is social by defi-
nition). To support GSE, mechanisms must be provided to
model and sustain its Organizational Social Structure (OSS),
i.e. the web of relations, collaborations and social ties that
emerges among GSE developers [33]. These mechanisms
must address social and collaboration problems (e.g. mutual
awareness of virtual teams involved).

We argue that supporting the GSE OSS is possible by
modeling a GSE process as an Agile Service Network (ASN),
that is, a network of services (nodes) collaborating through
adaptive transactions (edges), towards a common goal [34].
This can support the GSE condition, for instance, through
a project-specific social network to ease the localization of
needed skills, their communication, or seamless end-to-end
information propagation across timezones.

A. Sample Scenario

Consider the following wicked GSE “social mess” (ob-
tained by enhancing a scenario in [35]): An unavoidable
technical problem is discovered by two programmer teams
in different timezones. This causes a multiple problem
“vision”. Designers (alerted twice for the same issue) rework
design with two subsequent (and conflicting) solutions.
Negotiation and adjustment of requirements are only partial
(e.g. related to the first re-design), since system requirements
analysts were only alerted of the first rework as the second
rework seemed only minor. In addition, alert propagates only
to teams which are alive (i.e. are working) at the time the
technical constraint is discovered. Subsequently, the same
technical problem is raised by other programmers who were

18



using design details unrelated to the adjusted design, but
related to affected requirements.

B. Proposed Solution

Given that we see a GSE team as an ASN, we propose
to address the above case and, in general, the coordination
issues arising in a GSE team, through the development of
a tool that we call S.E.A.N. (Socially-Enabled Awareness
Network). S.E.A.N.’s purpose is to maintain the mutual
awareness of the GSE crowd constant, so that collaborative
workers are kept mutually aware of their progress (or
difficulties, both personally encountered or reported by other
neighbors). Using basic network theory, S.E.A.N. can be
described by (semi-)formalizing its edges and nodes:

• Each node is a service-based social networking appli-
cation, that represents a single developer X, working
on project Y.

• Each edge represents the collaboration between two
developers on the same task of project Y.

S.E.A.N. uses collaborator discovery services to assemble
a network of service applications which emerges sponta-
neously based on who works on which project, as well as on
same (or related) tasks. It is business-oriented since its prime
goal is to minimize development time and wasted effort
(business gain) by increasing awareness of the developers. It
is decentralized since no single node controls the operational
effectiveness of the network. It is collaborative, since each
node effectively works on increasing the project awareness
that every other node perceives. It is dynamic since it
deploys basic context awareness and adaptation mechanisms
(e.g. the fail-safe messaging service).

To model a S.E.A.N. instance of the above scenario, let’s
assume it entails 6 teams in total: 2 programmer teams (ini-
tially discovering the technical constraint); 1 designer team
(reworking the design); 1 requirements team (adjusting and
maintaining requirements) and 2 tester teams (re-discovering
the technical constraint after their working shift starts).

Text-book software engineering helps in bootstrapping the
(loosely-)bound collaborations between teams: for example,
the two programmer teams constitute a collaboration mesh,
since they work on a common codebase; also, leaders in
the programmer teams collaborate to design adjustments, to
limit excessive clashes between the design and the current
codebase. Designers also collaborate on requirements engi-
neering with analysts since requirements are bound to design
elements (and decisions). Finally, testers should mesh with
the rest of the network since the whole project should reflect
the adjustments they dictate.

In S.E.A.N., all the developers in the engineering effort are
subscribed to a project which was created with S.E.A.N.. A
single, high priority message is risen when a design needs
rework and transmitted to all active collaborations from
the programmer team (and to the neighbor’s neighbors).
Designers are immediately notified (once). The designers

work out the flaw, helped by other designers’ contributions
in other nodes. A single solution is applied to the design and
transmitted to the requirements. A high priority message is
pushed seamlessly when the risen issue is closed.

This intuitive validation however only exemplifies our
argument. Prototyping and action research should be used
jointly to concretely assess this idea.

VIII. CONCLUSION

Service-based applications show interesting characteristics
that open up a large number of challenges in software
engineering. Some of these challenges concern specifically
the approaches and ingredients to be used to support their
development. Other challenges concern the capability of
service-based applications to incorporate and model the
behavior of humans and team of humans. These last aspects
have not been deeply investigated in the literature yet, and
constitute an interesting area for future investigation.

ACKNOWLEDGMENTS

Research leading to these results has received funding
from the European Community’s 7th Framework Programme
FP7 / 2007-2013 under grant agreement 215483 (S-Cube).
This research received funding from project Jacquard SAPI-
ENSA (contract 638.001.206).

REFERENCES

[1] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl, “A journey to highly dynamic, self-adaptive service-
based applications,” Automated Software Engineering, 2008.

[2] M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger, Eds.,
Service Research Challenges and Solutions for the Future
Internet: Towards Mechanisms and Methods for Engineering,
Managing, and Adapting Service-Based Systems. Heidelberg,
Germany: Springer, 2010.

[3] R. de Lemos et al, “Software Engineering for Self-Adpaptive
Systems: A second Research Roadmap,” in Software En-
gineering for Self-Adaptive Systems, ser. Dagstuhl Seminar
Proceedings, R. de Lemos, H. Giese, H. Müller, and M. Shaw,
Eds., no. 10431. Dagstuhl, Germany: Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2011.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Transactions on Au-
tonomous and Adaptive Systems, vol. 4, no. 2, 2009.

[5] D. Meiländer, A. Bucchiarone, C. Cappiello, E. D. Nitto, and
S. Gorlatch, “Using a Lifecycle Model for Developing and
Executing Real-Time Online Applications on Clouds,” vol.
7221. Springer, 2011, to appear.

[6] A. Ploss, D. Meiländer, F. Glinka, and S. Gorlatch, Towards
the Scalability of Real-Time Online Interactive Applications
on Multiple Servers and Clouds. IOS Press, 2011, to appear.

[7] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen,
“New directions on agile methods: a comparative analysis,” in
Proceedings of the 25th International Conference on Software
Engineering, ser. ICSE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 244–254.

19



[8] D. Cohen, M. Lindvall, and P. Costa, “An introduction to
agile methods,” Advances in Computers, pp. 1–66, 2004.

[9] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. Sharp, and
N. Smith, “An empirical study of the evolution of an agile-
developed software system,” in Software Engineering, 2007.
ICSE 2007. 29th International Conference on, may 2007, pp.
511–518.

[10] P. Krogdahl, G. Luef, and C. Steindl, “Service-oriented
agility: An initial analysis for the use of agile methods
for SOA development,” in IEEE International Conference
on Services Computing. Los Alamitos, CA, USA: IEEE
Computer Society, 2005, pp. 93–100.

[11] D. Sprott, “Product Overview: OutSystems Agile SOA Plat-
form,” CBDI Journal, pp. 15–20, April 2009.

[12] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding
mashup development,” IEEE Internet Computing, vol. 12,
no. 5, pp. 44–52, 2008.

[13] K. Zachos and N. Maiden, “Inventing requirements from
software: An empirical investigation with web services,” in
Proceedings 16th IEEE International Conference on Require-
ments Engineering. IEEE Computer Society Press, 2008, pp.
145–154.

[14] K. Schwaber, Agile project management with Scrum. Mi-
crosoft Press Redmond (Washington), 2004, vol. 7.

[15] A. Metzger, “Towards accurate failure prediction for the
proactive adaptation of service-oriented systems (invited pa-
per),” in Proceedings Workshop on Assurances for Self-
Adaptive Systems (ASAS), collocated with ESEC 2011, 2011.

[16] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore,
“A framework for proactive self-adaptation of service-based
applications based on online testing,” in ServiceWave 2008,
ser. LNCS, no. 5377. Springer, 10-13 December 2008.

[17] M. Razavian and P. Lago, “A Frame of Reference for SOA
Migration,” in Towards a Service-Based Internet, ser. Lecture
Notes in Computer Science, E. D. Nitto and R. Yahyapour,
Eds., vol. 6481, 2010, pp. 150–162.

[18] M. Razavian and P. Lago, “A Survey of SOA Migration in
Industry,” in International Conference on Service Oriented
Computing, ICSOC, G. Kappel, Z. Maamar, and H. R.
Motahari-Nezhad, Eds., 2011.

[19] M. Razavian and P. Lago, “The How and Why of SOA
Migration in Industry,” under submission, 2012.

[20] E. R. Poort and H. van Vliet, “Architecting as a risk- and
cost management discipline,” in Ninth Working IEEE/IFIP
Conference on Software Architecture (WICSA), 2011.

[21] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten,
E. Lim, A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan,
C. Seaman, K. Sullivan, and N. Zazworka, “Managing tech-
nical debt in software-reliant systems,” in Proceedings of
the FSE/SDP workshop on Future of software engineering
research. ACM, 2010, pp. 47–52.

[22] F. Leymann, “Workflow-based coordination and cooperation
in a service world,” in CoopIS, DOA, GADA, and ODBASE,
2006, pp. 2–16.

[23] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rick-
ayzen, C. von Riegen, P. Schmidt, and I. Trickovic, “Ws-bpel
extension for people–bpel4people,” Joint white paper, IBM
and SAP, 2005.

[24] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller,
M. Kloppmann, D. König, F. Leymann, R. Müller, G. Pfau
et al., “Web services human task (ws-humantask), version
1.0,” June, available at http://download. boulder. ibm.
com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-
HumanTask v1. pdf, 2007.

[25] L. Camarinha-Matos and H. Afsarmanesh, “Collaborative
networks,” in PROLAMAT, 2006, pp. 26–40.

[26] N. Schuster, C. Zirpins, and S. Tai, “A document-centric
approach to open collaboration processes,” Current Trends
in Web Engineering, pp. 538–544, 2010.

[27] F. Skopik, D. Schall, and S. Dustdar, “Trust-based adaptation
in complex service-oriented systems,” in ICECCS. IEEE,
2010, pp. 31–40.

[28] F. Skopik, D. Schall, and S. Dustdar, “Trustworthy interaction
balancing in mixed service-oriented systems,” in SAC. ACM,
2010, pp. 799–806.

[29] D. C. Brabham, “Crowdsourcing as a model for problem
solving: An introduction and cases,” Convergence, vol. 14,
no. 1, pp. 75–90, 2008.

[30] M. Vukovic, “Crowdsourcing for Enterprises,” in Proceedings
of the 2009 Congress on Services. IEEE Computer Society,
2009, pp. 686–692.

[31] H. Psaier, L. Juszczyk, F. Skopik, D. Schall, and S. Dustdar,
“Runtime behavior monitoring and self-adaptation in service-
oriented systems,” in Self-Adaptive and Self-Organizing Sys-
tems (SASO), 2010 4th IEEE International Conference on.
IEEE, 2010, pp. 164–173.

[32] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Resource
and agreement management in dynamic crowdcomputing
environments,” in Enterprise Distributed Object Computing
Conference (EDOC), 2011 15th IEEE International. IEEE,
2011, pp. 193–202.

[33] E. C. Wenger and W. M. Snyder, “Communities of prac-
tice: The organizational frontier,” Harvard Business Review,
vol. 78, no. 1, pp. 139–+, Jan. 2000.

[34] D. A. Tamburri and P. Lago, “Supporting communication and
cooperation in global software development with agile service
networks,” in ECSA, 2011, pp. 236–243.

[35] N. S. Shami, N. Bos, Z. Wright, S. Hoch, K. Y. Kuan, J. S.
Olson, and G. M. Olson, “An experimental simulation of
multi-site software development.” in CASCON, H. Lutfiyya,
J. Singer, and D. A. Stewart, Eds. IBM, 2004, pp. 255–266.
[Online].

20


