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Abstract— Multiuser diversity has been shown to increase the
throughput of mobile ad-hoc wireless networks (MANET) when
compared to fixed wireless networks. This paper addresses a
multiuser diversity strategy that permits one of multiple one-time
relays to deliver a packet to its destination. We show that the
Θ(1) throughput of the original single one-time relay strategy
is preserved by our multi-copy technique. The reason behind
achieving the same asymptotic throughput is the fact that, as
we demonstrate in this paper, interference for communicating
among closest neighbors is bounded for different channel path
losses, even when n goes to infinity.

We find that the average delay and its variance scale like Θ(n)
and Θ(n2), respectively, for both the one and multi-copy relay
strategies. Furthermore, while for finite n the delay values in the
single-copy relaying strategy are not bounded, our multi-copy
relay scheme attains bounded delay.

I. INTRODUCTION

There has been a considerable effort [1], [2], [3] [4], [5],
[6], [7] on trying to increase the performance of wireless
ad-hoc networks since Gupta and Kumar [8] showed that
the capacity of a fixed wireless network decreases as the
number of nodes increases when all the nodes share a common
wireless channel. Grossglauser and Tse [1] presented a two-
phase packet relaying (forwarding) technique for mobile ad-
hoc networks (MANET), utilizing multiuser diversity [9], in
which a source node transmits a packet to the nearest neighbor,
and that relay delivers the packet to the destination when this
destination becomes the closest neighbor of the relay. The
scheme was shown to increase the capacity of the MANET
[1], such that it remains constant as the number of nodes in
the MANET increases. However, the delay experienced by
packets under this strategy was shown to be large and it can
be even infinite for a fixed number of nodes (n) in the system,
which has prompted more recent work presenting analysis of
capacity and delay tradeoffs [6], [7], [10], [11], [12]. In [1]
Θ(1) 1 source-destination throughput is attained when n tends
to infinity. However, the number of nodes in real MANETs is
finite and delay is an important performance issue.

This paper introduces and analyzes an improved two-phase
packet forwarding strategy for MANETs that attains the Θ(1)

1Here we use the Knuth’s notation: (a) f(n) = O(g(n)) means there are
positive constants c and k, such that 0 ≤ f(n) ≤ cg(n) ∀ n ≥ k. (b)
f(n) = Θ(g(n)) means there are positive constants c1, c2, and k, such that
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀ n ≥ k.

capacity of the basic scheme by Grossglauser and Tse [1],
but provides bounded delays in a MANET when the number
of nodes n is fixed. This is far better than the single-copy
technique. Our main objective is to decrease the delay incurred
by the packet to reach its destination in steady-state2 while
maintaining the capacity of the network at the same order of
magnitude from that attained in [1]. Our basic idea is to give
a copy of the packet to multiple one-time relay nodes that are
within the transmission range of the sender. By doing so, the
time within which a copy of the packet reaches its destination
can be decreased. The first one-time relay node that is close
enough to the destination delivers the packet.

An interesting feature of the multi-copy relaying approach
is that the additional relaying nodes carrying that same copy
of the packet can be used as backups to protect against node
failures, improving the reliability of the network [13].

Another contribution of this paper consists of an analyt-
ical model for interference calculation, which permits us to
obtain the Signal-to-Interference Ratio (SIR) measured by a
receiver node at any point in the network. We show that the
receiver SIR tends to a constant if it communicates with close
neighbors when the path loss parameter α is greater than
two, regardless of the position of the node in the network.
By contrast, previous works have only considered the receiver
node located at the center of the network [14], [15], [16].

The remaining of the paper is organized as follows. Section
II summarizes the network model used in the past to analyze
the capacity of MANETs [1]. Section III explains our multi-
copy packet forwarding strategy. Section IV presents the
number of feasible receiving nodes around a sender. Section
V presents the interference analysis. Section VI shows that
the new relaying scheme attains the same capacity order
of magnitude as the original two-phase scheme proposed
by Grossglauser and Tse [1]. Section VII shows the delay
reduction resulting from our forwarding strategy and presents
theoretical and simulation results. Section VIII concludes the
paper summarizing our main ideas.

2That is, after averaging over all possible starting random network topolo-
gies so that transient behaviors are removed.



II. NETWORK MODEL

The network model we assume is the one introduced by
Grossglauser and Tse [1], and consists of a normalized unit
area disk containing n mobile nodes. We consider a time-
slotted operation to simplify the analysis, and we assume that
communication occurs only among those nodes that are close
enough, so that interference caused by other nodes is low,
allowing reliable communication. The position of node i at
time t is indicated by Xi(t). The nodes are assumed to be
uniformly distributed on the disk at the beginning, and there
is no preferential direction of movement.

Nodes are assumed to move according to the uniform mobil-
ity model [7]. In this model, the nodes are initially uniformly
distributed, and move at a constant speed v and the directions
of motion are independent and identically distributed (iid) with
uniform distribution in the range [0, 2π). As time passes, each
node chooses a direction uniformly from [0, 2π) and moves
in that direction, at speed v, for a distance z where z is an
exponential random variable with mean µ. After reaching z the
process repeats. This model satisfies the following properties
[7]:

• At any time t, the position of the nodes are independent
of each other.

• The steady-state distribution of the mobile nodes is uni-
form.

• Conditional on the position of a node, the direction of
the node movement is uniformly distributed in [0, 2π).

At each time step, a scheduler decides which nodes are
senders, relays, or destinations, in such a manner that the
source-destination association does not change with time. Each
node can be a source for one session and a destination for an-
other session. Packets are assumed to have header information
for scheduling and identification purposes, and a time-to-live
threshold field as well.

Suppose that at time t a source i has data for a certain
destination d(i). Because nodes i and d(i) can have direct
communication only 1/n of the time on the average, a relay
strategy is required to deliver data to d(i) via relay nodes. We
assume that each packet can be relayed in sequence at most
once.

At time t, node j is capable (or feasible) of receiving at a
given rate of W bits/sec from i if [1], [8]

Pi(t)γij(t)

N0+
1

M

∑
k �=i

Pk(t)γkj(t)

︸ ︷︷ ︸
I

= Pi(t)γij(t)

N0+
1

M I
≥ β, (1)

where Pi(t) is the transmitting power of node i, γij(t) is the
channel path gain from node i to j, β is the signal to noise and
interference ratio level necessary for reliable communication,
N0 is the noise power, M is the processing gain of the system,
and I is the total interference at node j. The channel path gain
is assumed to be a function of the distance only, so that [1],
[8]

γij(t) = 1
|Xi(t)−Xj(t)|α = 1

rα
ij(t)

, (2)

where α is the path loss parameter, and rij(t) is the distance
between i and j.

Given that, for narrowband communication, the interference
coming from other nodes generally is much greater than the
noise power, the denominator in Eq. (1) is dominated by
the interference factor. In addition, let us assume that no
processing gain is used, i.e., M = 1, and that Pi = P ∀i. Then
combining Eqs. (1) and (2) yields the Signal-to-Interference
Ratio (SIR)

SIR =
P

rα
ij

I = P
rα

ij ·I ≥ β . (3)

We will determine an equation relating the total interference
measured by a receiver communicating with a neighbor node
as a function of the number of total nodes n in the network.
More precisely, we want to obtain an expression for Eq. (3)
as a function of n, calculate the asymptotic value of the SIR
as n goes to infinity, and verify that communication among
close neighbors is still feasible.

III. MULTI-COPY ONE-TIME RELAYING

Grossglauser and Tse [1] consider a single-copy forwarding
scheme consisting of two phases. Packet transmissions from
sources to relays (or destinations) occur during Phase 1, and
packet transmissions from relays (or sources) to destinations
happen during Phase 2. Both phases occur concurrently,
but Phase 2 has absolute priority in all scheduled sender-
receiver pairs. We extend this scheme to allow multi-copies,
as described below.

A. Packet Forwarding Scheme

We allow more than one relay node to receive a copy of the
same packet during Phase 1. Thus, the chance that a copy of
this packet reaches its destination in a shorter time is increased
compared with using only one relay node as in [1]. Also, if for
some reason a relaying node fails to deliver the packet when it
is within the transmission range of the destination, the packet
can be delivered when another relaying node carrying a copy
of the same packet approaches the destination.

In Fig. 1(a), three copies of the same packet are received
by adjacent relay nodes j, p, and k during Phase 1. All such
relays are located within a distance ro from sender i. At a
future time t, in Phase 2, node j reaches the destination before
the other relays and delivers the packet. Note that relay node
j need not be the closest node to the source during Phase 1.

B. Enforcing One-Copy Delivery

There are several ways in which the delivery of more than
one copy of the same packet to a destination can be prevented.
For example, each packet can be assigned a sequence number
(SN) and time-to-live (TTL) threshold. Before a packet is
delivered to its destination, a relay-destination handshake can
be established to verify that the destination has not received a
copy of the same packet. All relays delete the packet copies
from their queues after the TTL expires for the packet, and
the destination of the packet remembers the SN of a packet it
receives for a period of time that is much larger than the TTL



d(i)

p

k

ji

k

p

d(i)

(a)

i

disk
Unit  area

(b)

j

j

R= 1√
π

Phase 2Phase 1

time t, Phase 2

time t0 ro

ro

Phase 1

Fig. 1. (a) Three packet copies transmission at Phase 1. Node j is the first to
find the destination, and delivers the packet at Phase 2. The movement of all
the remaining nodes in the disk is not shown for simplicity. (b) Time-to-live
threshold timeout after three packet copies transmission (from (a)).

of the packet to ensure that any handshake for the packet is
correct.

Fig. 1(b) depicts the situation in which j finds the desti-
nation node d(i) first and delivers the packet before the TTL
expires. The other copies are dropped from the queues at p
and k, and only one node out of the three potential relays
actually delivers the packet to the destination.

To ascertain if this multi-copy relaying strategy provides
advantages over the single-copy strategy proposed by Gross-
glauser and Tse [1], we need to answer two questions: a)
How many nodes around a sender can successfully receive
copies of the same packet? b) What is the delay dK for the
new packet transmission scheme compared to the delay d in
[1] when the network is in steady-state? Because we address
the network capacity for any embodiment of the multi-copy
relaying strategy, we assume in the rest of this paper that the
overhead of the relay-destination handshake is negligible.

IV. FEASIBLE NUMBER OF RECEIVERS IN Phase 1 AND

CELL DEFINITION

Among the total number of nodes n in the network, a
fraction of them, nS , is randomly chosen by the scheduler as
senders, while the remaining nodes, nR, operate as possible
receiving nodes [1]. A sender density parameter θ is defined
as nS = θn, where θ ∈ (0,1), and nR = (1− θ)n. In [1] each
sender transmits to its nearest neighbor. However, it may be
the case that a sender can have more than one receiver node
in the feasible transmission range, and the proposed multi-
copy relay strategy takes advantage of this by allowing those
additional receiving nodes to also have a copy of the packet.
These additional packet copies follow different random routes
and can find the destination earlier compared to [1], where
only one node receives the packet.

If the density of nodes in the disk is

ρ = n
total area = n

1 = n, (4)

then, for a uniform distribution of nodes, the radius for one
sender node is given by

1 = θρπr2
o = θnπr2

o =⇒ ro = 1√
θnπ

. (5)

Thus, the radius ro defines a cell (radius range) around a
sender.

The average number of receiving nodes, called K, within
ro, assuming a uniform node distribution, is

K = nRπr2
o = 1

θ − 1, (6)

which is a function of θ and does not depend on n. Gross-
glauser and Tse [1] showed that the maximum capacity is
obtained for θ < 0.5 (for α ≤ 4), so that we can have K > 1
and be very close to the maximum capacity, as shown below.
Note that Eq. (6) provides a benchmark to choose a value for
K based on θ. However, the actual number of receiving nodes,
called K, for each sender node varies.

Referring to the recent work by El Gamal, Mammen,
Prabhakar and Shah [11], each cell in our strategy has area
a(n) = 1

nS
= 1

θ n . By applying random occupancy theory [17,
Chapter 3], the fraction of cells containing L senders and K
receivers is obtained by

P{senders = L, receivers = K}
= P{senders = L}P{receivers = K | senders = L}
=
(

n
L

)(
1

nS

)L(
1 − 1

nS

)n−L
(
n−L
K

)(
1

nS

)K(
1 − 1

nS

)n−L−K

=
(

n
L

)(
1

θ n

)L(1− 1
θ n

)n−L
(
n−L
K

)(
1

θ n

)K(1− 1
θ n

)n−L−K
. (7)

Given that we are interested in very large values for n, and
using the limit

(
1 − 1

x

)x −→ e−1 as x → ∞, we have the
following result for n >> L,K

P{senders = L, receivers = K}
≈ nL

L!

(
1

θn

)
L
[(

1− 1
θn

)θn
]n/(θn)

nK

K!

(
1

θn

)K[(1− 1
θn

)θn
]n/(θn)

≈ 1
L!

(
1
θ

)L
e−1/θ 1

K!

(
1
θ

)K
e−1/θ. (8)

Accordingly, for L = 1, K ≥ 2, and θ = 1
3 , we have

that 1
θ e−1/θ(1 − e−1/θ − 1

θ e−1/θ) ≈ 0.12 fraction of the
cells contain one sender and at least two receivers. Therefore,
for K ≥ 2, approximately 12% of the cells can multi-copy
forward packets in Phase 1.

In addition, for θ = 1
3 , we have that ( 1

θ e−1/θ)2 ≈ 0.02
fraction of the cells have one sender and one receiver. In
this case, the scheduler does not select these cells for packet
transmission, because the delivery delay incurred can last to
infinity as we show later.

Also, the maximum number of nodes in any cell, with high
probability (whp)3, is O( log(n)

log(log(n)) ) [17, Chapter 3]. Thus,

whp K ≤ c log(n)
log(log(n)) << n for some constant c > 0.

The feasibility that all of those K nodes successfully receive
the same packet in the presence of interference is the subject
of the next section.

V. INTERFERENCE ANALYSIS

In the previous section, we obtained the fraction of cells that
has one sender surrounded by K ≥ 2 receiving nodes within
ro, assuming a uniform distribution of nodes. Suppose that,
in any of these cells, one of the K receiving nodes is at the

3With high probability means with probability ≥ 1 − 1
n

[17].



maximum neighborhood distance ro. We want to know how
the SIR measured by this receiver behaves as the number of
total nodes in the network (and therefore the number of total
interferers) goes to infinity. We are interested in determining
whether feasible communication between the sender and the
farthest neighbor4 (with distance ro) is still possible, even if
the number of interferers grows.

For a packet to be successfully received, Eq. (3) must be
satisfied. Hence, consider a receiver at any location in the
network during a given time t. Its distance from the center
r′ is shown in Fig. 2, where 0 ≤ r′ ≤ 1√

π
− ro. Let us

Disk
Unit Area

γ

dγ

ro

r′

r
dr

yy

x

R = 1√
π

x′

Fig. 2. Snapshot of the unit area disk at a given time t. At this time, the
receiver node being analyzed is located at r′ from the center while the sender
is at distance ro from the receiver node.

assume that the sender is at distance ro from this receiver and
transmitting at constant power P , so that the power measured
by the receiver PR is given by

PR = P
rα

o
. (9)

To obtain the interference at the receiver caused by all
transmitting nodes in the disk, let us consider a differential
element area rdrdγ that is distant r units from the receiver
(see Fig. 2). Because the nodes are uniformly distributed in
the disk, the transmitting nodes inside this differential element
of area generate, at the receiver, the following amount of
interference5

dI = P
rα θ ρ r dr dγ = P

rα−1 θ n dr dγ. (10)

For the propagation model we study here, the path loss
parameter is modeled to be always greater than two6 [18,
p. 139, Table 4.2], i.e., α > 2. The total interference at the
receiver located at distance r′ from the center with total of n

4This represents the worst case scenario, because the other K−1 neighbors
are located either closer or at the same distance ro to the sender, so they
measure either a stronger or the same SIR level.

5Because the nodes are considered to be uniformly distributed in the disk
and n grows to infinity, we approximate the sum in Eq. (1) by an integral.

6For α = 2, we obtain similar results as in [15].

nodes in the network is obtained by integrating Eq. (10) over
all the disk area. Hence,

Ir′(n) =
∫

disk region

dI =
∫ 2π

0

∫ rm(r′,γ)

ro

P
rα−1 θ n dr dγ

= P θ n

∫ 2π

0

r2−α

2−α

∣∣∣rm(r′,γ)

ro

dγ

= P θ n
α−2

∫ 2π

0

{
1

rα−2
o

− 1
[rm(r′,γ)]α−2

}
dγ. (11)

rm is the maximum radius that r can have and is a function
of the location r′ and the angle γ. To find this function, we
can use the boundary disk curve (or circumference) equation
expressed as a function of the x-axis and y-axis shown in Fig.
2, i.e.,

x2 + y2 =
(

1√
π

)2
. (12)

Define x = x′ + r′, x′ = rmcosγ, and y = rmsinγ, then Eq.
(12) becomes

(rmcosγ + r′)2 + (rmsinγ)2 =
(

1√
π

)2
=⇒ rm(r′, γ) =

√
1
π − (r′sinγ)2 − r′cosγ . (13)

By substituting this result in Eq. (11) we arrive at

Ir′(n) = 2 P θ n
α−2

[
π

rα−2
o

− fα(r′)
]
, (14)

where

fα(r′) =
∫ π

0

dγ[√
1
π −(r′sinγ)2−r′cosγ

]α−2 (15)

is a constant for a given position r′. For the case in which
α = 4, Eq. (15) reduces to

f4(r′) = π2

1−2πr′2+π2r′4 . (16)

We can obtain the SIR by using Eqs. (3), (5), (9), and (14)
to arrive at

SIRr′(n) = PR

I = α−2
2 · 1[

1− 1

π
α
2 (θ n)

α−2
2

fα(r′)

]

= α−2
2 · qr′,α,θ(n) , (17)

where qr′,α,θ(n) =
[
1 − 1

π
α
2 (θ n)

α−2
2

fα(r′)
]−1

. Taking the

limit as n −→ ∞, we obtain

SIR = lim
n→∞

α−2
2 · qr′,α,θ(n)

=




α−2
2 · 1 if 0 ≤ r′ < 1√

π
− ro

α−2
2 · qr′,α,θ(n → ∞) if r′ = 1√

π
− ro , i.e.,

the network boundary.
(18)



From Eq. (17) qr′,α,θ(n → ∞) = qr′,α(n → ∞) because θ is
a scale factor on n and does not change the limit. Thus,

qr′,α,θ(n → ∞) =

=




1 if 0 ≤ r′ < 1√
π
− ro and α > 2

1.467 if r′ = 1√
π
− ro and α = 3

1.333 if r′ = 1√
π
− ro and α = 4

1.270 if r′ = 1√
π
− ro and α = 5

1.232 if r′ = 1√
π
− ro and α = 6 .

(19)

Fig. 3 shows the SIR as a function of n for α = 4, θ = 1
3 ,

and for different values of r′.
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Fig. 3. Signal-to-Interference Ratio curves as a function of n for α = 4 and
θ = 1

3
, for the receiver node located at different positions in the network.

In addition, Figs. 3, 4, and Eqs. (18) and (19) show that
the SIR remains constant when n grows to infinity and this
constant does not depend on r′ if 0 ≤ r′ < 1√

π
− ro,

i.e., it is the same value for any position of the receiver
node inside the disk, whether the position is at the center,
close to the boundary, or at the middle region of the radius
disk. Nevertheless, if the receiver node is at the boundary
(r′ = 1√

π
− ro) then the SIR is still a constant when n scales

to infinity but it has a greater value (see Figs. 3, and 4). Fig.
4 shows SIR for 3 ≤ α ≤ 6 and θ = 1

3 for the receiver node
located at the center and at the boundary of the network for
comparison purposes.

Hence, by having the SIR approaching a constant value as n
scales to infinity, the network designer can properly devise the
receiver (i.e., design modulation, encoding, etc.) such that Eq.
(3) can be satisfied for a given β, allowing reliable (feasible)
communication among close neighbors during Phase 1 and
also during Phase 2, for those cells that can successfully
forward packets.

VI. SOURCE-DESTINATION THROUGHPUT

We now show that the throughput per source-destination
pair with our multi-copy relaying approach remains the same
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Fig. 4. Signal-to-Interference Ratio curves as a function of n, for 3 ≤ α ≤ 6
and θ = 1

3
, and the receiver node considered located at the center and at the

boundary of the network.

order of magnitude as the original single-copy relaying scheme
[1]. We know that the throughput for a one-copy relay is
Θ(1) [1]. In the case of multi-copy forwarding, only one copy
is delivered to destination and the others are dropped from the
additional relaying nodes after the TTL timeout. Therefore,
only one node out of K nodes actually functions as a relay (as
in Fig. 1(b)). Accordingly, only one copy of different packets
passes successfully through the two-phase process, as shown
in Fig. 5. Because node trajectories are iid and the system
is in steady-state, the long-term throughput between any two
nodes equals the probability that these two nodes are selected
by the scheduler as a feasible sender-receiver pair. According
to [1] this probability is Θ( 1

n ). Also, there is one direct route
and n− 2 two-hop routes passing through one relay node for
a randomly chosen source-destination pair. Thus, the service
rate is λj = Θ( 1

n ) through each actual relay node, as well as
the direct route. Accordingly, the total throughput per source-
destination pair Λ is

Λ=
n∑

j=1,j �=i

λj =
n∑

j=1,j �=i

Θ
(

1
n

)
=Θ
(

n−1
n

) n → ∞−→ Θ(1). (20)

Since the nodes trajectories are iid and they move according
to the uniform mobility model, the traffic from each source
node is uniformly distributed among all nodes [1]. From Eq.
(8), each cell employing multi-copy forwarding has throughput
of Θ(1) ≈ 0.12. Therefore, the network transport capacity
(i.e., the network throughput) is Θ(n). Consequently, the
network throughput of Θ(n) is uniformly distributed among all
source-destination pairs [11]. Thus, the exact total throughput
per source-destination pair is given by the fraction of cells that
successfully forward packets (i.e, the cells that are selected by
the scheduler containing feasible sender-receiver pairs). Then,



for one sender and at least K receivers per cell, we have

Λ=P{senders (L) = 1, receivers are at least K}

≈ 1
θ e−1/θ

(
1 −

K−1∑
k=0

1
k!

(
1
θ

)k
e−1/θ

)
. (21)

Hence, for at least two receivers per cell and θ = 1
3 , Λ =

1
θ e−1/θ(1 − e−1/θ − 1

θ e−1/θ) ≈ 0.12 = Θ(1). Therefore, the
multi-copy forwarding strategy attains the same throughput
order as in [1].

Also, for at least one receiver per cell and θ = 1
3 , Λ =

1
θ e−1/θ(1 − e−1/θ) ≈ 0.14. Hence, for the case K ≥ 1, Eqs.
(8) and (21) give the same throughput value obtained by Tse
and Grossglauser [1], as well as Neely and Modiano [10].
Thus, in the single-copy forwarding strategy [1], although they
have K ≥ 1, their scheme selects only the nearest neighbor
from the sender amongst the K receiver nodes.

i d(i)

j

Phase 2Phase 1

n−1
routes

Θ( 1
n
)

Θ( 1
n
)

Θ( 1
n
)

Θ( 1
n
)

Θ( 1
n
)Θ( 1

n
)

Θ( 1
n
)

Fig. 5. Two-phase processes for different packets deliveries. Just one copy
of each packet is delivered to destination.

A practical observation worth making here is that the
capacity for the case of the single-copy relaying scheme [1]
can decrease when the relaying node goes out of service.
Our relaying technique is more robust, because other relaying
nodes can still be in service carrying other copies and find the
destination and deliver it, functioning like backup copies.

VII. DELAY EQUATIONS

In Sections IV, V and VI, we showed that it is possible
to have K feasible receivers that successfully obtain a copy
of the same packet around a sender during Phase 1. Now we
find the relationship between the delay value d obtained for
the case of only one copy relaying [1], and the new delay dK

for K ≥ 2 copies transmitted during Phase 1 in steady-state
behavior. Obviously, we have dK ≤ d. A naive guess would
be to take dK = d

K . However, another answer is obtained
because of the random movement of the nodes. K is a small
integer much smaller than n whp, as explained in Section IV.

A. Single-Copy Forwarding Case

Because we have node trajectories independent and identi-
cally distributed, we focus on the relay node labeled as node
1, and without loss of generality assume that node 1 received
a packet from the source during time t0 = 0. Denoted by
P{|X1(s) − Xdest(s)| ≤ ro | s}, define it as the probability
of relay node 1 at position X1(s) being close enough to the
destination node dest given that the time interval length is
s, where ro is the radius distance given by Eq. (5) so that
successful delivery is possible. The time interval length s
is the delivery-delay random variable. Perevalov and Blum
[6] obtained an approximation for the ensemble average with
respect to all possible uniformly-distributed starting points,
(X1(0),Xdest(0)), where they considered the nodes moving
on a sphere. We can extend their result for nodes moving
in a circle by projecting the sphere surface movement in the
sphere equator and thus have trajectories described in a circle
and have [6]

EU [P{|X1(s) − Xdest(s)| ≤ ro | s}] = 1 − e−λs·(
1 − λe−λ

∫ s
0 hX′ (t)dt

∫ s

0

eλ
∫ t
0 hX′ (u)duhX′(t)dt

)
= P{S ≤ s} = FS(s) , (22)

where EU [·] means the ensemble average over all possible
starting points which are uniformly distributed on the disk.
FS(s) can be interpreted as the cumulative density function
of the delay random variable S. The function hX(t) is the
difference from the uniform distribution, such that hX(0) = 0
and |hX(t)| < 1 for all t, and X ′ is a point at distance ro from
the destination. The parameter λ is related to the mobility of
the nodes in the disk and can be expressed by [6]

λ = 2 ro v
πR2 = 2 ro v

1 = 2 ro v , (23)

which results from evaluating the flux of nodes entering a cir-
cle of radius ro during a differential time interval considering
the nodes uniformly distributed over the entire disk of unit area
and traveling at speed v. From Eq. (5), we see that the radius
ro decreases with 1√

n
. To model a real network in which a

node would occupy a constant area, if the network grows, the
entire area must grow accordingly. Therefore, because in our
analysis we maintain the total area fixed, we must scale down
the speed of the nodes [11]. Accordingly, the velocity of the
nodes also must decrease with 1√

n
. Then

λ = 1
Θ(n) . (24)

Now, hX(t) has to be taken according to the random motion
of the nodes [6]. If we consider the uniform mobility model [7],
then a steady-state uniform distribution results as the random
motion of the nodes in the disk. In such a case, hX(t) = 0 ∀
t ≥ 0. Applying this result in Eq. (22) we have

EU [P{|X1(s) − Xdest(s)| ≤ ro | s}] = 1 − e−λs

= P{S ≤ s} = FS(s), (25)



which has the following probability density function:

fS(s) = dFS

ds =
{

λe−λs for 0 ≤ s < ∞
0 otherwise.

(26)

Thus, for the uniform mobility model, the delay behaves
exponentially with mean 1

λ and variance 1
λ2 . We conclude from

Eqs. (24), (25), and (26) that the average packet delivery delay
is Θ(n) and its variance is Θ(n2), i.e.,

E[S] = 1
λ = Θ(n) , and V ar[S] = 1

λ2 = Θ(n2). (27)

From now on, we change s by d to indicate the delay for
single-copy forwarding at Phase 1 [1]. Accordingly,

EU [P{|X1(s) − Xdest(s)| ≤ ro | s=d}]=1 − e−λd, (28)

for a uniform steady-state distribution resulting from the
random motion of the nodes.

Also, from Eqs. (25) and (26), we have that, even if the
number of total nodes in the network n is finite, the delay
values are not bounded as a consequence of the tail of the
exponential distribution. Thus, the packet delivery time can
last to infinity, even though its average value is limited by Eq.
(27) and n is finite.

B. Multi-Copy Forwarding Case

Now consider that K copies of the same packet were
successfully received by adjacent relaying nodes during Phase
1 (where 1 < K << n). Let PD(s) be the probability of
having the first (and only) delivery of the packet at time
interval length s. Hence, given that only one-copy delivery
is enforced (see Section III-B), and all K relays are looking
for the destination, we have that

PD(s) = P

{
K⋃

i=1

[|Xi(s) − Xdest(s)| ≤ ro | s]

}
. (29)

Because of the relay-destination handshake, at most one copy
can be delivered, implying that the K relay-destination deliv-
ery events are mutually exclusive. Hence,

PD(s) =
K∑

i=1

P{|Xi(s) − Xdest(s)| ≤ ro | s}. (30)

We observe that the K relays are not uniformly spread in the
disk right after Phase 1, but are close to each other (within ro),
and after that, they need some time (tspread) to be uniformly
spread, and this time interval is a function of the speed of
the nodes v. However, as we show later, tspread is negligible
compared to the maximum delivery delay. Therefore, given
that nodes trajectories are iid, we can approximate Eq. (30)
by

PD(s) ≈ K · P{|X1(s) − Xdest(s)| ≤ ro | s}. (31)

From Eqs. (25) and (31) and changing s by dK to indicate
the delay for K-copies forwarded during Phase 1, we have
for the uniform mobility model,

EU [PD(s)]=EU

[
P

{
K⋃

i=1

[|Xi(s)−Xdest(s)| ≤ ro| s= dK ]

}]

= P{DK ≤ dK} = FDK
(dK) ≈ K

(
1 − e−λdK

)
, (32)

for a uniform steady-state distribution resulting from the
random motion of the nodes. FDK

(dK) can be interpreted as
the cumulative density function of the delay random variable
DK for K relays copies transmission at Phase 1.

From Eq. (32) we see that the maximum value attained by
DK is given when

FDK
(dmax

K )=1≈K
(
1−e−λdmax

K

)
=⇒dmax

K ≈ 1
λ log
(

K
K−1

)
. (33)

Eq. (33) reveals that, for a finite n, the new delay obtained
by multi-copy forwarding is bounded by dmax

K after ensemble
averaging over all possible starting points topology uniformly
distributed on the disk.

As mentioned above, the exact bounded value must also
include the time interval tspread necessary to have all K nodes
uniformly spread in the disk after Phase 1. Because the nodes
move with speed v = Θ( 1√

n
), then tspread = Θ(

√
n). Now,

from Eqs. (24) and (33), and since K << n whp, we have
that dmax

K = Θ(n). Therefore, tspread << dmax
K . Hence, the

approximation used in Eq. (31) is justified!
From Eqs. (24) and (33), and because K << n whp, dmax

K

grows to infinity and no bounded delay is guaranteed if n
scales to infinity.

The probability density function for DK is

fDK
(dK) = dFDK

ddK
≈
{

Kλe−λdK for 0 ≤ dK ≤ dmax
K

0 otherwise.
(34)

Hence, in the multi-copy forwarding scheme the tail of the
exponential delay distribution is cut off. The average delay
for K-copies forwarding is then given by

E[DK ] =
∫ ∞

0

dKfDK
(dK)ddK ≈

∫ dmax
K

0

dKKλe−λdK ddK

≈ 1
λ

[
1 − log

(
K

K−1

)K−1
]

, (35)

and the delay variance is

V ar[DK ] = E[D2
K ] − (E[DK ])2

≈ 1
λ2

{
1 − K(K − 1)

[
log
(

K
K−1

)]2}
. (36)

Since K << n whp, we conclude that the average delay and
variance for any K are fractions of 1

λ and 1
λ2 , respectively, and

they also scale like Θ(n) and Θ(n2). Nevertheless, the number
of nodes does not scale to infinity in real MANETs, and for a
fixed n we can obtain significant average and variance delay
reductions for small values of K compared to the single-copy
relay scheme, as it is shown in Table I. For example, if K =
2 a reduction of more than 69% over the average delay is
obtained (i.e., for single-copy Mean= 1

λ , for multi-copy (K =
2) Mean= 0.307

λ ). Observe also that the mean and variance
values decrease when K increases, i.e., the dispersion from
the mean delay is significantly diminished.



TABLE I

AVERAGE DELAY AND VARIANCE FOR SINGLE-COPY [1] AND

MULTI-COPY (1 < K << n) TRANSMISSION OBTAINED FROM EQS. (27),

(35), (36), AND RESPECTIVE ASYMPTOTIC DELAY VALUES dmax
K FROM

EQ. (33) (OR EQ. (41)), FOR FINITE n.

Copies Mean Variance dmax
K

Single-copy 1
λ

1
λ2 ∞

K = 2 0.307 1
λ

0.039 1
λ2

log(2)
λ

K = 3 0.189 1
λ

0.014 1
λ2

log(3/2)
λ

K = 4 0.137 1
λ

0.007 1
λ2

log(4/3)
λ

C. Relationship between Delays

We showed that the throughput of our multi-copy scheme
is the same order as the one-copy scheme [1]. Indeed, we
showed that Λ ≈ 0.14 for single-copy and Λ ≈ 0.12 for multi-
copy (K > 1), for θ = 1

3 . This capacity is proportional to
the probability of a packet reaching the destination. Hence,
because only one copy of the packet is actually delivered
to the destination for single-copy or multi-copy, their total
probabilities can be approximated at their respective delivery
time, i.e.,

P

{
K⋃

i=1

[|Xi(s) − Xdest(s)| ≤ ro | s = dK ]

}
≈ P{|X1(s) − Xdest(s)| ≤ ro | s = d}, (37)

and so their ensemble averages are

EU

[
P

{
K⋃

i=1

[|Xi(s) − Xdest(s)| ≤ ro | s = dK ]

}]
≈ EU [P{|X1(s) − Xdest(s)| ≤ ro | s = d}] , (38)

whose solution must be obtained by substituting Eq. (22) (for
s = dK and s = d respectively) on both sides of Eq. (38) and
solving for dK for the particular model of random motion of
nodes. For a steady-state uniform distribution for the motion
of the nodes, a simplified solution is obtained by substituting
Eqs. (28) and (32) in Eq. (38), i.e.,

K
(
1 − e−λdK

) ≈ 1 − e−λd. (39)

Solving for dK we have

dK ≈ 1
λ log

(
K

K−1+e−λd

)
. (40)

This last equation reveals very interesting properties for the
strategy of transmitting multiple copies of a packet during
Phase 1. If K = 1, then obviously dK = d. If we let d → ∞,
n be finite, and because K << n, then we have

dmax
K ≈ lim

d→∞
1
λ log
(

K
K−1+e−λd

)
= 1

λ log
(

K
K−1

)
if K > 1= cte. (41)

Therefore, if we choose K strictly greater than one, then
the delay obtained in the multi-copy relay scheme is bounded
for a finite number of nodes n, even when the single-copy
relay scheme in [1] incurs infinite delays. This is the same
asymptotic value already predicted by Eq. (33). The last

column of Table I shows values of this asymptotic delay for
the single-copy and multi-copy (2 ≤ K ≤ 4) cases, expressed
as a function of the mobility parameter λ, obtained from Eq.
(41) (or Eq. (33)) for a finite number of nodes n. Note that
the time-to-live threshold must be set greater than the worst
asymptotic delay (K = 2) to allow the packet to be delivered,
i.e., dmax

2 = log(2)
λ < TTL.

Fig. 6 shows curves for Eq. (40), where λ was taken to
be equal to one hundredth. The case of single-copy is also
plotted. In all cases, except single-copy, the delay dK tends to
a constant value as d increases. Hence, for a finite n, the multi-
copy relay scheme can reduce a delay of hours in the single-
copy relay scheme to a few minutes or even a few seconds,
depending on the network parameter values.
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Fig. 6. Relationship between delays dK and d for single-copy, K = 2, and
K = 4, for a uniform distribution resulting from the random motion of the
nodes for the network in steady-state.

Clearly, we can allow the sender itself to keep a copy of
the packet it has transmitted, because there is a chance of
this sender finding the destination before all other K relays.
This results in K + 1 nodes looking for the destination, thus
reducing the delay compared to using K relays.

D. Simulation Results

To validate our theoretical analysis and approximations, we
performed some simulations to compare the behavior of our
multi-copy packet forwarding strategy. We used the BonnMo-
tion simulator [19], which creates mobility scenarios that can
be used to study mobile ad-hoc network characteristics.

We implemented the random waypoint mobility model [20],
[21] for the random motion of the nodes (as it resembles
the uniform mobility model [7]). In this model, nodes are
initially randomly distributed in the network area. A node
begins its movement by remaining in a certain position for
some fixed time, called pause time distributed according to
some random variable, and when it expires the node chooses
a random destination point in the network area and begins



to move toward that point with a constant speed uniformly
distributed over [vmin, vmax], where vmin and vmax stands for
minimum and maximum velocity respectively. Upon arrival at
the destination, the node pauses again according to the pause
time random variable and the process repeats. Nodes move
independently of each other.

In our simulations we implemented the simplified version
of the random waypoint mobility model, where no pause was
used and vmin = vmax = v . Fig. 7 shows the results for 1000
seconds of simulations for n = 1000 nodes, v = 0.13 m/s,
ro = 0.02 m, and a unit area disk as the simulation area,
which results λ = 0.0052. To obtain a solution close to
the steady-state behavior, we run 40 random topologies and
averaged them as follow. In each run we choose randomly
a node with K = 2 and K = 4 neighbors, respectively,
within ro, and measured the time that each of these K nodes
reach each of the other n − K nodes in the disk (i.e., except
the sender and its other K − 1 neighbors) considering each
of them as a destination. The delay of the sender’s nearest
node reaching each destination is by definition d, and dK

is the minimum time among all the K nodes that reach the
destination. Figs. 7(a) and (b) shows all pairs of points (d, dK)
obtained in this way for K = 2 and K = 4, respectively. In
each graph we plot a 7th degree polynomial fit for all the
points as well as an average obtained by taking the mean
of consecutive 90 points. We also plot the theoretical curve
(from Eq. (40)) for the steady-state uniform distribution for
the same parameters. We see that the averaged 90-points curve
follows the polynomial fit and that they both accompany the
steady-state uniform distribution predicted by theory as they
are related mobility models. We only observe the asymptotic
behavior for the experimental curves up to 800 seconds. After
that the polynomial fit begins to fall and does not represent the
actual asymptotic behavior anymore due to the natural lack of
samples at this part of the graph.

VIII. CONCLUSIONS

We have analyzed delay issues for two packet forwarding
strategies, namely, the single-copy two-phase scheme advo-
cated by Grossglauser and Tse [1], and a multi-copy two-
phase forwarding technique. We found that in both schemes
the average delay and variance scale like Θ(n) and Θ(n2)
for n total nodes in a mobile wireless ad-hoc network. In the
case of multi-copy relaying, multiuser diversity is preserved
by allowing one-time relaying of packets and by delivering
only the copy of the packet carried by the node that first
reaches the destination close enough so that it successfully
delivers the packet. The handshake phase with the destination
lasts a negligible amount of time and prevents the delivery
of multiple copies of the same packet to the destination. A
time-to-live threshold allows the additional nodes carrying the
packet copy already delivered to drop it from their queues as
soon as the lifetime expires. We also show that our technique
does not change the order of the magnitude of the throughput
capacity in the MANET compared to the original multiuser
diversity scheme by Grossglauser and Tse [1].
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Fig. 7. Simulation results for the random waypoint mobility model. Each grey
point is a pair (d, dK) delay measured for 40 random topologies all plotted
together. A 7th degree polynomial fit for all the points and a 90 consecutive
points average are plotted for (a) K = 2 and (b) K = 4. The theoretical
curve for the steady-state uniform distribution is also plotted.

We showed that our multi-copy strategy is able to reduce
the average delay value by more than 69% of that attained
in the single-copy strategy for a fixed number n of total
nodes in the network. The multi-copy technique also has
an advantage of presenting bounded delay for a finite n,
after ensemble averaging with regard to all possible starting
uniform distribution of the nodes in the disk. Theoretical and
simulations results were presented.

Lastly, we have analyzed the interference effects for a large
number of nodes n in the network. We showed that the
signal-to-interference ratio for a receiver node communicating
with a close neighbor tends to a constant as n scales to
infinity, when the path loss parameter α is greater than two,
regardless of the position of the receiver node in the network.
Therefore, communication is feasible for close neighbors when
the number of interferers scale to infinity. For the receiver
nodes at the boundary of the network, we showed that, as
expected, they experience less interference than those inside.
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