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Abstract— In this work we address the problem of esti-
mating parameters of diffusion phenomena via autonomous
wireless sensor networks. Diffusion phenomena, such as the
propagation of a gas in the air or of a chemical agent in the
water, can be modeled by means of partial differential equa-
tions (PDE’s). In several scenarios, the parameters charac-
terizing such models, i.e. the coefficients of the PDE’s, are
not known a-priori and need to be estimated. We develop
an adaptive approach for the distributed identification of the
parameters of diffusion models for both the cases of known
and unknown boundary conditions (BC’s). The technique
also applies to the case of spatially varying parameters. We
present simulation results to show the performance and the
various trade-offs of the method.

Keywords— Sensor networks, physical models, partial dif-
ferential equations, diffusion phenomena, distributed iden-
tification, prediction, data gathering.

I. Introduction

Wireless sensor networks aim to provide a smart inter-
action with the physical world. They can be deployed at
low cost and in large numbers in remote environments to
provide autonomous and intelligent measurements, answer
queries, perform monitoring tasks. An important set of ap-
plication scenarios consists in monitoring phenomena hav-
ing a diffuse extension over the space. Examples of relevant
phenomena include the temperature field in an ecosystem,
clouds of gases in the air, polluting agents in the sea. In
such cases, a sensor network may be required to transmit
and keep updated a map of the phenomenon to a remote
base station (BS) and to answer queries from the BS.

A widely studied class of approaches to handle the above
problems consists simply in continuously transferring all
the samples of the phenomenon taken at the various sensor
locations to the BS. This is often referred as data gathering.
In this contest people study the optimal way (in the sense of
least energy consumption) to transfer node measurements
to a remote base station (BS). A typical assumption is that
all nodes sample the sensor field uniformly in time and
generate a packet for each round of measurements. All
packets are delivered to the BS through various aggregation
strategies [1].

It must be remarked that many of the the aforemen-
tioned methods implicitly treat the sampled data as if they
were an i.i.d. process. However, natural phenomena are
typically characterized by strong spatial and temporal cor-
relations and therefore the i.i.d assumption may lead to
methods redundant in computation and communication.
Recall that usually sensor network devices are severely en-

ergy limited. In many real world applications, such corre-
lations can be characterized by relatively simple physical
models, e.g. one or a couple of partial differential equa-
tions (PDE’s). For instance, partial differential (diffusion)
equations can be used to model phenomena such as the
propagation of a gas in the air and of a polluting fluid in
the water, or the evolution of the temperature in a material
[2].

Therefore, physical models can give fundamental insights
on many phenomena potentially interesting to sensor net-
work applications. If this is the case, exploiting physical
models in designing wireless sensor networks algorithms
can lead to very appealing applications as it embeds use-
ful a-priori knowledge of the phenomenon. For example,
physics can be used to design prediction schemes or to pro-
vide a compact parametric description of the phenomenon
[3], or to design more efficient encoding schemes for sensor
data [4].

A relevant problem in the aforementioned framework is
the identification of unknown parameters (e.g. the diffusion
coefficient of a certain gas) of physical models through sam-
ple sensor data. The knowledge of the parameters, along
with boundary and initial conditions, allows the complete
characterization of the monitored phenomena and can be
potentially exploited in many sensor network applications.
There are many mathematical challenges in the estima-
tion of the parameters of diffusion models even in a tra-
ditional centralized scenario [5]. Those challenges become
much harsher in a sensor network scenario, due to the well
known limitations in computation and communication of
those devices, but also due many uncertainties (e.g. on
node locations, on boundary conditions and sources) likely
to be associated to those environments.

In this work, we assume the existence of an underly-
ing diffusion PDE model for the physical phenomenon be-
ing monitored by the sensor networks (e.g. propagating
gasses). To our knowledge, this research is one of the first
studies on distributed identification of PDE parameters.
In particular, we study the problem under different kinds
of boundary conditions and with a-priori knowledge of the
boundaries as well without it. The latter can be the case
of several real scenarios where the sensor network must
estimate initially unknown information about boundaries.
Besides, the boundary conditions can be used to model
phenomena affected by sources external to the sensor field.
Furthermore, we consider also the case of parameters vary-



ing with the space.
The rest of this paper is organized as follows. Section II

gives a summary over related works on non-sensor network
centralized approaches for the identification of coefficients
of diffusion models. The PDE diffusion model is introduced
in Section III. The problem we address is presented in
Section IV. Sections V and VI present our approach to the
estimation of the parameters for the cases of known and
unknown boundaries respectively. Section VII discusses
the issues related to the relaxation of some assumptions
to more realistic scenarios. Finally simulation results are
shown and discussed in Section VIII.

II. Review of Related Work

The assumption of i.i.d. processes, which is implicit to
many data gathering approaches [1], is in general unrealis-
tic for modeling physical phenomena sampled by a sensor
network. In many scenarios, there do exist some correla-
tion of measured data, which can be exploited to develop
a more effective data gathering system. One such example
is the monitoring of the diffusion of some substance (e.g.
the propagation of toxic gas). The sensor network sends to
the BS the spatio-temporal samples of the phenomenon of
interest, which have strong correlations. The exploitation
of such correlations by means of a physical model, which
corresponds to the diffusion PDE in this research, has the
potential to reduce the amount of data to be transfered to
the BS. There is not yet much research on physical mod-
eling problems in sensor networks. Two very recent works
in such areas are [3, 4]. In [4] some encoding schemes ex-
ploiting the heat diffusion model are derived.

A key problem in physics based sensor networks is the
identification of model parameters (the diffusion coeffi-
cients) via in-network distributed processing. Centralized
algorithms for the identification of PDE coefficients have
been presented in the literature (see the references in the
next paragraph). However, to the best of our knowledge,
there is little research on a distributed approach to achieve
this goal, except for our preliminary work [3].

The problem of identification of parameters of diffu-
sion models has been investigated throughout mathemati-
cal and numerical methods by people in the area of material
sciences [6,7]. Besides, the identification and control of sys-
tems modeled by PDE’s have been studied by researchers
in the fields automatic control and applied mathematics
[5, 8]. In this context, systems represented by PDE’s are
referred to as infinite dimensional or distributed systems1

[9]. Moreover, a lumped system indicates a system that
has discrete components (e.g. the discretized version of an
infinite dimensional system). Here, we follow the termi-
nology of system theory, but reserve the term distributed
algorithms to indicate algorithms using multi-point inde-
pendent computations and term distributed computation
with the same meaning as commonly used in the sensor
network context.

1Notice that the term distributed systems has a different meaning
from those normally given in the sensor network literature.

Several adaptive algorithms for the identification of pa-
rameters of infinite dimensional systems in the continuous
time-space domain have been presented [5, 8]. One major
application of this study is the automatic control of PDE-
modeled industrial plants. Adaptive control schemes that
rely on the estimation system states and unknown param-
eters of a plant were proposed by Baumeister et al. [8].
They also developed a theory on the use of a finite dimen-
sional approximation to the infinite dimensional estimator.
Orlov and Bentsman [5] studied the problem of identifying
an infinite dimensional system with spatial-varying param-
eters. They derived some constructive identifiability con-
ditions that allow to determine persistently exciting input
sources. In [10], Syrmos et al. formulated the problem via
discrete-time state space equations and then estimated the
parameters using nonlinear filtering techniques such as the
of the extended Kalman filter (EKF).

All aforementioned algorithms are centralized and sen-
sors are assumed to be connected to the computing cen-
ter directly. Besides, the computing center is assumed to
have perfect knowledge of boundary conditions and manip-
ulability of sources. These assumptions are reasonable in
classic system control and identification problems, but not
applicable in a wireless sensor network environment. In the
latter context, the amount of data being exchanged among
nodes is a critical parameter due to the limited amount of
energy in sensor nodes and the relatively high communica-
tion cost. We address some of the above constraints in this
work, as described in the next sections.

III. The Diffusion Model

This section introduces the physical model that we adopt
in this research. Consider a physical phenomenon repre-
sented by the space and time varying scalar field x(ξ, t),
where 0 < ξ < L and t > 0. If x(ξ, t) follows a diffusion
model, then the following partial differential equation holds
[2]:

xt(ξ, t) = Dxξξ(ξ, t), (1)

where the scalar D is called diffusivity and xt(.) and xξξ(.)
denote respectively the first order time derivative and the
second order spatial derivative of x(.). The above parabolic
PDE is called diffusion equation.

Typically x(ξ, t) represents a concentration. The mean-
ing of equation (1) is that there is net flow of substance from
the regions with higher concentration of the substance to
the ones of lower concentration. Heat diffusion is another
example of diffusion process. In such a case eq. (1) is
called the heat equation and x(.) represents a temperature,
T (.).2 An interesting property of the diffusion equation
is the smoothing effect: thanks to the proportionality be-
tween time derivative xt(ξ, t) and local curvature xξξ(ξ, t),
eq. (1) will have over the time a low pass filtering action
on the spatial profile of x(ξ, t).

2For simplicity we consider a mono-dimensional (1-D) case in space.
The extension to a higher dimensional case is straightforward [3].
However, note that equation (1) can already model real phenomena
such as the diffusion of fluid in a water channel or the propagation of
heat in a metallic rod.



The diffusion equation can be solved with the knowledge
of the initial condition (IC), i.e. x(0, ξ) = x0(ξ) and the
boundary conditions (BC’s). There are several types of
boundary conditions, modeling different kinds of physical
constraints at the boundaries. The two most common types
of BC’s are Dirichlet and Neumann conditions. Given a
boundary ξi = 0 or L, the Dirichlet condition prescribes a
certain value for the scalar field:

x(ξi, t) = ψi(t). (2)

The Neumann condition on the other hand imposes a cer-
tain flux at the boundary, i.e.:

xξ(ξ, t)|ξ=ξi
= ψi(t). (3)

In more general cases, the diffusion equation can present
also the lower order derivative terms xξ(ξ, t), x(ξ, t) and a
source u(ξ, t), that is:

xt(ξ, t) = θ1xξξ(ξ, t) + θ2xξ(ξ, t) + θ3x(ξ, t) + u(ξ, t). (4)

The parameter θ2 is sometime called velocity, while θ3 is
referred as dissipation or dispersion. In some scenarios the
parameters {θi} can be also space and time varying. Under
particular hypothesis on the boundaries and on the param-
eters (they must be constant), the diffusion equation can
be solved analytically. Otherwise numerical methods are
needed.

In order to solve the diffusion equation by means of nu-
merical methods, the derivatives must be approximated
with finite difference as:

xξ(ξ, t)
∣∣
ξ=ih

≈ xi+1(t) − xi(t)
h

(5)

and

xξξ(ξ, t)
∣∣
ξ=ih

≈ xi+1(t) + xi−1(t) − 2xi(t)
h2

, (6)

where h is the spatial sampling period. The application
of the above finite differences to equation (1) at a generic
point of discretization (ξ, t) = (ih, kts) gives:

xi(k + 1) =

=
Dts
h2

[xi−1(k) − 2xi(k) + xi+1(k)] + xi(k), (7)

where ts is the sampling time and xi(k) := x(ih, kts). It
can be shown that the sampling time ts must obey the
following inequality for the discrete approach to converge
[2]:

ts <
h2

2D
. (8)

Since the size of the sampling space can be also constrained
by the profile of the scalar field, the inequality in (8) can
pose a severe restriction on the sampling time.

IV. Problem Formulation

We consider a finite set of sensor nodes S = {si} de-
ployed over the one-dimensional sensor field [0, L]. The
nodes are measuring discrete-time samples of the scalar
field x(ξ, t), continuous in time, for t > 0 and space for
0 < ξ < L. It is assumed that the evolution in time and
space of x(.) can be modeled by the following sourceless
diffusion equation:

xt(ξ, t) = θ1xξξ(ξ, t) + θ2xξ(ξ, t) + θ3x(ξ, t), (9)

having IC x0(ξ). The boundaries, ξ = 0 and ξ = L, are
subject either to Dirichlet or to Neumann conditions, not
necessarily homogeneous. Notice that even if we did not
include a source term in our model (9), the BC’s can be
used to model external sources. Hence the model we con-
sider can reflect many real scenarios. The topic of the joint
source and parameter estimation is an open problem for
future research.

We assume that the node measurements are corrupted
by additive zero mean white Gaussian noise, to model ther-
mal noise from the analog/digital circuitry connected to
the sensor device and also the finite precision effect of the
A/D converter. Thermal noise usually dominates over the
quantization effect. Furthermore the nodes {si} know their
absolute location {pi} in the field and they are partitioned
into clusters {Sj}. We also assume that there is reliable
communication among the nodes (i.e. no packets get lost)
and that within a cluster, member nodes can talk simul-
taneously to the leader without interference. The task
of the sensor network is to identify the parameters {θj},
j = 1, 2, 3, at some of the nodes {si}.

Approaches to solve the aforementioned problem can
have many applications in sensor networks. For instance,
the parameters can be estimated in return to a query from
the BS in order to study the physical properties of a par-
ticular environment. Moreover, the knowledge of the pa-
rameters, along with IC’s and BC’s, allows us to solve the
PDE problem. Therefore, the estimates of the PDE coeffi-
cients could be used by the nodes the to perform in-network
prediction tasks (e.g. via standard Kalman filtering). In
such a scenario, only relevant events need to be notified
to the base station. Alternatively the estimates could be
sent to the BS (together with IC’s and BC’s) to supply the
information necessary to reconstruct and predict the phe-
nomenon without the need for the sensor network to send
raw data continuously to the BS. Note that the latter op-
tion requires the transmission of a smaller amount of data
with respect to data gathering also because the rate of vari-
ation of the parameters in time and space is slower than
the one of the scalar field itself. Furthermore the estimates
can be used to perform coding schemes [4].

V. Distributed Identification of Diffusion

Parameters: Case of Known Boundaries

This section describes our approach to the identification
of parameters of diffusion models. Here we assume that
the boundary conditions are known a priori and that this



knowledge is embedded in the nodes of the sensor network.
This may be the case of some controlled plant applica-
tion scenarios or when the sensor region overextends the
phenomenon region (here homogeneous Dirichlet BC’s can
be assumed). Under those assumptions a global discrete
model for the physical phenomenon being monitored can
be considered. The proposed discrete time-space model is
presented in Subsection V-A. The algorithm to identify
system parameters is derived in Subsection V-B. The ex-
tension to the case of spatially varying parameters is con-
sidered in Subsection V-C.

A. Model Discretization and Clustering

We derive a discretized model for the PDE problem de-
scribed in equation (9) to be adopted by the nodes in or-
der to identify the parameters. We assume that the infor-
mation on the exact BC’s is provided to the nodes (e.g.
by means of some information flooding mechanisms). The
nodes are partitioned into clusters, either statically or dy-
namically. The identification process is performed at some
of the cluster heads. A cluster head receives measurements
from the member nodes and process them adaptively (this
is a data fusion approach). Here we do not specify the
mechanisms to select the cluster heads nor to select the ac-
tive clusters. For instance, some distributed election tech-
niques for node clustering are described in [11].

ξ=1ξ=0

…

x1(k)

*

y1 (k)

+v(k)
x(ξ,t)

x2(k)

xi(k)

Fig. 1. State variables, xi(k), and a noisy sensor measurement y1(k)
for the monodimensional scalar field x(ξ, t).

The scalar field x(ξ, t) is sampled in space and time at
the points (ih, kts) where h and ts are respectively the sam-
pling periods in space and time. i and k are integers. The
discrete samples xi(k) represent the state of the system.
Defined N := L

h , there are N + 1 sampling points in the
sensor field. We will show in the next paragraphs that the
number of state variables can be less or equal to N + 1,
depending on the type of BC’s. The sampling time ts must
be selected according to the inequality constraint in (8) and
therefore it is usually smaller than h.

The discretization in space and time of the PDE given
in eq. (9) requires approximating spatial and time deriva-
tives by means of finite differences, eqs. (5-6). The com-
plete discretized model, called lumped system, includes the
noisy sensor measurements. Figure 1 illustrates the spatial
sampling of a scalar field.

For a generic point ih not adjacent to the boundaries, the
expression for xi(k) is similar to the one in equation (7),
but there may be more terms if lower order space deriva-
tives are also included in the model. If the point is next to
the boundaries, i.e. for i = 1 or i = N , the effect of the
BC’s need to be considered. We express Dirichlet bound-
ary condition, eq. (2), by introducing the boundary value
as virtual source term in the state equation. Hence, for
example we define x1(k), which is next to the boundary
point ξ = 0 where x0(k) = ψ0(t)|t=kts

, as:

x1(k + 1) = θ1
ts
h2

[x0(k) − 2x1(k) + x2(k)] + x1(k),

= θ1
ts
h2

[−2x1(k) + x2(k)] + x1(k) + θ1
ts
h2
ψ0(kts). (10)

In approximating a Neumann BC, eq. (3), we must in-
clude the boundary variable x(ξi, t) among the state vari-
ables, because this is not constrained as for the Dirichlet
BC. Then we express x(ξi, t) with a finite difference ap-
proximation of the actual BC. For example, the BC

xξ(ξ, t)|ξ=0 = ψ0(t)

can be approximated in the discrete space as:

xξ(ξ, t)|ξ=0 ≈ x1(t) − x0(t)
h

and leads to the expressions:

x0(k + 1) = θ1
ts
h2

[x0(k) − 2x1(k) + x2(k)] + x1(k)

−hψ0(t) (11)

x1(k + 1) = θ1
ts
h2

[x0(k) − 2x1(k) + x2(k)] + x1(k).

The discretization in space and time of PDE and mea-
surements leads to the lumped model described by the fol-
lowing state-space equations:

x(k + 1) = A(θ)x(k) + B(θ)u(k), (12)

yj(k) = Cjx(k) + v(k), (13)

where j is the index of a cluster Sj . The state vector x(k)
represents the uniformly sampled version of the scalar field
x(ξ, t), with xi(k) := x(ih, kts). The state matrix A(θ) is a
square matrix dependent on the spatial derivatives of x(.)
in the right hand side of eq. (9), the BC’s, the sampling
periods h and ts and the set θ of parameters to identify. If
the parameters are constant over the space, A(θ) is given
by:

A(θ) = ts

3∑
m=1

θmAi + I, (14)

where I is the identity matrix and the matrices Ai are
obtained from finite difference approximation of the spatial
derivatives on the right hand side of equation (9).

Equation (13) expresses the sensor measurements yj(k),
in a cluster Sj , as a linear interpolation, Cjx(k), of the



state variables which is affected by the AWGN term v(k).
Note that in general the nodes have random locations with
respect to the sampling points {ξ = ih : i = 1, 2, ...}. So
in most of the cases eq.(13) is a linear approximation of
the relationship between the state variables and the noisy
sensor measurements. In general eq. (13) should be written
as:

yj(k) = gj(x(k)) + v(k), (15)

where gj(x(k)) is a non linear vectorial function of the state
variables. Hence a polynomial interpolation may approxi-
mate gj(.) better than a linear one.

Example
In this example, we derive a lumped model for the infinite
dimensional system described by the diffusion equation:

xt(ξ, t) = θxξξ(ξ, t),

where t > 0 and 0 < ξ < L with mixed Dirichlet and
Neumann boundary conditions i.e.:

x(0, t) = ψ(t),

xξ(L, t) = 0.

There are two sensors in the field, respectively, in the loca-
tions ξ1 = 3L/2 and ξ2 = 3L/5, the spacial sampling rate
is h = L/5, and there is only one cluster formed by the two
sensors.

The following 5 × 5 state matrix A(θ) can be derived
in a straightforward manner through the finite differences
approximation presented in Equation (6). That is,

A(θ) =
tsθ

h2




−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 1 −2 1


 + I,

(B(θ)u(t)) =
θ

h2

[
ψ(t) 0 . . . 0

]T

and the measurement matrix C can be written as:

C =
[

1
2

1
2 0 0 0

0 0 1 0 0

]
�

In the above framework, some kind of information flood-
ing mechanism id needed so that the active nodes can share
the knowledge of all the model parameters: e.g. location
of the boundaries and spatial sampling rate h to determine
matrix Cj . Furthermore, under the assumptions of known
boundaries the nodes share the same state matrix A(θ),
but have different measurement equations given by (13).
In an application scenario,the selection of initial parame-
ters could be led by the BS station or a node leader in the
sensor network to avoid mismatch in model definition.

B. Parameter Estimation via Kalman Filtering

The next step consists in the adaptive identification of
the unknown parameters θ. For this purpose, we adopt the
extended Kalman filter (EKF) [12], [10]. The key idea of
the EKF approach is to treat unknown parameters as ad-
ditional state variables, by defining an augmented system,
where the state vector is defined as

z(k) :=
[

x(k)
θ

]
.

The augmented system is non linear, since parameters θ
are multiplied by state variables x(k). Here, the Kalman
filter is used as the state predictor to the linearized version
of the augmented system and the estimates of parameters
θ are obtained because those are treated as additional state
variables in the augmented system. The augmented system
can be written as

z(k + 1) = f(z(k),u(k))

=
[

A(θ)x(k) + B(θ)u(k)
θ

]
, (16)

yj(k) = Cjx(k) + v(k). (17)

In order to apply the Kalman filter, the Jacobians of the
state and measurement equations must be derived. Those
are defined as follows from equations (16) and (17):

J(k) :=
∂f(z(k)u(k))

∂z

∣∣∣∣
z=ẑ

, (18)

Hj := [Cj 0]. (19)

Then, the Kalman filter can be applied. Given the mean
of the state vector, z̄0, the initialization for the covariance
matrix P can be found conventionally as

P0 = E[(z − z̄0)(z − z̄0)T ]. (20)

Therefore, at each measurement time, the filter equa-
tions are [12]:

L(k) = P(k/k − 1)HT
(
HP(k/k − 1)HT + R

)−1

(21)
P(k/k) = P(k/k − 1) − L(k)HP(k/k − 1) (22)
ẑ(k/k) = ẑ(k/k − 1) + L(k) (y(k) − Cix̂(k/k − 1))

(23)

where R is the covariance matrix of noise measured by sen-
sors and the fact that Hẑ = Cx̂ is applied in the derivation
of Equation (23). Then, the state estimate and the covari-
ance are propagated to the next measurement time via

P(k + 1/k) = J(k)P(k/k)JT (k) (24)
ẑ(k + 1/k) = f(ẑ(k), u(k)). (25)

Ljung [13] proved that the extended Kalman filter may
converge to biased estimates of parameters. This is essen-
tially due to the fact that the state estimates are performed
based on the linear projection of a nonlinear system.



C. Space Varying Parameters

In some scenarios the parameters can vary with the
space. This may model for example a physical medium hav-
ing variable diffusivity. A parameter varying with the space
(θ(ξ)) will result in a set of parameters (θi) in the state
space matrix A(θ). Each parameter θi in the lumped sys-
tem corresponds to the sample of the parameter θ(ξ)|ξ=ih

in the infinite dimensional system.

Example
Consider an infinite dimensional system described by the
following diffusion equation. Here, the diffusion coefficient
θ is space variable

xt(ξ, t) = θ(ξ)xξξ(ξ, t).

Then, the corresponding state matrix becomes

A(θ) =
1
h2




−2θ1 θ1 0 . . . 0
θ2 −2θ2 θ2 0 . . .
...

...
...

. . . . . .
0 . . . 0 θn −2θn


�

From the above example it can be seen that the general
expression of the system model in equations (12) and (13)
is valid even if the coefficients θi vary with the space.

VI. Distributed Identification: Case of

Unknown Boundaries

In many realistic sensor network scenarios the a priori
knowledge of the BC’s may not be available. Therefore it
may be necessary to sample on line the boundaries of the
node region. Here we propose a model where each cluster
acquires the BC’s through the samples of the nodes located
at its boundaries. This implies the definition of local state
space models for each cluster.

Here we assume that the BC’s are unknown. All the
other assumptions given in Section V remain valid. The
knowledge of the BC’s is necessary in order to define the
state space model and therefore to identify the parameters
of the diffusion model. A possible approach to estimate the
BC’s is to have some of the nodes in charge of sampling the
boundaries. We consider here a more general case where
the boundaries can be defined not only globally, for the
sensor field, but also locally, for a specific subregion. In
order to save on communication energy and also keep a
low latency, it appears reasonable to have the cluster heads
receiving the sampled boundary information from nearby
nodes (one hop away). In this framework, the monitored
phenomenon is “sliced” in many subregions, covered by
clusters and a local lumped model is defined in each cluster.

Consider a cluster of nodes Sj ⊆ S, and its subset of
boundary nodes bj . In one-dimension the boundary loca-
tions are indicated respectively as ξ(j)l and ξ(j)r (see Figure
2). The local PDE problem is defined as equation (9) but
only in the space interval ξ(j)l < ξ < ξ

(j)
r . Besides, the

boundary conditions are known through the noisy samples

of the the nodes bj and can be considered as Dirichlet BC’s.
That is the estimated boundaries

x̂(ξl, t) = x(ξl, t) + wl(t) (26)
x̂(ξr, t) = x(ξr, t) + wr(t), (27)

where wl(t) and wr(t) are AWGN terms. Therefore, after
defining the local sampling space and time: hj and tj , and
imposing the above BC’s, the state space model for the
cluster Sj can be written as:

xj(k + 1) = Aj(θj)xj(k)
+Bj(θ)(uj(k) + wj(k)), (28)

yj(k) = Cjxj(k) + v(k). (29)

where w(k) is a vector zero mean white Gaussian noise
affecting the state of the system. If the parameters are not
space varying, θj = θ.

ξ=0

… …

ξ=1

yL (k)
y1 (k) yR (k)

* * *

x(ξ,t)

Fig. 2. Local model: The sampled BC’s, yl(k) and yr(k), are sent to
the cluster head.

The implication on the EKF equations of the noise af-
fecting the state in eqs. (28) and (29) is that the update
of the covariance matrix, eq. (24) in Subsection V-B now
includes also a term related to the covariance matrix, Q of
the state noise. That is:

P(k + 1/k) = J(k)P(k/k)JT (k)

+B(θj)QB(θj)
T
. (30)

The above framework, based on local models, can be
suitable for the identification of spatially varying param-
eters. If the variation of the parameters is slow enough
we may assume it to be constant over a limited subregion.
Therefore we may apply the model defined in eqs. (28) and
(29) to estimate the parameters as if they were constant
over a cluster. Then the global space varying parameters
can be reconstructed by interpolating the estimates per-
formed at the clusters, as it is shown in the experiments
(Subsec.VIII-C).

VII. Going Toward Real Scenarios

So far, we have made some simplified assumptions, such
us the monodimensionality of the sensor field and the nodes
knowing their exact locations. For the particular case of



the BC’s, we moved from the case of assumptions not al-
ways realistic, i.e. BC’s information available at the nodes
(Sec. V), to considering some nodes sampling the bound-
aries (Sec. VI). Here we discuss on the possible issues when
relaxing some assumptions to a less ideal scenario and also
on some implementation aspects of our framework.

Data gathering is one of the possible applications for
this research. In a sourceless scenario, the sensor network
should update the base station with the PDE parameters,
the initial and boundary conditions. We note that our ap-
proach can provide IC’s at an arbitrary time instant after
the convergence, as it uses a joint state and parameter pre-
diction method (the EKF). So the IC information can be
aggregated to parameter estimates for an efficient deliv-
ery to the BS. On the other hand, updating the BS with
boundary conditions, can be more demanding in terms of
communication cost. However, this should involve only a
subset of the nodes and therefore should be cheaper than
performing data gathering throughout the whole network.

We mentioned that the sampling time ts for the estima-
tion algorithm is constrained to the inequality (8). We did
not investigate yet whether ts is much smaller than the
Nyquist sampling time. If this is the case, than parame-
ter estimation could be more energy demanding than data
gathering. However, it must be pointed out that the pa-
rameter estimation may involve only a subset of the nodes
and a for limited amount of time, as it stops when the
algorithm converges. Therefore the cost due to an even-
tual higher sampling rate for the preliminary estimation of
the parameters should be compensated thanks to a smaller
amount of nodes involved and a shorter sampling time.
Also the number of hops should be lower, as the commu-
nication stays only within the clusters. A better quantifi-
cation of those trade-offs is one of the goals in our future
research.

In a lot of real applications, the problem should consid-
ered at least in 2D. This implies a larger size of the matrices
used in the EKF approach, but not necessarily an increase
in the number of parameters to be estimated (e.g. if the
medium is homogeneous). We plan to investigate methods
to simplify the computation in higher than monodimen-
sional cases.

The uncertainty regarding the node locations may bring
a mismatch between the sampled data and the model
adopted by the EKF. If this is above a certain degree, the
correct convergence of the algorithm could be affected. No-
tice that there is a similar problem also related to the lin-
ear interpolation of the state variables in the measurement
equation of the lumped model (12 - 13). The correct mea-
surement equation should have a non linear term for the
state variables x(k). This matter is also of interest for our
future investigations.

VIII. Experimental Results

The goal of the experiments is to evaluate the perfor-
mance of the algorithms under different conditions that
may arise in a sensor network scenario. In particular, we
want to understand the relationship between performance

and location of the sampling point in the field (Subsec.
VIII-A), the performance when the sampled scalar field
has an initial large spatial bandwidth (Subsec. VIII-B) and
the ability of estimating space varying parameters (Subsec.
VIII-C). The results are discussed in Subsection VIII-D.

A. Locating the Sampling Point

In this experiment, we want to study how the quality
of the estimate varies with respect to the noise and to the
location of the nodes sampling the field. In this set up,
a single node estimates the diffusivity parameter from its
own noisy readings. We measure how the estimation error
varies with the location of the node in the space and the
level of the nodes.
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Fig. 3. Convergence rate of the algorithm versus sensor location and
noise level (top). Profile of the scalar field at the initial state and at
the steady state (bottom).
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Fig. 4. Percent mean estimation error versus sensor location and
noise level.

The measured scalar field is modeled by the diffusion



equation

xt(ξ, t) =
1
π2
xξξ(ξ, t),

defined in the interval 0 < ξ < 1 and t > 0, with ini-
tial condition x(ξ, 0) = 2 cos(π

2 ξ) and Dirichlet boundary
conditions: x(0, t) = 2, x(1, t) = 0.

A single node s in position p is estimating the diffusivity
parameter with sampling time ts = 0.004, about 1/10th of
the right hand side of inequality given by eq. (8). Note
that the sampling space of the lumped model (12)-(13) is
set to 1/11. We assume that the node knows the BC’s.
The position p of s varies uniformly on the ξ axis. Dif-
ferent noise levels, σ2

n, are considered. The average per-
cent error is measured over 200 Monte Carlo trials and for
p = k/11, k ∈ {1, 2, ..., 10}.

We notice that the algorithm does not always converge.
The divergent iterations are excluded from the computa-
tion of the mean error. In this set up, the estimates are
performed only by one single node. This explains the rel-
atively high divergence rate in the noisy cases. The per-
formance would have been much better by processing data
from multiple nodes. Besides increasing the number of sen-
sors, more robust estimates may be obtained also through
some modified versions of the EKF. The percentage of con-
vergent trials is shown in the upper part of Figure 3 while
the mean error w.r.t. the sensor location is shown in Figure
4 for two different levels of noise.

The profiles of the scalar field at the initial time and at
the steady state are shown in Figure 3. It can be noticed
that the performance degrades as the measurements are
taken closer to any of the boundaries. and it is not simply
directly related to the SNR. The SNR is monotonically
decreasing when approaching the point ξ = 1, but the es-
timation performance seems depending also on the rate of
temporal variability of the sample scalar field.
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B. Gaussian Pulse

Here we consider the parabolic equation

xt(ξ, t) =
1
50
xξξ(ξ, t) − 1

50
xξ(ξ, t) − .32x(ξ, t). (31)

Since all the coefficients are nonzero, the equation can
model a phenomenon of advection-diffusion with dissi-
pation. In other words, besides a diffusion, there is a
motion of the concentration (advection) x(ξ, t), due to
the term − 1

50xξ(ξ, t) and also a dissipation due to the
term −.32x(ξ, t). The initial conditions is: x(ξ, 0) =
exp(−(ξ − .3).2/(.08)), with homogeneous Dirichlet BC’s:
x(0, t) = x(1, t) = 0. Here x(ξ, 0) has a larger bandwidth
w.r.t. the I.C.’s of the problem in Subsection VIII-A.

The field x(ξ, t) is shown in Figure 5, while the smoothing
property (Sec. III) of the diffusion equation is highlighted
through Figure 6: the spatial bandwidth of the field is
getting narrower with the time. A cluster of 5 nodes cen-
trally located is used. After 200 Monte Carlo iterations, the
percent mean error plus standard deviation in the estima-
tion of the three parameters are respectively: 1.70 + 3.41,
1.90 + 8.01 and 9.38 + 21.7. The estimates of the PDE
parameters are displayed in Figures 8 and 9.

C. Space Varying Parameters

In this section we address the problem of estimating
space varying parameters under unknown B.C.’s. We con-
sider the PDE system

x(ξ, t) = (θ(ξ)xξ(ξ, t))ξ (32)

in the interval 0 < ξ < 1 and t > 0, with initial con-
ditions: x(ξ, 0) = 2 cos(π

2 ξ) and Dirichlet boundary con-
ditions x(0, t) = 2, xξ(1, t) = 0. This time the diffusion
coefficient is variable with the space and is defined as:

θ(ξ) = θ0 + θ1f(ξ) = .1 − .2(ξ − .5)2.
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Thus eq. (32) can be rewritten as:

x(ξ, t) = θ(ξ)xξξ(ξ, t) + θξ(ξ)xξ(ξ, t). (33)

To identify the coefficients, we partition the sensor field
into clusters and we assume the parameters to be constant
over that cluster. The boundary conditions (time varying)
are acquired by the boundary nodes. The estimates of the
parameters are compared to the true coefficients in Figure
10, to show their accuracy.

D. Discussion

Several factors affect the performance of non centralized
estimates of parameters of diffusion models. As expected,
the SNR, the sampling step of the estimator, the number
of sensors are among those factor. It must be also pointed
out that the location of the sensors in the region plays an
important role. This is not only because the signal level,
and therefore the SNR is different from point to point, but
also because the variability of the field over some areas
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Fig. 9. Estimates of coefficients θ2 (top) and θ3 (bottom).
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is higher and therefore allows better identification of the
parameters.

We also verified that multiple local models with constant
parameters can be used to identify (and hence to approxi-
mate) space varying parameters. This allows to have a lim-
ited number of parameters to be estimated at each cluster.

It can be noticed how in general the convergence of the
algorithm is quite fast. Hence only a relatively small num-
ber of iterations is needed to estimate the parameters (at
least as long as those are constant over the time).

IX. Conclusion

We have focused on the topic of monitoring diffuse phe-
nomena via autonomous sensor networks. In our work, dif-
fusion partial differential equations (PDE’s) were adopted
to model the time and space correlations of the physical
phenomena observed by the sensor field. In this scenario,
the sensor network can send only the model parameters, the
initial and boundary conditions to the base station (BS).



This information suffices to predict the evolution of the
phenomenon without the need of continuous updates of raw
data from the sensor field to the BS. Our main focus here
has been on the distributed identification of parameters of
PDE’s under various types of possibly unknown boundary
conditions. To this end, we presented a method based on
extended Kalman filtering (EKF). We have also addressed
the problem of the identification of spatial varying param-
eters. Simulation results to study the performance of this
scheme have been shown and discussed.

Future work will try to study more in depth how different
factors may affect the convergence and the performance of
the algorithm. We will also focus on the analysis of the
communication cost factors and on the methods to treat
possibly unknown sources in the sensor field.
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