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Abstract—Management of a switch fabric security configura-
tion, a core component of Storage Area Networks, is complex and
error prone. As a consequence, misconfiguration of and/or a poor
understanding of a switch fabric may unnecessarily expose an
enterprise to known threats. A formal model of a switch security
configuration is presented. This model is reasoned over to help
manage complex switch fabric security configurations.

I. INTRODUCTION

An integral part of a Storage Area Network (SAN) is its

switch fabric. Intuitively, a SAN switch provides interconnec-

tions between SAN client nodes (initiators) and storage array

nodes (targets), primarily to exchange SCSI traffic [1].

A significant challenge in providing security for a SAN is

attaining a degree of confidence that the security configuration

of its switches adequately addresses the (security) threats. A

misconfiguration may result in unapproved access, the denial

of approved access or inadequate mitigation of threats to SAN

nodes. In practice, switch security configuration is more com-

plex than simply providing firewall-like access-control rules.

Rather, switch security configuration must be considered in the

context of other security services required by the switch fabric,

thereby increasing the likelihood of misconfiguration. For ex-

ample, when generating access-control rules for the enterprise-

level SAN security requirement: “permit switch fabric inter-

action with trusted remote authentication servers”, a security

configuration is not just defined in terms of a set of packet-

filter access-control rules. The security configuration of the

switch fabric must also consider a set of authentication access-

control rules that specify, at an application-level, the trusted

remote authentication servers, and, furthermore, whether the

authentication access-control rules defined (perhaps on a single

switch source) are to be distributed across the entire switch

fabric (another set of application-level access-control rules).

This paper considers the problem of reasoning about and

managing complex security configurations of SAN switches.

A formal model for switch security configuration is developed

using Description Logic [2]. This approach builds on previous

research [3]–[5] that demonstrated the effectiveness of using

Description Logic to model and reason about firewall rules.

While there are extensive research results on query [3],

[6], [7] and structural [3], [8], [9] analysis of firewall rules,

the authors are unaware of research published on the similar

analysis of SAN switch rules. Switch security configuration

is typically a more complex proposition than conventional

firewalls and the paper describes how such reasoning can be

done in the proposed model of switch security. For example,

a query such as: “has read-only access to a particular disk

on a specific target storage array within a given zone defined

in the context of a particular VSAN been granted to trusted

initiator client nodes?” may be formalized within the model.

Structural analysis is also considered to detect access-control

rule conflicts.

The contribution of this paper is a formal model for switch

security configuration with which to perform query and struc-

tural analysis. In addition, structural analysis definitions that

define inter-shadowing and inter-spurious conflicts between

firewall-based and zone-based switch security configurations

are presented.

The paper is organised as follows. Section II provides an

overview of the switch fabric security configuration chal-

lenges. An overview of Description Logic and Semantic Web

Rule Language is presented in Section III. Section IV presents

a Description Logic based model for SAN switch security

configuration. Additional structural analysis definitions are

defined in Section V. Section VI provides some examples that

demonstrate analysis of switch fabric security configurations.

II. SWITCH SECURITY CONFIGURATION

This section provides examples of security configuration

challenges that need to be considered with respect to con-

figuring access-control rules for switch management and for

traffic routed through the switch.

A. Switch Management

Configuring switch management access controls is not sim-

ply about opening the relevant management service ports such

as SSH or remote authentication service ports for example

RADIUS. One needs to consider whether management ac-

cess to the switch is permitted for out-of-band management

(over an Ethernet interface) or in-band management (where

TCP/IP traffic is tunnelled over a Fibre Channel interface).

One may also wish to permit certain SAN initiators (for

example, IP address white-list) and deny others. It may also

be considered prudent to define a set of access-control rules



that explicitly state what privileges a SAN administrator is

authorised for, once authenticated to a switch. For example,

SAN administrators are typically authorised for root privileges

while SAN network operators are not. Similarly, are Authenti-

cation, Authorisation & Accounting (AAA) services performed

locally on each switch within the SAN fabric or centrally

through a remote AAA server farm typically hosted on a

separate LAN. If performed remotely, are the access-control

rules correctly providing intended secure SAN-to-LAN AAA

communication? One has also to consider reflecting locally

on each switch, a comparable set of AAA access-control rules

defined on remote AAA servers as a precautionary redundancy

countermeasure should remote AAA communication fail.

B. Traffic Management

With respect to traffic routed through the switch between

initiator clients and target storage arrays, it is not simply about

making for example the iSCSI TCP port 3260 accessible for

all traffic. Furthermore, iSCSI traffic for example does not

necessarily have to communicate on the IANA [10] recom-

mended port of 3260. It may also be a security requirement to

deny certain SAN initiators (for example, IP address or World

Wide Name black-list) access to all storage arrays, only accept

iSCSI traffic from some initiators and require other initiators to

use iSCSI over IPSec. One may also need to consider access-

control rules that restrict certain initiators access to a specific

disk or set of disks within a storage array and so forth.

C. Structural Misconfiguration Management

While the SAN access-control rules on an individual basis

may be compliant with the enterprise-level security require-

ments, the structural relationships between the access-control

rules themselves may introduce a scenario such that the over-

all configuration is inconsistent. For example, firewall-based

access-control rules in a switch configuration are tested in the

sequence in which they appear in the configuration. That is,

once a packet has been successfully matched against an access-

control rule, no further rule tests are carried out for that packet.

Thus, an access-control rule placed out of sequence may

unintentionally cause a misconfiguration. Consider two access-

control rules, where one permits iSCSI traffic to a storage array

and the other denies access to all network resources, including

the storage array. Depending on the sequence of these two

access-control rules, a misconfiguration may result.

Misconfiguration may also occur between access-control

rules deployed on multiple inter-operating SAN access con-

trols. For example, an upstream switch may be unintentionally

denying intended storage array iSCSI traffic that is correctly

configured on an another downstream switch.

In practice, managing a SAN switch security configuration

that is aligned with the enterprise-level security requirements is

complex and error-prone. Configuration is largely dependent

on the expert-knowledge of the SAN administrator drawing

upon best practice and standards.

III. DESCRIPTION LOGIC AND SWRL

Description Logic (DL) is a decidable portion of first-order

logic [2]. DL concepts represent sets of individuals (instances)

and properties (roles) represent binary relations applied to

individuals. For example, the DL assertion:

StorageArray ⊑ Server ⊓ ∃≥1hosts.Service ⊓

∃≥1isProtectedBy.ProtectionServer

specifies that a storage array hosts one or more services (for

example iSCSI) and is protected by one or more protection

servers (for example firewalls and/or switches).

The Semantic Web Rule Language (SWRL) complements

DL, providing the ability to infer additional information but

at the expense of decidability. SWRL rules are horn-clause

like rules written in terms of DL concepts, properties and

individuals. A SWRL rule is composed of an antecedent

(body) part and a consequent (head) part, both of which

consist of positive conjunctions of atoms [11]. For example,

the requirement that servers hosting iSCSI based services

protected by protection servers require those protection servers

to open port 3260, is expressed in the following SWRL rule.

StorageArray(?sa) ∧ hosts(?sa,?iSCSI) ∧

hasPort(?iSCSI, 3260) ∧ isProtectedBy(?sa,?ps)

→ hasOpenPort(?ps,3260)

where 3260 is an atom/constant and ?sa, ?iSCSI, ?ps repre-

sent unbound variables in the rule.

IV. SWITCH ACCESS CONTROL MODEL

A formal model for SAN switch security configuration

is developed using DL [2] and the SWRL [11]. Note that

in presenting the model components, for reasons of space,

complete specifications in particular, disjoint axioms, sub-

properties or closure axioms are omitted. Similarly for reasons

of space, not all switch access controls modelled, for exam-

ple port-based, iSCSI-based and remote authentication-based

access controls, are presented. However, a relevant portion of

the model is presented that conveys the challenges identified

within this paper. While the model for the SAN switch security

configuration presented in this paper is Cisco centric [12], [13],

much of the model attributes are implementation neutral.

Concept CiscoMDSRule defines the set of Cisco MDS

access-control rules. This concept is further specialised to

more specific sub-concepts, namely concepts ExecRule and

ConfigRule.

CiscoMDSRule ≡ ExecRule ⊔ ConfigRule

Concept ExecRule defines a set of execution-mode access-

control rules that enable temporary switch configuration mod-

ifications, debugging and display of system information. Con-

cept ConfigRule defines a set of configuration-mode access-

control rules that enable permanent (across reboots) switch

configuration modifications. These two sub-concepts are in

turn further specialised to form a hierarchy of access-control

rules. A fragment of this hierarchy is illustrated in Figure 1.

The double-headed arrow represents a subsumption relation.
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Fig. 1. Fragment of Cisco MDS Rule Hierarchy.

A. TCP/IP-based Access Control List

Traditional TCP/IP based traffic plays an important role

within a SAN fabric. For example, configuration management

of a SAN switch or communication with remote AAA servers

are performed over TCP/IP protocols. Modern SAN switches

have the ability to route TCP/IP traffic over traditional Ethernet

or tunnelled over Fibre Channel interfaces. As a consequence,

the SAN fabric is exposed to traditional TCP/IP based threats.

While upstream network access control mechanisms such as

firewalls and Intrusion Detection Systems provide protection

against known TCP/IP based threats, it is considered best

practice to adopt a security in depth approach [14], [15].

Therefore, switch Access Control Lists (ACLs) are used to

make decisions about whether or not to permit a packet.

Consider as a running example switch configuration man-

agement where management may be performed using the

Fabric Manager (via SNMP) or the Command Line Inter-

face (via SSH or Telnet). These management services are

accessible by all SAN nodes connected to the switch whether

authorised or not. Therefore, it becomes necessary, in addition

to a management service’s own security controls, to restrict

management access to SAN administrator IP addresses only.

Concept IPAccessListRule represents a set of TCP/IP-based

ACL rules. Each access-control rule takes the form of a series

of filter conditions on packet fields that must be met in order

for that access-control rule to be applicable with a consequent

action for the matching packet. A TCP/IP access-control

rule is composed of one or more (∃ restriction) protocols

(property hasProto), one or more source and destination IP

addresses (properties hasSrcIP and hasDstIP ), one or more

ports (property hasDstPort), zero or more (∀ restriction)

connection states (property hasState), zero or more ICMP

Types (property hasICMPType) and one action.

IPAccessListRule ⊑ ConfigRule ⊓

∃≥1hasProto.Protocol ⊓

∃≥1hasSrcIP.IPAddress ⊓

∃≥1hasDstIP.IPAddress ⊓

∃≥1hasDstPort.Port ⊓

∀≥0hasState.State ⊓

∀≥0hasICMPType.ICMPType ⊓

∃=1hasAction.Action ⊓

∃=2dependsOn.CiscoMDSRule

For reasons of space, concepts Protocol, IPAddress,

Port, State and ICMPType are not defined in this paper.

However, the reader is referred to [3] where these concepts

are defined within a model of the TCP/IP stack developed as

part of previous research [4].

Concept Action is an enumerated set of actions (individu-

als) that can be taken against a matching packet.

Action ≡ {permit, deny, log&deny}

For a TCP/IP-based access-control rule to take effect it

must be first assigned a switch interface and then assigned

a direction (inbound or outbound) in which it is to filter pack-

ets [12]. Therefore, each access-control rule has a dependency

(dependsOn property) with exactly two other Cisco MDS

rules, namely those defined by concepts InterfaceRule and

IPAccessGroup respectively.

A hierarchy of TCP/IP-based ACLs are defined to represent

categories of access-control rules that may be implemented

by SAN switches. For example, concept MgmtACL is rep-

resentative of the TCP/IP-based access-control rules that are

applicable to a switch’s management interface.

MgmtACL ⊑ IPAccessListRule

The following SAN security requirement stating that “a SAN

administrator host having an IP address of 192.168.1.20 is

permitted inbound SSH access to the SAN switch management

interface (mgmt0) with an IP address of 192.168.1.1” is

characterised by the following three Cisco MDS rules.

ip access-list mgmt-ACL

permit tcp 192.168.1.20

192.168.1.1 eq port ssh

interface mgmt 0

ip access-group mgmt-ACL in

Individual mACL, an instance of concept MgmtACL,

represents the ‘ip access-list’ access-control rule in-

cluding its dependency relationship with access-control rules

‘interface’ and ‘ip access-group’.

MgntACL(mACL) ← hasProto(mACL, tcp) ⊓

hasSrcIP(mACL, ip192.168.1.20) ⊓

hasDstIP(mACL, ip192.168.1.1) ⊓

hasPort(mACL, p22) ⊓

hasAction(mACL, permit) ⊓

dependsOn(mACL, mgnt0) ⊓

dependsOn(mACL, mgnt0Inbound)

where individuals mgnt0 and mgnt0Inbound are instances

of concepts InterfaceRule and IPAccessGroup respectively.

B. Role-based Access Control

The previous section discussed the importance of restricting

access to management services of a switch to SAN admin-

istrators only. Adopting the principle of least privilege is

considered best practice. Therefore, one may also want to

restrict the set of privileges in terms of access-control rule

permissions that each SAN administrator is authorised for.



Concept RoleRule represents the set of roles (individuals)

such that each access-control rule is composed of a single

rule order index (property hasOrder), a privilege (property

canExecute) with respect to one of five Cisco MDS rule

categories, a single action (individuals permit or deny)

applicable to that privilege, one or more users that a role is

intended for (property isRoleOf) and zero or more VSANs

for which that role isAppliedTo. Note, VSANs are discussed

in Section IV-C and are analogous to Virtual Local Area

Networks (VLANs).

RoleRule ⊑ ConfigRule ⊓

∃=1hasOrder.Integer ⊓

∃=1canExecute.(ConfigRule ⊔ ExecRule ⊔

DebugRule ⊔ ShowRule ⊔ ClearRule) ⊓

∃=1hasAction.Action ⊓

∃≥1isRoleOf.User ⊓

∀≥0isAppliedTo.VSANDB

Concept Role is further specialised to provide a hierarchy

of roles. For example, a role for a SAN operator (concept

OpRole) and a SAN administrator (concept AdminRole).

OpRole, AdminRole ⊑ RoleRule

Role-based access control is important to minimise unnec-

essary threats with respect to unauthorised modification of

switch configuration as a consequence of a compromised SAN

administrator account with root privileges or the (un)intended

execution of commands by a SAN administrator not intended

to have such privileges. For example, the following Cisco

MDS access-control rules may be (un)intentionally misused by

user Eve such that user Alice who is logged into the switch

is forcibly logged out or has her password changed, thus a

Denial of Service ensues. As a consequence, it is important to

avoid role-based access control misconfiguration.

clear user Alice

username Alice password y0u’v3B33nH4ck3d

The following SAN security requirement: “User Eve, a re-

stricted SAN administrator, is authorised for Exec access-

control rules with the exception of the ‘clear’ access-control

rules” is encoded as the following set of concept AdminRole

individuals.

AdminRole(exec1) ← hasOrder(exec1, 1) ⊓

canExecute(exec1, exec) ⊓

hasAction(exec1, permit) ⊓

isRoleOf(exec1, eve)

AdminRole(exec2) ← hasOrder(exec2, 2) ⊓

canExecute(exec2, clear) ⊓

hasAction(exec2, deny) ⊓

isRoleOf(exec2, eve)

Individuals exec1 and exec2 are representative of the

following low-level Cisco MDS rule-set.

role name adminrole rule 1 permit exec

role name adminrole rule 2 deny exec feature clear

username eve role adminrole

Note due to page constraints, the username access-control

rule that explicitly assigns user Eve to the administrator role

is not presented. However the inverse property of isRoleOf is

property hasRole that has concept User as its domain and

concept Role as its range.

C. VSAN-based Access Control

A Virtual Storage Area Network (VSAN) is a logical par-

tition of a physical SAN and provides a basis for traffic

isolation between nodes that are physically connected within

the same SAN [12]. VSANs, with advantages of redundancy

and reduced hardware costs aside, play an important part in

provisioning network access control. SAN nodes may only be

a connected to a single VSAN thereby ensuring that traffic

communicated within a VSAN is isolated from traffic in other

VSANs. Note, each VSAN has its own dedicated routing and

configuration management services.

From a security perspective, VSANs within an enterprise

maybe used to define a virtual SAN fabric for each of its

departments. For example, a separate VSAN for the Research,

Sales and Human Resources departments. Consider the fol-

lowing SAN security requirement that states: “Nodes within

each department should have access to data stored on their

respective storage arrays where access to data from other

departments is prohibited” as a running example. Without

defining separate VSANs, all nodes connected to the same

physical SAN fabric have the potential to communicate with

nodes across departments (also noted in Section IV-A). There-

fore, a SAN administrator should define relevant VSANs to

ensure proper departmental demarcation.

A VSAN rule (individual) is defined to have a unique

identifier (property hasID), operate over one or more inter-

faces (property hasIface), have an optional human readable

name (property hasName) and a decision whether or not that

VSAN is currently activated (property isActivated).

VSANRule ⊑ ConfigRule ⊓

∀=1hasName.String ⊓

∃=1hasID.Integer ⊓

∃≥1hasIface.Interface ⊓

∃=1isActivated.Boolean

Further explanation of concept Interface is required. A SAN

switch has many kinds of interfaces for example Fibre Channel

interfaces (individuals of concept FCIface) and iSCSI inter-

faces (individuals of concept ISCSIIface. Such interfaces have

a slot value and an interface value.

FCIface, FVIface,

FCIPIface, ISCSIIface ⊑ Interface ⊓

∃≥1hasSlotValue.Integer ⊓

∃≥1hasIfaceValue.Integer



Consider the Research department VSAN as a running

example, where the following security requirement states: “Ex-

ternal research partner nodes, internal research department

nodes, the shared research storage array and the backup

storage array should be isolated from other SAN traffic by

defining a dedicated Research VSAN”.

The following Cisco MDS rule-set defines a Research

VSAN called ‘rSAN’ with an ID of 2 and operates over switch

interfaces iscsi 1/1, iscsi 2/1, fc 1/3 and fc 1/4

with which to connect external and internal iSCSI initiator

nodes and, research and backup storage array fibre channel

target nodes respectively.

vsan database vsan 2 name rSAN interface iscsi 1/1

vsan database vsan 2 name rSAN interface iscsi 2/1

vsan database vsan 2 name rSAN interface fc 1/3

vsan database vsan 2 name rSAN interface fc 1/4

These low-level Cisco MDS access-control rules are en-

coded within the following DL assertions.

VSANRule(rVSAN) ← hasName(rVSAN, “rSAN”) ⊓

hasID(rVSAN, 2) ⊓

hasIface(rVSAN, iscsi1-1) ⊓

hasIface(rVSAN, iscsi2-1) ⊓

hasIface(rVSAN, fc1-3) ⊓

hasIface(rVSAN, fc1-4) ⊓

isActivated(rVSAN, true)

where the following holds for individuals iscsi1/1,

iscsi2/1, fc1/3 and fc1/4:

ISCSIIface(iscsi1-1) ← hasSlotValue(iscsi1-1, 1) ⊓

hasIfaceValue(iscsi1-1, 1)

ISCSIIface(iscsi2-1) ← hasSlotValue(iscsi2-1, 2) ⊓

hasIfaceValue(iscsi2-1, 1)

FCIface(fc1-3) ← hasSlotValue(fc1-3, 1) ⊓

hasIfaceValue(fc1-3, 3)

FCIface(fc1-4) ← hasSlotValue(fc1-4, 1) ⊓

hasIfaceValue(fc1-4, 4)

D. Zone-based Access Control

Zone-based Access Control (or Zoning) provides a basis

for fined-grained demarcation of nodes within a VSAN [12],

[16]. A zone consists of members (initiator and target nodes).

Members of a zone can access each other, while members

across different zones cannot. Zones are defined within a

VSAN. Zone membership is based on either IP addresses

or World-Wide Names (WWNs) of the nodes connected to

a switch fabric [12]. For example, a node may be referred to

by its pWWN, that is, its port World Wide Name (analogous

to a Ethernet MAC address).

Note, while VSANs and Zones provide traffic isolation they

are different to one another. For example, VSANs provide

routing, naming and zone protocols. These protocols are not

available on a per-zone basis [12].

Concept ZoneRule represents the set of access-control zone

rules (individuals) that have a name (property hasName),

isAssignedTo a VSAN and have one or more hasMember

relationships with individuals of concept Member.

ZoneRule ⊑ ConfigRule ⊓

∃=1hasName.String ⊓

∃=1isAssignedTo.VSANRule ⊓

∃≥1hasMember.Member

Concept Member represents individuals (SAN nodes) that

are members of one or more zones along the isMemberOf

property. There are a number of disjunction axioms that define

necessary conditions for concept membership. For example,

an individual that is a member of a particular zone may be

referred to by its pWWN (property hasPWWN). Members

may have zero or more ports. An explanation of property

hasLUNID will be discussed in Section IV-D2. Note, only

the relevant fragment of this definition is provided due to page

limitation.

Member ⊑ ConfigRule ⊓

∃≥1isMemberOf.Zone ⊓

(∃≥1hasIPAddress.IPAddress ⊔

∃≥1hasFWWN.FWWN ⊔

(∃≥1hasPWWN.PWWN ⊓

∀≥0hasLUNID.String)) ⊓

∀hasPort.Port

While a VSAN provides a logical demarcation of nodes

it hosts from nodes hosted within other VSANs, it may be

a further security requirement to restrict nodes within the

same VSAN from communicating with each other. Consider

as running example the following SAN security requirement:

“External research partner nodes are permitted access to the

research storage array while internal Research department

nodes are permitted to access both the research and backup

storage arrays”.

The following is an example implementation of the SAN se-

curity requirement described above, where individual exZone

and individual inZone are representative of external and

internal zone access-control rules that permit external research

partners (initiators InitA and InitB) access to the research

storage array (target individual resSA), and an internal re-

search department initiator (individual InitC) access to both

the research storage array and the backup storage array (target



individual bakSA).

ZoneRule(exZone) ← hasName(exZone, “ExZone”) ⊓

isAssignedTo(exZone, rVSAN) ⊓

hasMember(exZone, initA) ⊓

hasMember(exZone, initB) ⊓

hasMember(exZone, resSA)

ZoneRule(inZone) ← hasName(inZone, “InZone”) ⊓

isAssignedTo(inZone, rVSAN) ⊓

hasMember(inZone, initC) ⊓

hasMember(inZone, resSA) ⊓

hasMember(inZone, bakSA)

where the following also holds:

Member(initA) ← hasPWWN(initA, pwwn00:11:22:ab)

Member(initB) ← hasPWWN(initB, pwwn00:11:22:cd)

Member(initC) ← hasPWWN(initC, pwwn11:22:33:cd)

Member(resSA) ← hasFWWN(resSA, fwwn22:33:44:ef)

Member(bakSA) ← hasFWWN(bakSA, fwwn33:44:55:gh)

The following is the corresponding Cisco MDS rule-set.
zone name ExZone vsan 2 member pwwn 00:11:22:ab

zone name ExZone vsan 2 member pwwn 00:11:22:cd

zone name ExZone vsan 2 member fwwn 22:33:44:ef

zone name InZone vsan 2 member pwwn 11:22:33:cd

zone name InZone vsan 2 member fwwn 22:33:44:ef

zone name InZone vsan 2 member fwwn 33:44:55:gh

1) Read-Only Zones: Within a SAN, VSAN or zone, initia-

tors by default have read/write access to their permitted target

storage arrays. Switches, for example the Cisco MDS series,

have the ability to restrict read/write access to a storage array

at a switch-level by explicitly defining read-only zones. Note,

while modern storage arrays provide their own access-controls

with respect to read/write access, it is considered best practice

to adopt a security in depth approach [15].

Concept ZoneRule is therefore extended to include details

(isReadOnly property) about read/write access within a zone.

ZoneRule ⊑ ConfigRule ⊓

∃=1isReadOnly.Boolean

The SAN security requirement outlined in Section IV-D

may be further refined such that: “External research partner

nodes are permitted read-only access to the research storage

array . . .”. This will require the following Cisco MDS rule in

addition to the previously defined external zone rule-set.

zone name ExZone attribute read-only

Individual exZone, representative of the external zone secu-

rity requirement is updated to include detail that defines the

external zone as read-only. Note ‘. . . ’ refers to the original

individual assertion.

ZoneRule(exZone) ← . . . ⊓ isReadOnly(exZone, true)

2) Lun-Zoning: A storage array is composed of a number

of disks or LUNs. By default any initiator node within the

same zone as the target storage array has access to all of

its LUNs. LUN-Zoning is an access control mechanism that

restricts access to a storage array on a per-LUN basis [12].

Note, while modern storage arrays provide their own access-

controls with respect to LUN access (LUN Masking [16]), it

is best practice to consider a security in depth approach [15].

The SAN security requirement outlined in Section IV-D1

may be further refined such that: “External research partner

nodes are permitted read-only access to specific LUNs within

the research storage array . . .”.

Consider the following scenario. External research partners

identified as initA and initB both require read access to

a specific LUN (LUN identifier 0X63) where both partners

collaborate with respect to the data stored on this LUN. How-

ever, external research partner initB requires read access

to another LUN (LUN identifier 0X64) such that external

research partner initA has no collaboration. The following

low-level Cisco MDS rules uphold these requirements.

zone name ExZone vsan 2 member pwwn 00:11:22:ab lun 0X63

zone name ExZone vsan 2 member pwwn 00:11:22:cd lun 0X63

zone name ExZone vsan 2 member pwwn 00:11:22:cd lun 0X64

zone name ExZone vsan 2 member fwwn 22:33:44:ef

zone name ExZone attribute read-only

Individual exZone defined in Section IV-D1 remains the

same. However, the individuals of concept Member are

encoded with additional knowledge that ensures external initia-

tors initA and initB are permitted read-only access to their

respective LUNs (hasLUNID property relationship) within

the research storage array (resSA).

Member(initA) ← . . .⊓ hasLUNID(initA, 0X63)

Member(initB) ← . . .⊓ hasLUNID(initB, 0X63) ⊓

hasLUNID(initB, 0X64)

V. STRUCTURAL CONFLICT ANALYSIS DEFINITIONS

Structural Analysis examines the relationship that rules have

with one another within a security configuration or across mul-

tiple inter-dependent security configurations [3], [8], [9]. This

paper extends the existing work on firewall structural analysis

techniques and considers inter-configuration conflicts that may

occur between a firewall and a zone security configuration.

For ease of exposition, the relevant properties are described

using a basic discrete math notation. These properties have

been implemented in SWRL to perform structural analysis and

an example is provided in Section VI.

A. SAN Rule Composition

In the context of inter-configuration conflicts between a

firewall and a zone configuration, a SAN access-control rule

is defined as a tuple.

Rule ≡ Condition× Action



Given r : Rule, rule r is a tuple (r1,r2) where r1 ∈ Condition

and r2 ∈ Action. For simplicity, and when no ambiguity

arises, r.Condition is a syntactic sugar for r1 and so forth.

Filter Conditions. The set of filter conditions (Condition) that

describes the common filter conditions between firewall and

zone access-control rules is defined as an 2-tuple.

Condition ≡ SrcIP× DstIP

The source and destination IP addresses (SrcIP and DstIP)

are defined as an inclusive interval, where an interval is a

subset of all possible IP addresses for source and destination

IP addresses.

SrcIP,DstIP ≡ [0, 232-1]

Given r:Rule, then r.Condition1 ∈ SrcIP and

r.Condition2 ∈ DstIP . For simplicity, and when

no ambiguity arises, r.SrcIP is a syntactic sugar for

r.Condition1 and so forth. For example, r.SrcIP is used

to access the attribute value of set SrcIP , instead of

r.Condition1 (or r11 ).

Action. The set of target actions are:

Action ≡ {permit, deny, log&deny}

B. Subsumption Filter Conditions

The filter conditions of rule s (s.Condition) subsumes

those of rule r (r.Condition), if every filter condition

field of r, for example r.SrcIP , is equal to or is a sub-

set of the corresponding filter condition fields of rule s,

for example s.SrcIP . Consider rules r, s:Rule with iden-

tical filter conditions except for their source IP address

ranges; r.SrcIP = {10.37.2.12} and s.SrcIP =
{10.37.2.10, . . . ,10.37.2.15}, then r.Condition is

subsumed by s.Condition if r.SrcIP ⊆ s.SrcIP holds. For-

mally, given rules r, s : Rule, then r.Condition is subsumed

(⊆cond) by s.Condition if and only if r.Condition ⊆cond

s.Condition holds across each of the corresponding filter

condition fields.

r.Condition ⊆cond s.Condition ≡ r.SrcIP ⊆ s.SrcIP ∧

r.DstIP ⊆ s.DstIP

C. Inter SAN Rule conflicts

Inter-Shadowed Conflict. Given rules rzone, sfw:Rule, rule

rzone (zone access-control rule) is shadowed by rule sfw
(firewall access-control rule), if the filter conditions of rzone
are a subset of or equal to the corresponding filter conditions

of rule sfw, where sfw is denying what rule rzone is intending

to permit.

rzone.Condition ⊆cond sfw.Condition ∧

rzone.Action = permit ∧

(sfw.Action = deny ∨ sfw.Action = log&deny)

Note, zone rules only have an permit action and therefore

do not cause a shadowing conflict with firewall rules.

Inter-Spurious Conflict. Given rules rzone, sfw:Rule, rule sfw
is spurious to rule rzone, if the filter conditions of rzone is a

subset of the corresponding filter conditions of rule sfw, where

sfw is allowing more than what rule rzone is intending.

rzone.Condition ⊂cond sfw.Condition ∧

rzone.Action = permit ∧ sfw.Action = permit)

Note, zone rules are not defined over IP address ranges and

therefore do not cause spurious conflicts with firewall rules.

VI. ANALYSIS OF ACCESS CONTROL CONFIGURATION

A. Structural Analysis

Firewall centric structural analysis techniques, for exam-

ple [3], [8], [9], are also applicable to firewall-based SAN

access-control rules. The following SWRL rule extends these

works and detects inter-shadowing conflicts between firewall

access-control rules (SWRL variable ?fwr) and zone access-

control rules (SWRL variable ?zr). Relevant filter conditions

of each firewall access-control rule (lines 2-5) and each zone

access control rule (lines 8-12) are then examined against the

subsumption relation (lines 14-17) defined in Section V-B.

IPAccessListRule(?fwr)∧ (1)

hasSrcIPStart(?fwr,?sIPS)∧hasIPValue(?sIPS,?sIPSV)∧ (2)

hasSrcIPEnd(?fwr,?sIPE)∧hasIPValue(?sIPE,?sIPEV)∧ (3)

hasDstIPStart(?fwr,?dIPS)∧hasIPValue(?dIPS,?dIPSV)∧(4)

hasDstIPEnd(?fwr,?dIPE)∧hasIPValue(?dIPE,?dIPEV)∧(5)

hasAction(?fwr,deny)∧ (6)

ZoneRule(?zr)∧ (7)

hasMember(?zr,?m1) ∧ hasMember(?zr,?m2)∧ (8)

hasIPStart(?m1,?ipS1)∧hasIPValue(?ipS1,?ipSV1)∧ (9)

hasIPEnd(?m1,?ipE1)∧hasIPValue(?ipE1,?ipEV1)∧ (10)

hasIPStart(?m2,?ipS2)∧hasIPValue(?ipS2,?ipSV2)∧ (11)

hasIPEnd(?m2,?ipE2)∧hasIPValue(?ipE2,?ipEV2)∧ (12)

differentFrom(?m1,?m2)∧ (13)

swrlb:greaterThanOrEqual(?ipSV1,?sIPSV)∧ (14)

swrlb:lessThanOrEqual(?ipEV1,?sIPEV)∧ (15)

swrlb:greaterThanOrEqual(?ipSV2,?dIPSV)∧ (16)

swrlb:lessThanOrEqual(?ipEV2,?dIPEV)∧ (17)

→ isInterShadowedBy(?zr,?fwr) (18)

Zone members may also be identified by their WWNs.

Firewall access-control rules do not consider WWN’s. As

a consequence, a relationship (hasWWNIPMapping) between

each zone member’s WWN and its corresponding IP address

must be asserted or inferred (for example using SWRL).

B. Query Analysis

Query Analysis provides a way to ask hypothetical ‘what-

if’ questions of a security configuration [3]. A switch can be

analysed to check whether or not the answers to queries made

of its configuration are consistent with the enterprise-level



security requirements. For example the following SQWRL

query asks: “What role or roles are users authorised for?”

User(?user) ∧ RoleRule(?role) ∧ isRoleOf(?role, ?user)

→ sqwrl:select(?user, ?role)

The following SQWRL query asks what initiators (mem-

bers) have been assigned read-only access to what disks

(identified by LUN ID’s) within a given zone defined in the

context of a particular VSAN?

Member(?mem) ∧ ZoneRule(?zone) ∧ VSANRule(?vsan)∧

hasName(?zone,?zname) ∧ hasName(?vsan,?vname)∧

isReadOnly(?zone, true) ∧ hasLUNID(?mem,?lunid)∧

isAssignedTo(?zone,?vsan) ∧ hasMember(?zone,?mem)

→ sqwrl:select(?mem, ?lunid,?zname,?vname)∧

sqwrl:columnNames(“Initiator”, “Disk”, “Zone”, “VSAN”)

VII. RELATED RESEARCH

While there is extensive research on synthesis [17], [18],

query [6], [7] and structural [8], [9] analysis, these firewall-

centric works do not consider switch security configuration.

This paper builds on previous firewall centric research [3]–[5]

to model and reason about SAN switch security configurations.

VIII. DISCUSSION AND CONCLUSION

This paper considered the problem of reasoning about

and managing complex switch security configurations. A for-

mal model for switch security configuration was presented.

Structural analysis definitions that define inter-shadowing and

inter-spurious conflicts between firewall-based and zone-based

switch security configurations where presented.

Future work will explore additional structural analysis tech-

niques that involve other switch security mechanisms. For

example, role-based access-control rules are order dependent.

Depending on the sequence of these rules, a misconfiguration

may result. An exploration of possible conflicts between in-

dividually consistent VSAN configurations due to Inter-VSAN

Routing [12] will be also be investigated.

Future work will adopt the threat-based approach in [4]

to structure knowledge about switch security configurations

in terms of threats with which to construct a catalogue of

best practice countermeasures. One may then, in conjunction

to structural and query analysis described in this paper, au-

tomatically generate suitable switch security configurations

(countermeasures) that mitigate known SAN threats.

This threat-based approach will also facilitate the con-

struction of a best practice catalogue of candidate queries.

Thus, providing inexperienced security administrators with

the ability ask expert questions about the effectiveness of

an existing switch security configuration. These candidate

queries could be based on testing for best practice compliance.

For example, to test if a switch security configuration is

SNAI [19] compliant, the security administrator can draw upon

a catalogue of SNAI candidate compliance queries.
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