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Abstract—We present the isometry between the 2-dimensional
Funk model and the Finsler-Poincaré disk. Then, we introduce
the Finslerian Poincaré upper half plane model, which turns out
to be also isometrically equivalent to the previous models. As
application, we state the gapless character of the first eigenvalue
for the aforementioned three spaces.

Index Terms—Finsler manifold, Randers metric, Riemannian
metric, Finsler-Poincaré disk, Funk model, Poincaré half plane

I. INTRODUCTION AND MAIN RESULTS

The theory of Finsler manifolds can be considered as a
generalization of Riemannian geometry, where the Riemannian
metric is replaced by a so called Finsler structure, which is
induced by a Minkowski norm. Therefore, Finsler geometry
provides a natural framework to study anisotropical phenom-
ena, admitting numerous applications in physics and practical
problems, see e.g. Antonelli, Ingarden and Matsumoto [1],
Dehkordi [8], Gibbons and Warnick [11], Matsumoto [14] and
Randers [17].

One of the simplest classes of Finsler manifolds are the
so called Randers spaces, which have received much atten-
tion lately due to Zermelo’s famous navigation problem, see
Zermelo [22]. More precisely, if (M, g) is a complete n-
dimensional (n ≥ 2) Riemannian manifold, then the Finsler
metric F : TM → R defined as

F (x, v) =
√
gx(v, v) + βx(v), x ∈M, v ∈ TxM

is called a Randers metric whenever βx is a 1-form on M
with |βx|g :=

√
g∗x(βx, βx) < 1 for every x ∈ M , where

g∗ denotes the co-metric of g. As it turns out, every Randers
space (M,F ) can be obtained as the solution to the Zermelo
navigation problem for a suitable choice of g and βx, see Bao
and Robles [3], Bao, Robles and Shen [4], and Shen [19]. Thus
every Randers metric can be written as a suitable perturbation
of a Riemannian metric g.

The two typical analytical models of Randers spaces are the
following:
(F): the Finslerian Funk model (see Cheng and Shen [7,

Example 2.1.2] and Shen [20, Example 1.3.4]), which

turns out to be the generalization of the well known
Riemannian Klein model;

(P): the Finsler-Poincaré disk (see Bao, Chern and Shen [2,
Section 12.6]) which appears as the perturbation of the
usual Riemannian Poincaré metric on the open unit disk.

As it turns out, these two Randers spaces above are actually
isometrically equivalent, meaning that there exists an isometric
diffeomorphism between the two manifolds.

Despite the popularity of these two Finsler models, this
equivalence is not well established in the literature. In fact, we
found only one paper referring to the isometry map from the
Finslerian Poincaré disk onto the Funk model in the context
of Zermelo’s navigation problem, using polar coordinates, see
Bao and Robles [3, p. 240].

Therefore, the first objective of the paper is to describe in
more detail the isometrical equivalence of the models (F) and
(P). Next, we introduce a new 2-dimensional analytic Randers
model, namely

(H): the Finsler-Poincaré upper half plane, which turns out to
be precisely the Randers-type perturbation of the standard
hyperbolic upper half plane, see Loustau [13, Section 8.2]
or Stahl [21, Chapter 4].

Note that e.g. Rutz and McCarthy [18] also considered
a small perturbation of the Riemannian upper half plane,
nevertheless, the metric obtained was not equivalent with the
Finsler structures (F) and (P).

In our case however, as a main result, we are able to
prove that the three Finsler models (F), (P) and (H) are all
isometrically equivalent. This phenomena is in concordance
with the behavior of the hyperbolic model spaces, as the Rie-
mannian counterparts of these three models are also isometric
manifolds, see e.g. Cannon, Floyd, Kenyon and Parry [5].

The isometry of the three Randers spaces reveals many
interesting consequences. Most importantly, it implies that
all the metric related properties which are enjoyed by one
particular model can be easily proved to hold on the other two
manifolds as well. In particular, based on Kristály [12], we find
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that the first Dirichlet eigenvalue λF associated to the Finsler-
Laplace operator −∆F is zero in the case of both Finsler-
Poincaré models (P) and (H). This provides new examples
of simply connected, non-compact Finsler manifolds with
constant negative flag curvature having zero first eigenvalue,
which is an unexpected result considering its Riemannian
counterpart proven by McKean [15].

The organization of the paper is the following. The next
section provides a brief review of the notions of Finsler geom-
etry used to establish our results. Section III presents in detail
the three Randers models in question. Section IV contains the
proof that the spaces (F), (P) and (H) are isometric. Finally,
section V provides an interesting application of the results
obtained.

II. PRELIMINARIES

In this section we recall the basic notions of Finsler man-
ifolds and Randers spaces, for further details see e.g. Bao,
Chern and Shen [2], Ohta and Sturm [16], and Shen [20].

Let M be an n-dimensional differentiable manifold. The
tangent bundle of M is the collection of all vectors tangent to
M , i.e.

TM = ∪x∈M{(x, v) : v ∈ TxM},

where TxM denotes the tangent space to M at the point x.
The function F : TM → [0,∞) is called a Finsler metric

if it satisfies the following conditions:
(i) F ∈ C∞(TM \ {0});

(ii) F (x, λv) = λF (x, v), for all λ ≥ 0 and (x, v) ∈ TM ;
(iii) the Hessian matrix

[(
1
2F

2(x, v)
)
vivj

]
i,j=1,n

is positive
definite for every (x, v) ∈ TM \ {0}.

In this case we say that (M,F ) is a Finsler manifold.
If, in addition, F (x, λv) = |λ|F (x, v) holds for all λ ∈ R

and (x, v) ∈ TM , then the Finsler manifold is called re-
versible. Otherwise, (M,F ) is said to be nonreversible.

The co-Finsler metric F ∗ : T ∗M → [0,∞) is defined as
the dual metric of F , i.e.

F ∗(x, α) = sup
v∈TxM\{0}

α(v)

F (x, v)
, ∀(x, α) ∈ T ∗M,

where T ∗M =
⋃

x∈M T ∗xM is the cotangent bundle of M and
T ∗xM is the dual space of TxM .

In local coordinates, the Legendre transform J∗ : T ∗M →
TM is defined by

J∗(x, α) =

n∑
i=1

∂

∂αi

(
1

2
F ∗2(x, α)

)
∂

∂xi
.

In particular, F (J∗(x, α)) = F ∗(x, α).
If u ∈ C1(M), the gradient of u is defined as

∇Fu(x) = J∗(x,Du(x)), ∀x ∈M,

where Du(x) ∈ T ∗xM denotes the differential of u at the point
x. Note that in general, ∇F is nonlinear.

Given u ∈ C2(M), the Finsler-Laplace operator ∆F is
given by

∆Fu = divF (∇Fu),

where

divF (V ) =
1

σF (x)

n∑
i=1

∂

∂xi

(
σF (x)V

i
)

for some vector field V on M , and σF (x) is the density func-
tion defined by σF (x) = ωn

Vol(Bx(1))
. Here ωn and Vol(Bx(1))

denote the Euclidean volume of the n-dimensional unit ball
and the set

Bx(1) =
{
(vi) ∈ Rn : F

(
x,

n∑
i=1

vi
∂

∂xi

)
< 1
}
⊂ Rn,

respectively. Again, the Finsler-Laplace operator ∆F is usually
nonlinear.

The Busemann-Hausdorff volume form is defined as

dvF (x) = σF (x)dx
1 ∧ · · · ∧ dxn.

The operators divF and ∆F can be defined in a distribu-
tional sense as well, see Ohta and Sturm [16]. E.g. for every
u ∈ H1

loc(M), ∆Fu is defined in the weak sense as∫
M

v∆Fu dvF (x) = −
∫
M

Dv(∇Fu)dvF (x),

for all v ∈ C∞0 (M).
Now, if g is a Riemannian metric on M and the Finsler

structure F : TM → [0,∞) is given by the specific form

F (x, v) =
√
gx(v, v) + βx(v), ∀(x, v) ∈ TM,

where, for every x ∈M , βx is a 1-form on M such that

|βx|g =
√
g∗x(βx, βx) < 1, (1)

then F is called a Randers metric and (M,F ) is a Randers
space. Here, the co-metric g∗x can be identified by the inverse
of the symmetric, positive definite matrix gx, induced by the
Riemannian metric g.

Clearly, the Randers space (M,F ) is reversible if and only
if β = 0, i.e. (M,F ) = (M, g) is the original Riemannian
manifold.

Finally, given two Finsler manifolds (M1, F1) and
(M2, F2), we say that f : M1 → M2 is an isometry if f
is a diffeomorphism and

F1(x, v) = F2(f(x), Dfx(v)), ∀(x, v) ∈ TM1,

where Dfx denotes the differential of f at the point x.

III. THREE MODELS OF RANDERS SPACES

In this section we specify the metrics of three analytic
Finslerian models of Randers type, namely the Funk model,
the Finsler-Poincaré disk and the Finsler-Poincaré upper half
plane. For simplicity of presentation, we consider the 2-
dimensional versions of the Randers spaces in question.

In the sequel we use the following notations:
• D = {(x1, x2) ∈ R2 : x21+x

2
2 < 1} is the 2-dimensional

Euclidean open unit disk;
• H = {(x1, x2) ∈ R2 : x2 > 0} denotes the Euclidean

upper half plane;
• | · | and 〈·, ·〉 denote the standard Euclidean norm and

inner product on R2.



A. The Finslerian Funk model (F)

The Finslerian Funk metric FF : D × R2 → R is given by

FF (x, v) =

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
+
〈x, v〉
1− |x|2

, (2)

for all (x, v) ∈ TD. The pair (D,FF ) is called the Funk
model, which is a non-reversible Randers space having con-
stant negative flag curvature − 1

4 , see Shen [20, Example 1.3.4
& Example 9.2.1], and Cheng and Shen [7, Example 2.1.2].
Note that if we ommit the 1-form 〈x,v〉

1−|x|2 in (2), we recover
the Riemannian Klein metric, which appears in the well-known
Beltrami-Klein model having constant sectional curvature −1,
see Loustau [13, Section 6.2].

B. The Finsler-Poincaré disk (P)

The Finsler-Poincaré metric on the open disk D is defined
as FP : D × R2 → R,

FP (x, v) =
2|v|

1− |x|2
+

4〈x, v〉
1− |x|4

, (3)

for every pair (x, v) ∈ TD. The Randers space (D,FP ) is
the famous Finsler-Poincaré model investigated by Bao, Chern
and Shen [2, Section 12.6]. Again, by omitting the second term
of (3), the metric reduces to the usual Riemannian Poincaré
model, which is another well-known hyperbolic manifold of
constant sectional curvature −1, see Loustau [13, Section 8.1].

C. The Finsler-Poincaré upper half plane (H)

Let us define the Finsler-Poincaré upper half plane model
by the pair (H,FH), where H is the Euclidean upper half
plane and FH : H × R2 → R is given by

FH(x, v) =
|v|
x2

+
〈w(x), v〉
x2(4 + |x|2)

, (4)

where w(x) := (2x1x2, x
2
2−x21−4), for all x = (x1, x2) ∈ H .

Note that the first term in (4) is actually the Lobachevsky
metric, see Loustau [13, Section 8.2]. Thus FH turns out to
be a Randers-type perturbation of the Riemannian Poincaré
upper half plane, another standard model of the 2-dimensional
hyperbolic space, having sectional curvature −1.

Proposition 1. (H,FH) is a Randers space.

Proof. It is enough to show that |βH(x)|gh < 1, where

βH(x) =
1

x2(4 + |x|2)
w(x), for all x = (x1, x2) ∈ H

and gh denotes the Riemannian metric of the Lobachevsky
upper half plane, see doCarmo [9, p. 73].

Using definition (1), we obtain that

|βH(x)|gh =
|w(x)|
4 + |x|2

< 1, ∀x ∈ H.

IV. MAIN RESULTS

A. Equivalence of models (P) and (F)

Theorem 1. Let us consider the diffeomorphism

f : D → D, f(x) =
2x

1 + |x|2
,

and its inverse

f−1 : D → D, f−1(x) =
x

1 +
√
1− |x|2

.

Then f is an isometry between the Finsler-Poincaré disk
(D,FP ) and the Funk model (D,FF ).

Proof. It is enough to prove that

FP (x, v) = FF (f(x), Dfx(v)), ∀(x, v) ∈ TD, (5)

where Dfx denotes the differential of f at the point x.
Given a point x = (x1, x2) ∈ D, the differential function

Dfx is determined by the Jacobian

Jf(x) =
2

(1 + |x|2)2

[
1 + |x|2 − 2x21 −2x1x2
−2x1x2 1 + |x|2 − 2x22

]
.

Then for every v ∈ TxD ∼= R2 we have

Dfx(v) =
2

(1 + |x|2)2

[
v1(1 + |x|2)− 2x1〈x, v〉
v2(1 + |x|2)− 2x2〈x, v〉

]
.

Let us denote by

αF (x, v) =

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
(6)

and

βF (x, v) =
〈x, v〉
1− |x|2

(7)

the norm induced by the Klein metric and the 1-form of the
Funk metric (2), respectively.

Expressing the terms

1− |f(x)|2 =
(1− |x|2)2

(1 + |x|2)2
,

|Dfx(v)|2 =
4

(1 + |x|2)4
[
(1 + |x|2)2|v|2 − 4〈x, v〉2

]
,

〈f(x), Dfx(v)〉 = 4
1− |x|2

(1 + |x|2)3
〈x, v〉

separately, then substituting into (6) and (7) yields

αF (f(x), Dfx(v)) =
2|v|

1− |x|2

and

βF (f(x), Dfx(v)) =
4〈x, v〉
1− |x|4

,

which concludes the proof.



B. Equivalence of models (F) and (H)

Theorem 2. Let us consider the diffeomorphism

g : D → H, g(x) =

(
2x2

1 + x1
,
2
√
1− |x|2
1 + x1

)
with its inverse function

g−1 : H → D, g−1(x) =

(
4− |x|2

4 + |x|2
,

4x1
4 + |x|2

)
.

Then g is an isometry between the Funk model (D,FF ) and
the Finsler-Poincaré upper half plane (H,FH).

Proof. We prove that

FF (x, v) = FH(g(x), Dgx(v)), ∀(x, v) ∈ TD. (8)

The Jacobian matrix of g is given by

Jg(x) = − 2

(1 + x1)2

[
x2 −(1 + x1)

x1−x2
2+1√

1−|x|2
x2(1+x1)√

1−|x|2

]
.

The Riemannian term and the 1-form of the Finsler-Poincaré
metric (4) on the upper half plane H is defined by

αH(x, v) =
|v|
x2

and βH(x, v) =
〈w(x), v〉
x2(4 + |x|2)

,

where w(x) = (2x1x2, x
2
2−x21−4), for all x = (x1, x2) ∈ H .

Expressing the term

|Dgx(v)|2 = 4
(1− |x|2)|v|2 + 〈x, v〉2

(1 + x1)2(1− |x|2)
,

it follows that

αH(g(x), Dgx(v)) =
1 + x1

2
√
1− |x|2

·
2
√
(1− |x|2)|v|2 + 〈x, v〉2

(1 + x1)
√
1− |x|2

=

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
= αF (x, v),

while for the 1-form βH we use the following calculations:

w(g(x)) =

(
8
x2
√

1− |x|2
(1 + x1)2

,−8 |x|
2 + x1

(1 + x1)2

)
,

4 + |g(x)|2 =
8

1 + x1
.

After a direct computation we obtain that

〈w(g(x)), Dgx(v)〉 =
16〈x, v〉

(1 + x1)2
√

1− |x|2
,

thus

βH(g(x), Dgx(v)) =
(1 + x1)

2

16
√

1− |x|2
· 16〈x, v〉
(1 + x1)2

√
1− |x|2

=
〈x, v〉
1− |x|2

= βF (x, v).

C. Equivalence of models (H) and (P)

Theorem 3. Let us consider the diffeomorphism

h : H → D, h(x) =

(
4− |x|2

|x|2 + 4x2 + 4
,

4x1
|x|2 + 4x2 + 4

)
,

and its inverse

h−1 : D → H,h−1(x) =

(
4x2

|x|2 + 2x1 + 1
,

2− 2|x|2

|x|2 + 2x1 + 1

)
.

Then h is an isometry between the Finslerian upper half plane
(H,FH) and the Finsler-Poincaré disk (D,FP ).

Proof. It is enough to show that

FH(x, v) = FP (h(x), Dhx(v)), ∀(x, v) ∈ TH. (9)

The Jacobian of h can be written as

Jh(x) =
−4

(|x|2 + 4x2 + 4)2

[
2x1(x2 + 2) (x2 + 2)2 − x21
x21 − (x2 + 2)2 2x1(x2 + 2)

]
.

Let us denote by

αP (x, v) =
2|v|

1− |x|2
and βP (x, v) =

4〈x, v〉
1− |x|4

the terms determined by the inner product and the 1-form of
the Finsler-Poincaré metric (3) on the disk D.

First we compute the following terms:

1− |h(x)|2 =
8x2

|x|2 + 4x2 + 4
,

1 + |h(x)|2 = 2
|x|2 + 4

|x|2 + 4x2 + 4
,

1− |h(x)|4 =
16x2(|x|2 + 4)

(|x|2 + 4x2 + 4)2
,

|Dhx(v)| =
4|v|

|x|2 + 4x2 + 4
,

〈h(x), Dhx(v)〉 =
−4

(|x|2 + 4x2 + 4)3
·{

(x21 − (x2 + 2)2)
(
4x1v1 − (4− |x|2)v2

)
+ 2x1(x2 + 2)

(
(4− |x|2)v1 + 4x1v2

)}
= 4 · 2x1x2v1 + (x22 − x21 − 4)v2

(|x|2 + 4x2 + 4)2
,

for every v = (v1, v2) ∈ TxH ∼= R2. It follows that

αP (h(x), Dhx(v)) =
2|Dhx(v)|
1− |h(x)|2

=
|v|
x2

and

βP (h(x), Dhx(v)) =
2x1x2v1 + (x22 − x21 − 4)v2

x2(|x|2 + 4)

= βH(x, v),

which concludes the proof.

Remark. Note that for the previous isometries we have

h−1 = g ◦ f,



i.e. the following diagram is commutative:

Moreover, these diffeomorphisms actually coincide with
the appropriate isometries available between the Riemannian
counterpart of the models, i.e. the Beltrami-Klein disk, the
Riemannian Poincaré disk, and the hyperbolic upper half
plane, see e.g. Cannon, Floyd, Kenyon and Parry [5, p. 69].
This is illustrated by the proofs of Theorems 1–3, as well,
where the norms αP , αF , αH and the 1-forms βP , βF , βH turn
out to be the pullbacks of one another by the corresponding
isometries f, g and h.

V. CONSEQUENCES

An important byproduct of the isometries given in Theorems
1, 2 and 3 is the fact that all the metric related properties of
one of the models can be easily transferred to the other two
manifolds by the appropriate isometry function.

To give an interesting example, let us consider the first
eigenvalue associated to the Finsler-Laplace operator −∆F

on the spaces (F), (P) and (H), respectively.
Given a Finsler manifold (M,F ), the first eigenvalue as-

sociated to −∆F (also called the fundamental frequency) is
defined as

λ1,F (M) = inf
u∈H1

0,F (M)\{0}

∫
M
F ∗2(x,Du(x))dvF (x)∫

M
u2(x)dvF (x)

,

where H1
0,F (M) is the closure of C∞0 (M) with respect to the

norm

‖u‖H1
0,F

=

(∫
M

F ∗2(x,Du(x))dvF (x) +
∫
M

u2(x)dvF (x)
) 1

2

,

see Ge and Shen [10], Ohta and Sturm [16].
According to Kristály [12, Theorem 1.3], in case of the

Finslerian Funk model (D,FF ), we have that

λ1,FF
(D) = 0.

Combining this with the isometries proven in Theorems 1
and 2, we obtain the following result:

Corollary 1. In case of the Finsler-Poincaré disk (D,FP ) and
the Finslerian upper half plane (H,FH), we have

λ1,FP
(D) = λ1,FH

(H) = 0.

These assertions are in sharp contrast with the result
of McKean [15], which states that for every complete, n-
dimensional, simply connected Riemannian manifold (M, g)
having sectional curvature bounded above by −κ2(κ > 0),
one has the following spectral gap:

λ1,g(M) ≥ (n− 1)2

4
κ2.

In fact, on the Beltrami-Klein disk and the Riemannian upper
half plane the first eigenvalue is precisely 1

4 , since in the case
of the n-dimensional hyperbolic space (Hn, gh) of constant
curvature −κ2(κ > 0), we have

λ1,gh(Hn) =
(n− 1)2

4
κ2,

see Chavel [6, p. 46].
Therefore, Corollary 1 provides another example highlight-

ing the anisotropic nature of the Finsler metrics FP and FH ,
despite the simplicity of these models.
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