A Layered Architecture for Delay Sensitive Sensor
Networks

Dan Wang, Yan Long and Funda Ergun
School of Computer Science, Simon Fraser University,
Burnaby BC V5A 1S6, Canada,

{danw, ylong, funda}@cs.sfu.ca

Abstract— Sensor networks are powerful tools for performing
monitoring and surveillance tasks over large areas. A sensor is
a cheap, simple device with low power and limited capabilities.
In a sensor network a large number of sensors are deployed to
span the whole area to be monitored. Due to the simplicity and
the large quantity of the sensors involved, collecting data from
a sensor network can be time and energy inefficient.

In this paper, we investigate making the data gathering task
from a sensor network more efficient by using a randomized, lay-
ered architecture. The layers in our architecture are constructed
in a distributed fashion, with each sensor deciding locally on
what layers it will exist. The key property of our technique is
that the information is collected from one layer of the architecture
containing a small subset of the sensors, resulting in fewer hops
and thus smaller data in data aggregation. We provide provably
correct results for the delay incurred and the accuracy of the
results.

In the context of our new techniques, we also explore ways to
speed up the data gathering process even further, such as using
history information. In addition, we consider how to optimize the
structure of our system so that the energy consumption will be
evenly distributed among each sensor, thus extending the overall
lifetime of the entire network.

I. INTRODUCTION

Sensor networks provide a model in which sensors are
deployed in large numbers where traditional wired or wireless
networks are not available/appropriate. Their intended uses
include terrain monitoring, surveillance, and discovery [11]
with applications to geological tasks such as tsunami and
earthquake detection, military surveillance, search and rescue
operations, building safety surveillance (e.g. for fire detection),
and biological systems.

The major difference between sensor networks and tradi-
tional networks is that unlike a host computer or a router,
a sensor is typically a tightly-constrained device. Sensors
not only lack long lifespans due to their limited battery
power but also possess little computational power and memory
storage [2]. As a result of the limited capabilities of individual
sensors, one sensor usually can only collect a small amount
of data from its environment and carry out a small number of
computations. Therefore, a single sensor is generally expected
to work in cooperation with other sensors in the network.
As a result of this unique structure, a sensor network is
typically data-centric and query-based [8]. When a query is
made, the network is expected to distribute the query, gather
values from individual sensors, and compute a final value.
This final value typically represents key properties of the

area where the network is deployed; examples of such values
are MAXIMUM, MINIMUM, QUANTILE, AVERAGE, and
SUM [18][19] over the individual parameters of the sensors,
such as temperature, air or water composition, etc. As an
example, consider a sensor network monitoring the average
vibration level around a volcano. Each sensor lying in the
crater area submits its own value representing the level of
activity in a small area around it. Then the data values are
relayed through the network; during this they are aggregated
so that fewer messages need to be sent. Ultimately, the base
station obtains the aggregated information about the area being
monitored.

In addition to their distributed nature, most sensor networks
are highly redundant to compensate for the low reliability
of the sensors and the environmental conditions. Since data
from a sensor network is the aggregation of the data from
individual sensors, the number of sensors in a network has
a direct impact on the delay incurred in answering a query.
In addition, significant delay is introduced by in-network
aggregation [14][16][18], since intermediate parent nodes
have to wait for the data values collected from their children
before they can aggregate them with their own data.

A long delay is highly undesirable for time-sensitive ap-
plications such as critical condition monitoring and security
surveillance [5]. As a result, there is increasing interest in
research dealing with the delay problem [1][5][24][25].

While most of the techniques for fast data gathering focus
on delay-energy efficiencies, they lack provable guarantees
for the accuracy of the result. In this paper we focus on a
new approach to address the delay and accuracy challenges.
We propose a simple distributed architecture which consists
of layers, where each layer contains a subset of the sensor
nodes. Each sensor randomly promotes itself into different
layers, where large layers contain a superset of the sensors
on smaller layers. The key difference between our layered
architecture and hierarchical architectures is that each sensor in
our network only represents itself and submits its own data for
each query, without the need to act as a “head” of a cluster of
sensors. Therefore, when queried, a sensor will always submit
fresh data. In this model a query will be made to a particular
layer, resulting in an aggregation tree with fewer hops, and
thus smaller delay. Unfortunately, the reduction in delay comes
with a price tag; since only a subset of the sensors submit their
data, the accuracy of the answer to the query is compromised.

In this paper we study the tradeoff between the delay and

the accuracy, proving bounds. We perform this study in the
context of five key properties of the network, MAX, MIN,
QUANTILE, AVERAGE and SUM. We analyze, given a user-
defined accuracy level, what layer of the network should be
queried for these properties. We show that different queries do
show distinct characteristics which affect the delay/accuracy
tradeoff. We also show that for certain types of queries such
as AVERAGE and SUM, additional statistical information
obtained from the history of the environment can help further
reduce the number of sensors involved in answering a query.
We then investigate the new tradeoffs given the additional
information.

The algorithm that we propose for our architecture is
fully distributed; there is no need for the sensors to keep
information about other sensors. Using the fact that each
sensor is independent of others, we show how to balance the
power consumption at each node by reconstructing the layered
structure periodically. This results in an increase in the life
expectancy of the whole network.

A. Related Work

Some pioneering work in addressing the challenges of
sensor networks can be found in [8]. A general overview of
sensor networks can be found in [2]. For routing techniques
and protocols, a survey is in [1].

Sensor networks use data-centric routing instead of address-
based routing; SPIN [10] is the first data centric protocol which
uses flooding; Directed Diffusion [13] is proposed to select
more efficient paths. Several variations and related protocols
with similar concepts can be found in [4][7][20].

As an alternative to flat routing, hierarchical architectures
have been proposed for sensor networks; in LEACH [11],
heads are selected for clusters of sensors; they periodically
obtain data from their clusters. When a query is received, a
head reports its most recent data value. An enhancement over
LEACH can be found in [17]. In [24], energy is focused in a
more refined way where a secondary parameter such as node
proximity or node degree is included. Clustering techniques
are studied in a different fashion in several papers, where
[15] focuses on non-homogeneously dispersed nodes and [3]
considers spanning tree structures.

In-network data aggregation is a widely used technique
in sensor networks. Studies can be found in [18][19][23].
Ordered properties such as QUANTILE are studied in [9].
A recent result in [6] considers power-aware routing and ag-
gregation query processing together, building energy-efficient
routing trees explicitly for aggregation queries.

Delay issues in sensor networks are mentioned in [16][18]
where aggregation introduces high delay since each interme-
diate node and the source have to wait for the data values
from the leaves of the tree, as confirmed by [25]. In [14],
where a modified direct diffusion is proposed, a timer is set
up for intermediate nodes to flush data back to the source if the
data from their children have not been received within a time
threshold. In case of energy-delay tradeoffs, [25] formulates
delay-constraint trees. A new protocol is proposed in [5] for
delay critical applications where energy consumption is of

secondary importance. In these algorithms, all of the sensors
in the network are queried, resulting in ©(N) processing time,
where N denotes the number of sensors in the network, which
incurs long delay. Embedding hierarchical architectures into
the network where a small set of “head” sensors collect data
periodically from their children/clusters and submit the results
when queried [11][17][24] provides a very useful abstraction,
where the length of the period is crucial for the tradeoff
between the freshness of the data and the overhead.

B. Organization of the Paper

In section II, we present the notation that will be used
in this paper. Section III is devoted to a detailed description
of the proposed system architecture. Section IV contains the
theoretical analysis of the tradeoff between the accuracy of
query answers and the latency of the system. In section V, we
address the energy consumption of our system. In Section VI,
we evaluate the performance of our system using simulations.
We conclude the paper and discuss possible future work in
Section VII.

II. PRELIMINARIES

We assume our network has N sensors denoted by
$1,82,...,8n and deployed uniformly in a square area with
side length D. We assume that a base station acts as an
interface between the sensor network and the users, receiving
queries which follow a Poisson distribution with mean interval

length .
We embed a layered structure on our network, with L
layers, numbered O, 1, 2, ..., L — 1. We use r(l) to denote

the transmission range used on layer /: during a transmission
taking place on layer [, all sensors on layer | communicate
using 7 (1) and can reach one another, in one or multiple hops.
Let e(l) be the energy needed to transmit for layer [. The
energy spent per sensor for a transmission is e(l) = r(1)“
where 2 < o < 4 [22]. Initially, each sensor is at energy
level B, which decreases with each transmission. R denotes
the maximum transmission range of the sensors.

III. SYSTEM ARCHITECTURE

In this section, we describe how the layered structure of
our sensor network is constructed and maintained. We also
discuss how the queries are distributed to the sensors and how
the answers are gathered.

A. Network Construction

We would like to impose a layered structure on our sensor
network where each sensor will belong to one or more layers.
The properties of this structure are as follows.

a) The base layer contains all sensors si,...,SnN.

b) The layers are numbered O through L — 1, with the base
layer labelled O.

c) The sensors on layer [form a subset of those on layer
I—1,for1 <[I<L-—1.

d) The expected number of sensors on each layer drops
exponentially with the layer number.

L2

Fig. 1. A Layered Sensor Network; a link is presented whenever the sensor
nodes in a certain layer are within transmission range

We now expound on how this structure is constructed.
In our scheme, each sensor decides, without requiring any
communication with the outside world, to which layer(s) it
will belong. We assume that all the sensors have access to
a value 0 < p < 1 (this value may be hardwired into the
sensors). Let us consider the decision process that a generic
sensor s; undergoes. All sensors, including s;, exist in the base
layer 0. Inductively, if s; exists on some layer [, it will, with
probability p, promote itself to layer [+ 1, which means that
s; will exist on layer [+ 1 in addition to all the lower layers
I,1—-1,,...,0.If on some layer I, s; makes the decision not to
promote itself to layer I’+1, s; stops the randomized procedure
and does not exist on any higher layers. If s; promotes itself to
the highest layer L — 1, it stops the promotion procedure since
no sensor is allowed to exist beyond layer L — 1. Thus, any

sensor will exist on layers 0, 1,...,k forsome 0 < k < L—1.
Figure 1 shows the architecture of a sensor network with three
layers.

Since our construction does not assume the existence of
any mechanism of synchronization, it is possible that some
sensor may be late in completing its procedure for promoting
itself up the layers. Since the construction scheme works in a
distributed fashion, this is not a problem — the late sensor can
simply promote itself using probability p and join its related
layers in its own time.

Whenever the base station has a query, the query is sent
to a specific Layer. Those and only those sensors existing on
this layer are expected to take place in the communication.
This can be achieved by reserving a small field (of loglog NV
bits) in the transmission packet for the layer number. Once [
is specified by the base station (the method for which will be
explained later), all of the sensors on layer [communicate
using transmission range r(l). The transmission range can
be determined by the expected distance of two neighboring

sensors on layer [, i.e. 7(l) = \/%, and can be enlarged a

little further to ensure higher chances of connectivity.

B. Specifying the Structure of the Layers

Note that in the construction of the layers, the sensors do
not promote themselves indefinitely; this is because if there
are too few sensors on a layer, the inter-sensor distance will

exceed the maximum transmission range R. Rather, we “cut

off” the top of the layered structure, not allowing more than
L layers where L = © (log (%%)J

In what follows, we assume that the promotion probability
p = %; in the Appendix, we analyze the effect of varying
p. We also study the effect of different values of p in our

simulations.

C. Data Collection and Aggregation

Given a layered sensor network constructed as above, we
now focus on how a query is injected into the network and
an answer is returned. We simplify the situation by assuming
the same as [21] that the base station is a special node where
a query will be initiated. Thus the base station acts as an
interface between the sensor network and the user.

When the base station has a query to make, it first de-
termines which layer is to be used for this query. Let this
layer be [. The base station then broadcasts the query using
communication range r(l) for this layer. In this message, the
base station specifies the layer number [and the query type (in
this paper, we study MAX, MIN, QUANTILE, AVERAGE and
SUM). Any sensor on layer [that hears this message will relay
information using communication range r(1); those sensors not
on layer [will simply ignore this message.

After the query is received by all the sensors on layer [,
a routing tree rooted at the base station is formed. Each leaf
node then collects its data and sends it to its parent, which
then aggregates its own data with the data from its children,
relaying it up to its parent. Once the root has the aggregated
information, it can obtain the answer to the query.

Note that our schemes are independent of the routing and
aggregation algorithms used in the network. Our goal is to
specify the layer number [which will reduce the number of
sensors, as well as the number of messages, used in responding
to a query. Once [is determined, the distribution of the query
and the collection of the data can be performed in a number of
ways, such as that proposed in [6]. In fact, once the layer to be
used for a particular query has been identified, the particular
routing/aggregation algorithm to be used is transparent to our
algorithm.

IV. EVALUATION OF THE ACCURACY AND THE LATENCY

In this section we explore how the accuracy of the answers
to queries and the latency relate to the layer which is being
queried.

In general, we would like to be able to obtain the answers
to the queries with as little delay as possible. This delay is
a function of the number of sensors whose data are being
utilized for a particular query. Thus, the delay is reflected by
the layer to which the query is sent. We would also like to
get as accurate answers to our queries as possible. When a
query utilizes data from all the sensors, the answer is accurate;
however, when readings from only a subset of the sensors
are used, errors are introduced. We now analyze how these
concerns of delay and accuracy relate to the number of sensors
queried, and thus to the layer used.

We measure accuracy in terms of the absolute deviation
of the computed answer a to a query from the exact answer
a*. The accuracy requirement stipulates that this deviation not
exceed € in most cases. More precisely, we would like to have
that Pr{|a — a*| > €] < 4. Here we refer to € as the accuracy
parameter and § as the confidence parameter.

To explore the relation between the accuracy of the answer
to a query and the layer [to which the query has been sent,
we recall that the current configuration of the layers has been
reached by each sensor locally determining on how many
layers it will exist. Due to the randomized nature of this
process, the number of sensors on each layer is a random
variable. In the next lemma, we investigate which layer must
be queried if one would like to have input from at least k
Sensors.

Lemma 1: Let l < logN —

log (k +1Int +/Ink(2k +In3)), where k < the expected

number of sensors on layer [. Then, the probability that there
are fewer than k sensors on layer [is less than 4.

Proof: Define random variable Y; for i = 1,...,
follows.

N as

1 if s; is promoted to layer [;
Yi= .
0 otherwise.

Clearly, Y1, ..., Yy are independent. Pr[Y; =1] =1/ 2! and
Pr{Y, = 0] = 1—1/2.

On layer [there are ¥ = Zjile sensors. Pr[Y <

k 2
k]l = PrlY < oihe }E[Y]] < e~ =) EYI/2 by Chernoff’s
inequality. ,
k
Since E[Y] = N/2!, to have e) B2 s e

must have [< log N —log (k +1int +4/Int(2k + ln%)) [|
In what follows, we analyze the accuracy and the latency
in the context of certain types of queries.

A. MAX and MIN Queries

In general, exact answers to maximum or minimum queries
cannot be obtained unless all sensors in the network contribute
to the answer, since any missed sensor might contain an
arbitrarily high or low data value. The following theorem is
immediate.

Theorem 2: The queries for MAX and MIN must be sent
to the base layer to avoid arbitrarily high error.

B. QUANTILE Queries

Due to similar reasons as the MAX and MIN queries, we
cannot obtain an exact quantile by querying a proper subset of
the sensors in the network. Thus, we introduce an approximate
notion of quantile.

Definition 1: The ¢-quantile (¢ € (0,1]) of an ordered
sequence S is the element whose rank in S is ¢|S]|.

Definition 2: An element of an ordered sequence S is the
e-approximation ¢-quantile of S if its rank in S is between
(¢ —€)[S] and (¢ + €)|S].

The following lemma shows that a large enough subset of
S has similar quantiles to S.

Lemma 3: Let Q C S be picked at random from the set of
subsets of size k of S Given error bound e and confidence
parameter 6, if k > 2”3, with probability at least 1 — §, the
¢-quantile of @ is an e-approximation ¢-quantile of S.

Proof: The element with rank ¢|Q| in Q ! does not have
rank within (¢+¢€)|S| in S if and only if one of the following
holds: a) More than ¢|Q| elements in @ have rank less than
(¢ —€)|S] in S, or b) more than (1 — ¢)|Q| elements in Q
have rank greater than (¢ + ¢)[S] in S.

Since |Q| = k, the distribution of elements in @ is identical
to the distribution where k elements are picked uniformly at
random without replacement from S. This is due to the fact
that any element of S is as likely to be included in @) as any
other element in either scheme, and both schemes include k
elements in Q.

Since the two distributions mentioned above are identical,
we can think of the construction of) as k random draws
without replacement from a 0-1 box that contains |S| items,
of which those with rank less than (¢ —¢€)|S| are labelled “1”
and the rest are labelled “0”. For ¢ = 1,...,k, let X; be the
random variable for the label of the ith element in (). Then
X = Zle X is the number of elements in @) that have rank
less than (¢ — €)|S] in S. Clearly, E[X] = (¢ — €)k. Hence
Pr[X > ¢k] = Pr[X — E[X] > ¢k — (¢ — €)k] = Pr[X —
E[X] > ek] = Pr[X — E[X] > ¢]. This is at most e=2<,
by Hoeffding’s Inequality. Note that Hoeffding’s Inequahty
applies to random samples chosen without replacement from a
finite population, as shown in Section 6 of Hoeffding’s original
paper [12], without the need for independence of the samples.

Similarly, it can be shown that the probability that more than
(1 — ¢)|Q| elements in @ have rank greater than (¢ + €)|S|
in S is also at most e~2°%. Setting 2¢~2% < §, we have
E> ZQ”E z =

We now show which layer we must use for given error and
confidence bounds.

Theorem 4: If a ¢-quantile query is sent to layer | <

In% 5

log N — 5
answer will be the e-approximation ¢-quantlle of the whole
network with probability greater than (1 — 9).

Proof: By Lemma 1, the probability that layer | <

log N — log (k +1nZ +/In2(2k + In3)) has fewer than k

sensors is less than é

log

+In2 +\/ln6("l +n2)), then the

By Lemma 3, if the number of sensor

nodes on layer [is at least I"Q() — 12”3 , the probability that
the ¢-quantile on layer [is e- appr0x1mat10n ¢-quantile of the

sensor network is at least 1 — 2. Hence the answer returned
In In%
r +ln +\/ln5 (255 +ln5)

is e-approximation ¢-quantile of the sensor network with
probability greater than (1 — §). [|

by layer [< log N —log (

C. AVERAGE and SUM Queries
AVERAGE queries and SUM queries are correlated queries
where the AVERAGE is just SUM/N. Since we know the

I'Wherever rank in a set is mentioned, it should be understood that this rank
is over a sequence obtained by sorting the elements of the set.

number of the sensors in advance, we just analyze the AVER-
AGE queries in this section and do not explicitly explain the
SUM queries.

We now consider approximating the average data value over
the whole sensor network by querying a particular layer. The
below lemma indicates that the expectation of the average data
value of an arbitrary layer is the same as the average of the
base layer, which is the exact average of the sensor network.

Lemma 5: Let aq,a9,...,ayx be the data values collected
by the nodes si, So,...,sy of the sensor network. Let k be
the number of sensors on layer [. Let X, Xo,..., Xy be the
random varlables describing the & data values on layer [. Let

Zq ; Xi. Then B[X] = sz 1 @i
Proof. Since each sensor independently promotes itself
to layer [with the same probability, Pr[X; = a1] = Pr[X; =
GQ] = ... = PT[XZ' = CLN] = %, for ¢ = 1,2,"'7]6.
Then E[X;] = 3(a1 + az + -+ + an). Hence E[X] =
B[} 30 Xi] =+ X0, B[X] = $ & (a1 +as+--+an) =
% Zf\; @i u

We thus propose that the average returned by the queried
layer be output as the average of the whole network. The
next theorem shows that, given the appropriate layer, this
constitutes an e-approximation to the actual average with
probability greater than 1 — .

Theorem 6: Let the data value at each sensor come
from the interval [a,b], and let [be such that [<

log N —log M_Hn +\/ln5 %

Then the probability that the average of the data values on
layer [deviates from the exact average by more than e is less
than 6.

Proof: Let k be the number of sensors on layer [. As we
have explained in Lemma 3, these k sensors can be considered
to be random samples without replacement from all of the
N sensors. Let Xi,Xo,..., X be the random variables
describing the k sensor values on layer [, as in Lemma 5.
Then a < X; < bfori=1,2,---,k Let X = L% x,.
By Lemma 5, E[X] is the exact average of the sensor

network. For any € > 0, Pr[|X — E[X H > el < 20T a>2

by Hoeffding’s Inequallty Setting 26<b af" < 6/2, we
have k > (=oind the probability that
layer [< logN — log (k—|—ln%+ In2 (2k—|—ln))

+In2)

. By Lemma 1,

has fewer than £k sensors 1is less than g Thus,

if we send an AVERAGE Query to layer | <
2 2In 4

log N —log % +1n2 + \/lﬂ%(Q% + ln?)),

the probability that the estimated average deviates from the
exact average more than e is less than g + % =J. |

1) Utilizing Statistical Information about the Behavior of
Data: 1f we have access to additional information regarding
the characteristics of the objects that the sensor network is
monitoring, we can reduce the latency even further. In what
follows, we show that the knowledge that the change in data
values over time respects a certain distribution (such as the
normal distribution) can be used to improve the quality of our
estimates.

Fig. 2. Temperature changes from Fig. 3. Temperature changes from
2am to 12pm 12pm to 8pm

Assume the change of the data value in one time unit for
each single sensor follows a normal distribution with mean .
For instance, we might know that the temperature is likely to
rise around 10 degrees from 2 am to 12 pm, and fall around 6
degrees from 12 pm to 8 pm. Small variations might happen
but substantial changes are less likely. (See Figures 2 and
3). The change in the average value also follows a normal
distribution since the sum of normal distributions is still a
normal distribution with mean and variance equal to the sum
of the individual means and variances.

To make use of the statistical information regarding the
change in the value, we adopt a history-based approach, where
we assume that we know the distribution of the change of the
environment to be a normal distribution with mean .

The intuition behind our strategy is as follows. First we
obtain an initial estimate avg of the average data value in
the network, which, by our computations above, is likely to
be close to the true average. After one unit of time, the true
average is likely to have changed by some value close to p.
Thus, avg + p is likely to be a good estimate for the average
for that point in time. However, errors have been introduced
into our estimate. One cause for possible error is the fact that
only a subset of the sensors have been queried. The other
contribution to the error comes from our inability to know
the exact change in the data value; we only know from the
normal distribution that the change is “likely” to be “around”
w. Since the quantity of the error, as well as its likelihood
increases with each step of this procedure, we need to make
sure that our error and confidence bounds remain at acceptable
levels.

To ensure low error, we adopt a multi-stage approach to
our estimation of the average. In the first stage, which we
call Query Average, we query a relatively large subset of the
sensors — more precisely, we query a low enough layer to
obtain an error of €; < e with confidence level §; < §. This
high guarantee will leave some room for extra error to be
incurred in the following stages.

In the following stage (after one time unit has elapsed),
which we call Test Average, and subsequent ones, we will
query higher layers, thus involving a smaller number of sen-
sors, to see whether the expected change pattern is followed.
The result of doing this is that either (a) we will boost the
confidence to an acceptable level or (b) we will observe an
“anomaly”, that is, a deviation from expected behavior, which
we will attempt to resolve by querying a lower layer with a
larger number of sensors. In case of (a), we will have obtained
a fast and acceptable answer by querying only a very small
number of sensors. Case (b) on the other hand is, by definition

of the normal distribution, an anomaly that will not happen
often. In the unlikely event of an “accident” near one of
the nodes, in the form of an atypical value, our system will
experience a longer query time for the sake of accuracy. In the
long run, we will see more “expected” cases and will observe
a lower average query time.

Temperature Change

o 5 10 15 20 25

Fig. 4. The possible change for Temperature after a time unit follows a
normal distribution with ¢4 = 10 and o0 = 4. To ensure the ultimate error
bound of € = 8, the error bound €,, = 6

Before we go into the specifics of the algorithm, we present
an example (Figure 4). Suppose € = 8 and § = 20%(i.e.,0.2).
In the first stage, we see that we get the average data value
avgy = 60°F by using error bound, say ¢; = 2 and a
confidence level, say 90%, (i.e. error probability §; = 10%).
After 10 hours, we expect that the temperature changes to
avgy + p = 70°F. However, to ensure an error within the user
specified bound of 8, the error (one-sided confident interval)
for the normal distribution must be less than 6 (i.e. ¢,, = 6), as
shown in Figure 4, with probability 80%. Therefore, after one
time unit, the confidence level is 80% x 90% = 72%, i.e., the
error probability is larger than the 20% specified as acceptable.
To boost the confidence level to 80%, we need to query a few
more sensors with an error bound of €5 = 8 and confidence
level of only do = 28%. If the returned value of Test Average
is 70, we will return this value. Otherwise, if the returned
value falls outside of 70 £ &, this indicates that an anomaly
might be present, 2 in which case we perform Query Average
to determine the new temperature value. If the returned value
falls within 7048, to ensure the error bound, we perform Test
Average with a more stringent error bound € until an anomaly
is found or the new average value is confirmed.

Below we explain our algorithm in higher detail and analyze
its properties mathematically. Figure 5 shows Algorithm Query
Average. It takes as input the error and confidence parameters
€,0. We assume that Query(l) returns the average data value
for sensors on layer [.

Our next algorithm (Figure 7) shows how to perform Test
Average given Query Average. It takes as input the error and
confidence parameters €, §, as well as the mean p and standard
deviation o of the distribution of the change of the data value.
It also takes avg; which is the average obtained from Query

2Here we use the word anomaly to indicate a situation whose likelihood is
small according to the given normal distribution.

Algorithm QueryAvg (e, §)
1 Select €1 < € and §; < 4.
2 l1 = 10g N—

b—a)?lnt b—a)2ln+
<<2) +inZ + \/lnfl(2(2)€%51 + m@)
3 avgr = Query(ly).
4 return avg;

log

Fig. 5. Algorithm Query Average

Average and the round number ¢. Other parameters used in the
algorithm are listed in the Figure 6.

q; | confidence level of the normal distribution

€, | one-sided confidence interval of the normal distribution

s | factor to make the confidence interval stringent

Fig. 6. parameter table

Algorithm TestAvg (i, €, d, i, 0, avgy)

1€, =¢—e.

2 Calculate ¢; = Pr(p— e, < X < pu+¢€,) by
Normal Distribution.

3if17qi><(1751)<5,

4 avg; = avgy + p, return avg;

5 else

6 repeat

7 820,6126—5,51‘:#(1_61)
8 l; =log N—

b—a)?in& b—a)2lnX
log % + lné% + \/lni(Z(2)62 o+ lni))

9 if (Query(l;) < avgy + p+ 8)
and (Query(l;) > avg; + p — 8)

10 then

11 avg; = avg) + u, return avg;
12 else

13 increase s

14 if s > ¢, Goto QueryAvg

Fig. 7. Algorithm Test Average

In Line 2 of Algorithm Test Average, we calculate the
probability that the change will fall within interval ¢,,. In Lines
1-5, if the Query Average has already guaranteed the error
probability, we do not perform any further queries. This might
occur when the number of sensors queried in Query Average is
large enough. Line 14 displays the threshold where we should
perform the query again.

Theorem 7: Assume the data value collected by each sensor
is bounded by [a, b] and the change in the average of the values
at all sensors follows a normal distribution with mean p and
standard deviation o. The probability that algorithm QueryAvg
and TestAvg will deviate from the exact average by more than
€ is less than §.

Proof: Let us first consider QueryAvg. Choose any
€1,01 such that ¢, < ¢ and 63 < 6. By Theo-
rem 6, we can obtain the desired accuracy by send-

ing queries to any layer [; where [; < logN —

(b—a)?In 2 5 (b—a)2ln 2
10g <2€%51 + lng + \/l’rlél(22€%51 + l?’la) .

For TestAvg, let Y; denote the average value over all the
sensors at round i. Define A, = Y, — Y. We know «a
priori that the probability distribution for each A; is a normal
distribution with mean y; and variance o?.

In round 7, €, = € —¢; is the confidence interval for normal
distribution, hence g; is probability that the change in the value
of the average will not exceed ¢,,.

Therefore with probability 1—g; x (1—97), we can guarantee
an error bound of €1 +¢€, < e. If 1 —g; x (1—91) < ¢ then our
query satisfies both bounds € and §, and we can compute the
value to be returned from the value in the previous round and
the expected change. Otherwise, we choose §; = #(1_51)
which ensures that the confidence error 4 will be bounded
in the ith round. For error bound ¢; in the ith round, since
we don’t know the returned value, we can use all ¢; from
e to 0 as long as the returned value avg; £ (¢;) will be
bounded by (avgs + p) £ e. If that happens, the change is
confirmed. Otherwise, to bound ¢ and J, a new QueryAvg
must be performed. In our algorithm, we reduce ¢; iteratively
from € to 0, and use ¢; and J; to query layer I; < log N —

—a)?lnd —a)2lnd
%+ln%+ \/lni(2%+lné) S0
that the number of sensors in TestAvg will increase little by
little and stop as early as possible. |

log

V. ENERGY CONSUMPTION

It can be readily observed that in our system higher layer
sensors will be transmitting at longer ranges than their lower
layer counterparts. Given that any high layer sensor is also
present in all the lower layers, if nothing is done to balance
out the energy consumption, the higher layer sensors may get
depleted much faster than the lower layer ones. To balance out
the energy consumption, our system reconstructs the layered
network periodically by deciding each layer from scratch, so
that the top layer sensors change over time. An appropriate
timing scheme for the reconstruction will lead to relatively
uniform energy consumption across the sensors in the network.
Note that the frequency of reconstructions has no expected
effect on accuracy, since we are as likely to be stuck with
a “good” sample of sensors (in which case reconstruction is
likely to give us a worse sample) as with a “bad” one. Given
the above and the overhead of building a new aggregation tree
for each new construction, we are interested in infrequently
repeating this procedure for making the energy consumption
more even across Sensors.

Let the lifetime of the network be the time between its initial
construction and the first time that a sensor runs out of power
[24]. We investigate the relationship between the timing of the
reconstructions and the expected lifetime of our system in our
simulations. In this section, we analyze our system assuming
that each sensor has sufficient power to let it undergo several
reconstructions, and that we run reconstructions enough times.
Ideally, we have a totally symmetric scenario where the service
that each sensor has performed on each layer is identical across

sensors. Since the layers are chosen in a randomized fashion,
given a large enough number of reconstructions what one
expects to really see is most sensors having served on most
layers.

The energy spent by each sensor for a query directly
depends on the distance between the sensor and its neighbors.
Recall that since there are an expected (N/2!) nodes on layer /,

the transmission range is set to be r(I) = 1’3/21. Therefore,

the energy spent by aeach sensor for each query on layer [

is e(l) = ﬁ)

estimate the overal

, which is what we will use below to

system lifetime.

A. Overall Lifetime of the System

In this section, we assume that the queries are uniformly
distributed across different layers due to the error bounds and
confidence levels coming independently from the users.

We now present a theorem which estimates the expected
lifetime of our system depending on the network parameters.

Theorem 8: In a setting where each level is equally likely

to be queried, the expected lifetime of our system is E(t) =
BL(VN)*(1-(v2)*"?)
Do (1—(+/2)L(a=2))
Proof: We assume that each layer has the same proba-
bility % of being queried. The probability that a sensor exists

on layer [is % therefore, the energy consumption for this
sensor is >, are(l) L. Let the life expectancy of this sensor
be ¢. Recall that B is the battery power, A\ is the incom-

ing query interval follo(\;ving (assumed) Poisson distribution,

L—1
and e(l) = (\/% . We have Y, 2e(l)tMt = B.
Therefore, the expected lifetime of the system is E(t) =
BL(VN)*(1=(v2)*"?) n
ADe (1—(v/2)L(a=2))

VI. SIMULATIONS

We use simulations to test the performance of our system,
as well as to observe the effects of the parameters of the
algorithm and the re-election time on the performance.

A. The Relationship Between Layer and Accuracy

We first evaluate the relationship between the layer an-
swering a query and parameters relating to the quality of the
answer to the query. In our simulations we set the promotion
probability p = 1/2 (we explore the effects of varying p later)
and N = 10000, and focus on QUANTILE and AVERAGE
queries.

1) QUANTILE Queries: We first present a general picture
of the relationship among € and § in Figure 8. It can be seen
clearly that, as € and 0 increase, the layer that the query should
be sent to also increases, as confirmed by our computations.
As expected, we also observe this trend for AVERAGE.

Figures 9 and 10 show the relationship between § and
the layer number and the relationship between e and the
layer number. Here it can be observed that even though the
layer number monotonically increases with both parameters,
€ has more impact on it than §. This is because the con-
fidence parameter § can easily be improved using standard

QUANTILE Queries

o » m o N ®od

04
06 epsilon

Fig. 8. QUANTILE Queries, the impact of €, é with Layer number L, N =
10000 and p = 0.5

QUANTILE Queries, delta vs layer

002 004 006 008 01 032 014 016 o018 02
delta
Legé
epsilon=0.2
epsilon=0.4
epsilon=0.6
epsilon=0.8

Fig. 9. QUANTILE Queries, confident parameter § vs. Layer L

boosting techniques from probability theory and randomized
algorithms. In fact, repeating the algorithm O(log k) times and
returning the median answer will improve § to ¢/k, since the
probability of getting an incorrect answer (logk)/2 times is
at most 6'°¢*_ which is O(§/k). On the other hand, to reduce
e by a constant factor k, O(k) repetitions of the experiment
are needed.

Figure 11 shows the relationship between p and the layer
number. As p increases, the variation in the layer number for
the same query is more obvious. This is because there are
fewer layers for smaller p and the choice of layer is more
coarse-grained than for larger p.

2) AVERAGE Queries: Figures 12 and 13 show the rela-
tionship between d and the layer number and the relationship

QUANTILE Queries, epsilon vs layer

Legihifon
delta=0.05

Fig. 10. QUANTILE Queries, error bound e vs. Layer L

QUANTILE Queries, p vs layer

0.2 0.4 0.6 0.8 1
Logflen

Fig. 11. QUANTILE Queries, the effect of promotion probability p
AVERAGE Queries, delta vs layer
9
8
71
Ls
5 [
) I
e
s 0.1 0.2 03 0.4 05 06 0.7 0.8
Legdigfie
epsilon=3
epsilon=7
epsilon=11
——————————————————— epsilon=15
Fig. 12. AVERAGE Queries, confident parameter ¢ vs. Layer L

between € and the layer number. We observe here the same
effect as with the QUANTILE queries, i.e., ¢ has a larger
impact than §, for the same reason. This gives us hints
for building test queries as we have additional statistical
information.

To investigate the question of how to choose the parameters
introduced in our algorithms, QueryAvg and TestAvg, we fix
the following parameters and vary the others. The upper bound
and lower bound of the data value are a = 20 and b = 100.
p and N are set to be the same as described in the above
section. We set the user-defined error bound and confidence
parameter to be ¢ = 8.1 and § = 25% respectively. The mean
and standard deviation for the normal distribution are set to
pu=10and o = 2.

AVERAGE Queries, epsilon vs layer

Fig. 13. AVERAGE Queries, error bound e vs. Layer L

AVERAGE Queries, Query Stage

Leg8RH2!

Fig. 14. AVERAGE Queries, Algorithm QueryAvg

AVERAGE Queries, Test Stage

8.5

7.5

0.05 0.1 0.15 0.2 0.25

epsilon1=8

Fig. 15. AVERAGE Queries, Algorithm TestAvg

Figure 14 shows the effect of ¢; and §; for QueryAvg.
Figure 15 shows the effect of ¢; and §; for TestAvg.

In our simulations we see that regardless of the choice of €;
and §; the QueryAvg procedure will query a larger number of
sensors than the TestAvg procedure. However, in QueryAvg,
varying €; has relatively less effect whereas in TestAvg the
performance changes drastically when ¢€; is decreased. As a
result we suggest choosing a smaller €; for QueryAvg.

gg

Fig. 16.

oc=2

Next, we study the effect of o, which represents the rate of
change in the data. One can see in Figures 16, 17, and 18 that
o has a big influence on efficiency. The discontinuity of the

AVERAGE Queries, Test Stage, the effect of epsiloni

45 5 55 6 6.5 7 75 8

veggiler
wio Test
epsiloni

Fig. 19. AVERAGE Queries, the effect of the readings from TestAvg

lines in Figures 16 and 17 indicates that QueryAvg has tested
more sensors than required, making some of the following
rounds of TestAvg unnecessary.

Note that, when p = 0.5, the expected number of sensors
in each layer increases by 2 as we go down each layer. To
reduce energy consumption, every query performed on some
layer ¢ — 1 rather than layer ¢ must be compensated by 2 or
more runs of TestAvg performed on layer ¢ 4+ 1 rather than
layer ¢, or 1 or more on ¢ + 2 rather than i + 1, etc. Thus,
the combination of QueryAvg and TestAvg is more profitable
when the change in the data is highly predictable. Thus,
QueryAvg and TestAvg can be used for emergency monitoring
applications in stable environments whereas QueryAvg alone
can be used in applications of data acquisition in changing
environments.

We then investigate the effect of using TestAvg. Let r denote
the output of TestAvg. In our algorithm, if the answer to a
query r =+ ¢; is out of the range of avg; + i + € then we set
€; more stringently. This, however, leads to possibly involving
a larger number of sensors for this query. In theory, we stop
at ¢; = 0, however, in practice, we can stop earlier and move
to QueryAvg for efficiency reasons. We observe this effect
in Figure 19 with the same data values as in Figure 14 and
Figure 15, setting e; = 6 and §; = 15%, which are reasonable
choices.

In Figure 19 we see that when the results from TestAvg fall
within avg; + 1 £+ 1.5, fewer sensors are queried, confirming
that € has a greater impact than § for the delay.

B. Energy Consumption Evaluation

In this section we consider the effect of our algorithms on
the energy consumption. We assume that our sensor network
occupies an area of 100 x 100, with uniformly distributed
positions, and each sensor has 5000 units of energy. We also
assume that the queries are generated according to Poisson
distribution with mean value A = 20. The data queries are
generated uniformly from the set {MAX, MIN, QUANTILE,
AVERAGE}. The query parameters are assumed to be uni-
formly generated within the bounds 0 < § < 0.5, and
0 < € < 0.5 for QUANTILE. For AVERAGE, e is proportional
to the bounds a, b which we set to be 20 and 100. In our energy
consumption calculations we use o = 2. The promotion
probability is set to be p = 1/2.

EffectofRe-Constmction

B b Reconstmetbn
18000 W ih

16000

14000

10000

Systen Life Tine

6000

4000

5000 6000 7000 8000 5000 10000 11000 12000

Num berofSensors

Fig. 20. with Reconstruction vs. without Reconstruction

Re-Constuction Tin e

mso00
m 5000
012000

18000

16000

14000

2 12000

10000

System Life Tin

40 60 80 100 120 140 160 180

Reconstmctbn T e

Fig. 21. the Effect of Reconstruction Time

In our experiments, we use the simplest data gathering
technique, flooding, where the source and all the intermediate
sensors in the same layer just broadcast the query within their
transmission range and collect the answers in a reverse fashion.
Every data point presented in the figures is the average of 100
random experiments.

We first consider the effect of the reconstruction of the
layers in Figure 20. Clearly, without reconstruction, the sensor
network depletes much faster. As the number of sensor nodes
increases, the lifetime of the system also increases, since the
distances between sensors are smaller, leading to less energy
consumption.

We see the effects of the reconstruction time in Figure 21; if
we reconstruct the sensor network more frequently, the lifetime
of the system increases. The effect is more obvious when the
number of sensors is large.

VII. CONCLUSION AND FUTURE WORK

In this paper we focus on building a layered architecture
for a sensor network where queries can be sent to one layer
instead of the entire network, to reduce the latency of the
queries. We analyze our architecture in terms of accuracy and
latency (expressed in terms of the number of sensors involved
in answering a query) and prove bounds on those parameters.
We present results from a substantial number of experiments
to show the relationships between different parameters in our
system.

10

The following research directions are left for future work.
1) There are many other additional types of queries which are
of interest, e.g. majority; we would like to explore methods
for improving those. 2) Although we explore the effect of ¢;
and §; for our query average, it is unknown whether they
are optimal; we would like to mathematically search for the
optimal values.

ACKNOWLEDGEMENTS

We thank the anonymous referee for pointing out that more
clarification is needed as to why we can use Hoeffding’s
bounds for Lemma 3. We have included pointers to Hoeffd-
ing’s paper to make this issue clear.

REFERENCES

[1] J. Al-Karaki, and A. Kamal, “Routing Techniques in Wireless Sensor
Networks: A Survey” IEEE Wireless Communications, vol. 11, no. 6,
pp. 6-28, Dec. 2004.

[2] 1. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey
on Sensor Networks” IEEE Communications Magazine, vol. 40, no. 8,
pp.102-114, Aug. 2002.

[3] S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical
Control in Multi-hop Wireless Networks” in Proc. IEEE INFOCOM’01,
Anchorage, AK, Apr. 2001.

[4] D. Braginsky and D. Estrin, “Rumor Routing Algorithm for Sensor
Networks” in Proc. WSNA'02, Atlanta, GA, Sept. 2002.

[5] A. Boukerche, R. Pazzi, and R. Araujo, “A Fast and Reliable Protocol
for Wireless Sensor Networks in Critical Conditions Monitoring Appli-
cations” in Proc. ACM MSWiM’04, Venice, Italy, Oct. 2004.

[6] C. Buragohain, D. Agrawal, and S. Suri, “Power Aware Routing for
Sensor Databases” in Proc. IEEE INFOCOM’05, Miami, FL, Mar. 2005.

[7]1 M. Chu, H. Haussecker and F. Zhao, “Scalable Information-Driven Sen-
sor Querying and Routing for Ad Hoc Heterogeneous Sensor Networks”
International Journal of High Performance Computing Applications, vol.
16, no. 3, pp. 293-313, Aug. 2002.

[8] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks” in Proc. ACM
MOBICOM’99, Seattle, WA, Aug. 1999.

[9] M. Greenwald and S. Khanna, “Power-Conserving Computation of

Order-Statistics over Sensor Networks” in Proc. ACM PODS’04, Paris,

France, Jun. 2004.

W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for

Information Dissemination in Wireless Sensor Networks” in Proc. ACM

MOBICOM’99, Seattle, WA, Aug. 1999.

W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-

Efficient Communication Protocol for Wireless Microsensor Networks”

in Proc. HICSS 00, Wailea Maui, HI, Jan. 2000.

W. Hoeffding, “Probability Inequalities for Sums of Bounded Random

Variables” Journal of the American Statistical Association, vol. 58, no.

301, pp. 13-30, Mar. 1963.

C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion:

A Scalable and Robust Communcation Paradigm for Sensor Networks”

in Proc. ACM MOBICOM’00, Boston, MA, Aug. 2000.

C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact

of Network Density on Data Aggregation in Wireless Sensor Networks”

in Proc. ICDCS’02, Vienna, Austria, Jul. 2002.

V. Kawadia, and P. Kumar, “the Power Control and Clustering in Ad-

hoc Networks” in Proc. IEEE INFOCOM’03, San Francisco, CA, Mar.

2003.

B. Krishnamachari, D. Estrin, and S. Wicker, “the Impact of Data

Aggregation in Wireless Sensor Networks” ICDCS Workshop on

Distributed Event-based System (DEBS’02), Vienna, Austria, Jul. 2002.

S. Lindsey, and C. Raghavendra, “PEGASIS: Power-Efficient Gather-

ing in Sensor Information Systems” in IEEE Aerospace Conference

Proceedings, vol. 3, 9-16, pp. 1125-1130, 2002.

S. Madden, R. Szewczyk, M. Franklin, and W. Hong, “Supporting Ag-

gregate Queries over Ad-Hoc Wireless Sensor Networks” in Proc. IEEE

International Workshop on Mobile Computing Systems and Application

(WMCSA’02), Callicon, NY, Jun. 2002.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19] S. Madden, M. Franklin, J. Hellerstein and W. Hong, “TAG: a tiny
Aggregation Service for Ad-Hoc Sensor Networks” in Proc. OSDI’02,
Boston, MA, Dec. 2002.

[20] N. Sadagopan et al, “the ACQUIRE Mechanism Mechanism for Efficient
Querying in Sensor Networks” in Proc. the First Workshop on Sensor
Network Protocol and Applications, pp. 149-155, May. 2003.

[21] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and
Beyond: New Aggregation Techniques for Sensor Networks” in Proc.
ACM SENSYS’04, Baltimore, MD, Nov. 2004.

[22] J. Wieselthier, G. Nguyen, and A. Ephremides, “On the Construction of
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks”
in Proc. IEEE INFOCOM’00, Tel-Aviv, Israel, Mar. 2000.

[23] Y. Yao, and J. Gehrke, “Query Processing for Sensor Networks” in
Proc. CIDR’03, Asilomar, CA, Jan. 2003.

[24] O. Younis, and S. Fahmy “Distributed Clustering in Ad-hoc Sensor
Networks: A Hybrid, Energy-Efficient Approach” in Proc. IEEE
INFOCOM’04, Hong Kong, China, Mar. 2004.

[25] Y. Yu, B. Krishnamachari, and V. Prasanna, “Energy-Latency Tradeoffs
for Data Gathering in Wireless Sensor Networks” in Proc. IEEE
INFOCOM’04, Hong Kong, China, Mar. 2004.

APPENDIX

In this section, we show the effect of the promotion prob-
ability p.

Theorem 9: (Theorem 4) To attain the ¢-quantile of the
sensor readings with error bound € and confidence level
0, the query must be sent to layer | < log%N —

P
Ing

1og% %—i—ln%—{— InZ(254 +ln§)>.
Theorem 10: (Theorem 6) Let the data value

at each sensor come from the interval [a,b],
and let [be such that [< logi: N —
P

(b—a)?in 2 \/ 2 /e (b—a)2in% 2
10g% Té +ln3 =+ lng(QT’s +ln5)>
Then the probability that the average of the data values on
layer [deviates from the exact average by more than e is less
than 6.

11

