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Abstract— Routing in mobile ad-hoc networks is hard because
the topology can change very rapidly. By the time new paths
are discovered, the network can change again – and in extreme
cases, packets circulate endlessly and the system is unstable. Most
attempts to solve this problem have required that the topology
changes slowly. In this paper, we propose a routing algorithm
called Volcano Routing Scheme (VRS) which will route packets
successfully, even if the topology changes very rapidly. VRS
doesn’t need to discover routes, or exchange routing information;
it simply balances the load locally between adjacent pairs of
nodes. We show that under some loose conditions on network
topology changes, VRS keeps the system stable. Simulations also
suggest that VRS is stable for various models of mobility, different
communication patterns, and different amounts of flow in the
network. Interestingly, we prove that when the network topology
is static, packets follow the shortest path.

I. INTRODUCTION

Traditionally, routing in a data network is considered to be
a two-phase process. In the route-discovery phase, a route
is established between all source-destination pairs. Then, in
the packet forwarding phase, packets are forwarded along
the chosen path toward their destination [1]. Route-discovery
can be done periodically (proactive routing), or initiated on-
demand (reactive or on-demand routing), that is, whenever
a source node needs to send a packet toward a destination
(Figure 1).

When the topology of the network is fixed or changing
slowly, the path established between a source and destination
node can be used by any packet going from the same source
to the same destination. Therefore, even though the overall
overhead of establishing the routing path is relatively high,
the cost is paid only once.

In networks for which the topology changes frequently,
the overhead of finding a route must be paid often, which
can dramatically decrease the performance of the system.
In an extreme case, one can imagine a network in which
the topology changes (perhaps multiple times) before a route
is found, making two-phase routing impractical. Delivering
packets to their destinations seems hard, if not impossible, in
such a dynamic network. This is a limitation of two-phase
routing, i.e., packet forwarding can be done only when the
route-discovery phase is complete.

It is expected that some ad-hoc networks will be highly
dynamic, with the topology changing quickly. For example, in
a network of tiny environmental sensors (e.g. Smart Dust [2])
nodes might be floating in the air or in water, and are subject
to rapid movements, and frequent changes in the topology.
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Fig. 1. Routing in mobile ad hoc networks.

One natural approach is to accelerate the route discovery
phase [3]. For instance, on-demand routing protocols like
AODV [4], TORA [5], and DSR [6], [7], use flooding to
find routes as quickly as possible. But these protocols still
use two phases, which means they can fail to route packets if
the network changes too quickly.

An alternative approach, called one-phase routing, is to
eliminate the explicit discovery of routes. Potentially, one-
phase routing algorithms can find a path in a rapidly changing
network. The most well-known one-phase routing schemes are
geographical routing schemes. The idea is to use the location
of a node as its address and forward the packets greedily
toward the destination [8]. Although nodes move, routing is
done toward a specific location rather than a specific node,
and so there is no need for a separate route discovery phase.
This property can be taken advantage of, whenever nodes of
the network have access to some type of global positioning
information.

In this paper, we propose an alternative one-phase routing
algorithm, called the Volcano Routing Scheme (VRS), which
does not require geographic information. VRS is a simple and
fast method for routing packets in a highly dynamic network.
VRS routes messages by locally balancing the load between
adjacent pairs of nodes. It has no explicit route discovery
phase, and can tolerate rapid changes in the network topology.
Below, we show that under some loose conditions on how
fast the topology changes, VRS keeps the system stable. We
especially prove that the length of the path taken by packets
under VRS is near optimal (i.e. shortest path), when the
network topology is fixed. We also verify the stability of
the system (for various mobility processes, different values
of communication range, and different amount of flow in the



network) using simulations.
The main advantages of VRS are as follows:
• VRS is completely distributed.
• The overhead of running VRS is low compared to other

routing algorithms. The running time of the algorithm at
each node v is O(KLv), where, Lv is the number of
links connected to v and K is the number of flows in the
networks.

• The amount of control traffic exchange between nodes is
low.

• No matter how often the topology of the network changes,
and no matter what the movement model of the nodes
is, as long as some loose constraints on the topology
are satisfied, VRS guarantees to deliver packets to their
destinations.

• If the topology of the network is fixed (i.e when the
nodes do not move), the length of the path taken by each
packet is close to the shortest path from the source to the
destination.

On the other hand:
• VRS performs best in a networks in which a continuous

stream of packets are generated at each source node. If
the source node generates packets sporadically, VRS does
not perform well.

• Some packets might remain in the network for a long time
before reaching their destination.1 Therefore, packets
might be re-ordered, which makes VRS unsuitable for
applications that cannot tolerate packet re-ordering.

The rest of this paper is organized as follows. In Section II
we briefly overview the related work. Section III explains
the underlying network and traffic model. Then, we give a
general description of how Volcano Routing works in Sec-
tion IV. Sections IV-A, and IV-B describe VRS in more detail
together with an analysis of the stability of the system. In
Section V we show that packets take near optimal paths under
VRS. Section VI is dedicated to simulations, which study the
performance of VRS. Finally, Section VII concludes the paper.

II. RELATED WORK

Mobile ad-hoc networks (MANETs) have dynamic topolo-
gies. In MANETs, the topology changes when nodes move.
In recent years, researchers have proposed numerous rout-
ing algorithms for MANETs. If the topology changes often,
table-driven proactive routing protocols, that require periodic
exchange of updates regarding the topology of the network,
are unsuitable [9], [10]. On-demand routing protocols are
more efficient since they only maintain the routes which are
currently needed [5], [11], [12]. A route discovery process
is initiated only when a new route is needed for transferring
a packet. This approach was first presented by Johnson in
1994 [13] followed by a series of refinements, including
AODV [4] and DSR [6]. Hybrid routing protocols combine

1The number of such packets is very small, and by adding a time to live
field we can simply remove old packets from the system and retransmit them
if needed.

on-demand and proactive routing to allow a trade-off between
latency and overhead [14].

An alternative approach is to use geographic routing in
which the location of a node is its address. Packets are for-
warded greedily towards their destination [8], [15], [16]. There
is no explicit discovery of routes, and they are more suitable
for dynamic networks. The major drawback of geographical
routing schemes is the need for a global positioning system,
which is not always feasible.

All these techniques can cope with changes in the topology
to some extent. However, their performance can be seriously
degraded in the presence of extreme changes in the topology.
Recently, Awerbuch et al. presented a simple routing scheme
for an adversarial system [17], i.e., a system in which an
adversary can decide which links go down and which links
remain up at each point of time. In the worst case, we can
consider a highly dynamic network as an adversarial system.
Therefore, Awerbuch’s scheme is a perfect routing strategy for
such a network. The major building block of this scheme is
local load-balancing, introduced by Awerbuch, Mansour, and
Shavit [18], and further studied and improved by Awerbuch
and Leighton [19].

Awerbuch’s method guarantees an upper bound on the
number of packets that can be in the system at any time,
even if the injection process is exactly at the limit of what
the network can handle. However, this scheme only works in
a network with a single receiver (destination). In this paper, we
propose VRS, a generalization of Awerbuch’s scheme, which
can handle different flows destined to different destinations.

III. NETWORK AND TRAFFIC MODEL

Consider a network of n nodes, with a unique identifier from
the set {1, 2, . . . , n} assigned to each node. The connectivity
of the network can change over time, and is represented by
the undirected graph G = (V,E(t)), where V is the set of
nodes, and E(t) is the set of links at time t. Topology changes
can occur as a result of node movements and variations in
channel strength due to loss via distance attenuation, shading
by obstacles, or interference from other nodes. In this paper,
we are solely interested in topology variations regardless of
the underlying cause. Despite changes in topology, each node
is assumed to have a complete view of its adjacent neighbors,
i.e., at any time t any given node v knows any node w such
that (v, w) ∈ E(t).

We assume that time is divided into discrete time slots,
all nodes start simultaneously, and work synchronously. In
any time slot, each link can transfer one packet. Each packet
belongs to one of the K flows in the network. The i-th flow
(1 ≤ i ≤ K) is identified by a tuple (Si, Di, Fi), where
Si and Di are respectively the source and destination of the
flow, and Fi is the maximum number of packets which flow
i can generate in any time slot. We assume that all source
and destination nodes are distinct. This is not a restrictive
assumption since any node which is the source or destination
of more than one flow can be decomposed into a number of
virtual nodes. Packets are generated in the source nodes at the
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Fig. 2. An example of a cut.

beginning of each time slot. At the end of each time slot, any
packet that has arrived to its destination is removed from the
system. The following definitions will be used throughout the
paper.

Definition 1: In a network whose node set is V , a cut C =
(U, V −U) is a partitioning of the set of nodes in the network
into two sets U and V −U . The cut C is said to separate two
nodes v and w, if v ∈ U and w ∈ V − U or vice versa.

Definition 2: The minimum capacity of a cut C = (U, V −
U), denoted by Min Cap(C), is the minimum number of
links connecting U and V − U at any time. Similarly, the
average capacity of C, denoted by Avg Cap(C) is the average
over time of the number of links connecting U and V − U .

Figure 2 depicts a network with four nodes whose connec-
tivity changes between parts (a) and (b) of the figure. In this
example, C = ({1, 2}, {3, 4}) is a cut which separates the
nodes 1 and 4, Min Cap(C) = 1, and Avg Cap(C) = 2.

Definition 3: A node v in the network is said to be strictly
stable if the number of packets buffered in the node is always
finite. Similarly, if the rate of flows entering the node equals
the rate of outgoing flows, the node is said to be rate-stable.
We will call a network strictly stable (rate-stable), if all nodes
in the network are strictly stable (rate-stable).

We notice that in a rate-stable network, it is possible for the
number of packets buffered in some node to become arbitrarily
large, but if a network is strictly stable, the rate of flows
entering each node must be equal to the rate of flows leaving
the node.

Observation 1: Any network which is strictly stable, is
rate-stable too; the reverse is not necessarily true.

Definition 4: We consider a positive real number F . Any
network with a single flow with source node S and destination
node D is said to be F -min-provisioned if for any cut
separating S and D

Min Cap(C) ≥ F. (1)

Similarly, if the average capacity of any cut C separating
S and D is at least F , i.e.

Avg Cap(C) ≥ F, (2)

the network is said to be F -average-provisioned.
Definition 5: We consider a network together with K

flows. For the real vector F = (F1, . . . , FK) the network is
said to be F -rate-provisioned, if for any cut C we have:

Fig. 3. The lava issued from a volcano flows in every direction till it hits a
barrier, or reaches the sea.

Avg Cap(C) ≥
∑

i∈Sep(C)

Fi. (3)

Here, Sep(C) is the set of flows whose source and destina-
tion nodes are separated by C.

In the network depicted in Figure 2 for instance, if there is a
single flow originating at node 1 and destined to node 3, then
the network is 1-min provisioned, and 2-average-provisioned.
If in addition to this flow, we have a second flow originating
at node 2 and destined to node 4, then the network is (1, 1)-
average-provisioned.

IV. VOLCANO ROUTING SCHEME

The Volcano Routing Scheme (VRS) is a potential-based
routing scheme [20]. The key idea in potential-based routing
is to define K scalar fields on the network, one for each
destination node. More formally, a single-valued potential,
denoted by P i

v , is associated with any flow i at a given node
v. At each node v of the network, packets destined to Di, the
destination of the i-th flow, are routed in the direction (i.e. the
next hop) that the potential field decreases most for flow i.

Normally, the potential function depends on the topology
of the network, and is chosen so that each packet is directed
toward its destination. In VRS, the potential function is quite
different, and is simply based on the number of packets
buffered at each node of the network, and not on the con-
nectivity of the network. At a given node v and for a given
flow i, the potential function P i

v equals the number of packets
of flow i that reside at node v. VRS forwards packets from
nodes which have more buffered packets, to nodes which have
fewer buffered packets, i.e., VRS locally balances the load
between adjacent nodes. If the load-balancing works perfectly,
any destination node will have a chance to receive packets
which are destined to it. Since we have assumed that packets
are continuously injected into the network, the destination will
receive a continuous stream of packets at all times.

Intuitively, VRS mimics the behavior of the lava flowing
from a volcano and downhill towards the sea. When it en-
counters an obstruction (i.e. congestion), it builds up until



it can overcome the obstacle (i.e. has greater potential); see
Figure 3. Notice that even if the volcano and obstacles move,
so long as the flow continues it will eventually overwhelm
any obstacle and flow to the sea. This is the case even though
neither the volcano nor the lava know a path to take; the
lava simply follows a path of decreasing potential. Likewise,
packets in VRS will reach their destination, regardless of how
nodes move, so long as new packets continue to flow into the
network. Obviously, when congestion builds up, the number
of packets needed to keep flows moving can be quite large.
But in the following sections, we show that the total number
of packets in the system remains bounded. In other words,
VRS can deliver all but a fixed number of packets to their
destination.

A. Single-Flow Networks

Single-flow networks are those with only one flow
(S, D, F ), where S is the source node, D is the destination
node, and F is the number of packets generated at the source
node during each time slot. In this section, we will describe
how VRS works in single-flow networks and prove its stability.
This prepares us for the more general multi-flow case that
follows.

Single-Flow VRS (SF-VRS). We define the potential function
associated with node v at time t, denoted by Pv(t), as the
number of packets buffered at node v at the beginning of time
slot t. During any time slot t, the following steps are performed
in order.

i) At the beginning of the time slot, F packets are gener-
ated by the source node.

ii) Each link (v, w) for which

Pv(t)− Pw(t) ≥ ∆, (4)

is marked active. Here, ∆ ≥ 0 is a pre-specified
parameter which is called the transfer threshold. All
other links are marked inactive.

iii) If the number of packets residing at node v, which is
Pv(t), is greater than or equal to the number of active
outgoing links adjacent to v then each such link transfers
one packet from v to its neighbors. Otherwise, node v
randomly chooses Pv(t) of its active outgoing links,
and each of these links transfer one packet from v to
a neighboring node.

iv) Any packet which has reached the destination node D
is immediately removed from the system.

Step (ii) is run in parallel on all links of the network, and
step (iii) is run in parallel on all nodes and active links of
the network. Note that the potential function Pv(t) is updated
instantaneously after a packet leaves node v or if a packet
arrives at v.

Figure 4 shows a simple example of how SF-VRS works in
a network with a fixed topology. In this example, node 1 and 3
are the source and destination of the flow respectively, and one
packet is generated at the source during each time slot. The
transfer threshold, ∆, is set to 2 in this example. The system

becomes stable only after three time slots and transfers packets
from the source node to destination node with a fixed rate of
one packet per time slot. What happens if the topology of the
system changes in this example? As Figure 5 shows, even if
the link (1, 3) fails, or if one or both of the links (1, 2) and
(2, 3) fail, the system can still deliver packets to the destination
with a fixed rate of one packet per time slot.2 Only if (1, 3)
and one or both of the other two links fail together, packets
are accumulated at the source node, and the system becomes
unstable. Obviously, no routing scheme can deliver packets
to the destination in this case, simply because there is not
enough capacity to carry the packets from the source to the
destination.

In general, we would like to know under what circumstances
a network running SF-VRS remains stable. To answer this
question, let us start with a sufficient condition for a network
to be strictly stable under SF-VRS.

Theorem 1: Let us consider a network G = (V,E(t)) with
a single flow (S, D, F ). If the minimum capacity of any cut
C separating the nodes S and D is at least F , then network
remains strictly stable under SF-VRS.

Instead of proving Theorem 1, we will prove the following
stronger result.

Theorem 2: Let us consider a single-flow network G =
(V,E(t)) with flow (S, D, F ) running SF-VRS. We assume
that the minimum capacity of any cut C separating the nodes
S and D is at least F . Then, for any subset of nodes U such
that |U | = k, and at any time slot t, the total number of packets
residing in U , denoted by PU (t) is at most

B(k) = ∆× [Nk − k(k + 1)
2

] + k, (5)

where N is the total number of nodes in the network (i.e.
N = |V |) and ∆ is the transfer threshold of the SF-VRS.

The proof of this theorem is left to the Appendix.

B. Multi-Flow Networks

In this section, we generalize the technique presented in
previous section for multi-flow networks. It’s interesting to
note that simply extrapolating SF-VRS (i.e. treating all flows
like a single flow) does not work directly, as shown by the
following counter-example in Figure 6. In this network there
are two flows, one from node 1 to node 4, and one from node
4 to node 1, each generating one packet every other time slot.
Since the number of packets in nodes 2 and 3 are always the
same, if we use SF-VRS, no packets make it across the middle
link (2, 3). Thus, the network is unstable.

We consider a network carrying K flows (Si, Di, Fi) (for
any i, 1 ≤ i ≤ K). A simple generalization of SF-VRS to
work in such a network is as follows.

Time Division VRS (TD-VRS). We divide the time be-
tween the K flows, i.e. at time slot t the network will be

2As we will see later, disruptions can happen but only for a limited number
of times during the entire system lifetime.
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Fig. 6. An example showing why SF-VRS does not work in multi-flow
networks.

completely dedicated to the (t mod K + 1)-th flow, and use
SF-VRS to route packets belonging to this flow.

Theorem 3: We consider a multi-flow network G =
(V,E(t)) with K flows (Si, Di, Fi). We let

F = maxK
i=1{Fi}. (6)

If for any cut C that separates Si and Di for some i (1 ≤
i ≤ K), we have Min Cap(C) ≥ KF then the network is
stable under TD-VRS.

We prove this theorem in the Appendix. Note that if the
number of packets injected by each flow is equal (or very
close) to F , TD-VRS performs optimally (or near-optimally).
However, if some of the flows generate very small number of
packets (compared to F ), TD-VRS wastes the capacity by not
forwarding any packets at time slots assigned to such flows.
In other words, even though the system remains stable, we are
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Fig. 7. An example of how MP-VRS works.

not using its full capacity. The following variation of VRS is
intended to fix this problem.

Maximum Pressure VRS (MP-VRS). During the time slot
t, we denote the number of packets corresponding to flow i at
node v with P i

v(t). At time slot t, each link (v, w) computes

i∗ = arg max
i
{P i

v(t)− P i
w(t)}. (7)

The link (v, w) transfers one packet belonging to flow i∗

from node v to node w if

P i∗

v (t)− P i∗

w (t) ≥ ∆. (8)

Figure 7 depicts an example of how MP-VRS works. In
this example, ∆ = 2. Here, i∗ = 3 and since the difference
between the number of packets of flow 3 residing at v and w is
at least ∆, one packet belonging to flow 3 will be transferred
from v to w.

Despite TD-VRS, which ignores the individual demands of
each flow, MP-VRS gives priority to the flow with the highest
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pressure at each link. The key idea here is that if at any time
slot, we balance the flow with the highest pressure at the two
ends of a given link, overall all flows will become balanced
throughout the network. Like SF-VRS and TD-VRS, we need
some restrictions on the network connectivity so that MP-
VRS keeps the system stable. The following lemma presents
a necessary condition on the network topology.

Lemma 1: We consider a multi-flow network G =
(V,E(t)) carrying flows (S1, D1, F1), . . . , (SK , DK , FK). If
there is a routing scheme under which this network is
rate-stable, then the network is F = (F1, . . . , FK)-rate-
provisioned.

The proof of Lemma 1 is trivial and is omitted. We were
not able to prove a sufficient condition for the stability of the
system similar to that of Theorem 3 for MP-VRS. However,
we will study the stability of the system under MP-VRS using
simulations in Section VI.

V. ROUTING PATH LENGTH

In this section we determine the length of the path taken by
a packet compared to shortest-path routing. We note that no
matter what the routing scheme is, it is not always possible to
route all packets on the shortest path. In the network depicted
in Figure 8 for example, if the demand between the source
node S, and the destination node D is two packets per time
slot, no matter what the routing algorithm is, at least half of
the packets cannot take the shortest path. On the other hand,
if the demand between the source and destination node is less
than or equal to one packet per time slot, a simple shortest-
path routing scheme can route all packets on the shortest path.
The following theorem, shows that the same is true with high
probability in VRS.

Theorem 4: In a single-flow network with a fixed topology,
if the amount of flow injected to the network is 1− ε per time
slot (for an arbitrarily small ε), then there is a transfer threshold
∆ for which SF-VRS almost surely (i.e. with probability one)
routes packets on the shortest path from the source to the
destination.

In general, if the demand of the flow is D− ε, by choosing
appropriate ∆ we can show that packets take the first D
disjoint shortest paths with probability one.

Theorem 5: In a single-flow network with a fixed topology,
if the amount of flow injected to the network is D − ε per

time slot (for an arbitrarily small ε), then there is a transfer
threshold ∆ for which SF-VRS almost surely routes packets
on the first D disjoint shortest paths between the source and
the destination (assuming that such paths exist).

The proof of Theorem 4 and Theorem 5 comes in the
Appendix.

Finally, note that since the maximum number of packets
in the network increases with the transfer threshold, ∆, there
is a trade-off between the length of the path taken by each
packet, and the maximum number of packets in the system.
By reducing the threshold ∆, we can reduce the number of
packets that are roaming. However, this will increase the ratio
between the length of the path taken by each packet and the
length of the corresponding shortest path.

VI. SIMULATIONS

In this section, we evaluate the performance of VRS using
simulations. All nodes are distributed on a square surface of
unit area with either a random walk or a waypoint mobility
process. In the waypoint mobility model, each node chooses
a random target, which is uniformly distributed in the surface,
and advances toward that target at a constant velocity. When
a node reaches its target, it generates a new target and moves
again. In the random walk model each node moves one step
(of constant size) in one of the four cardinal directions (chosen
randomly), and reflects at the boundary.

We examine the performance of VRS based on several
metrics: packet loss, queue size distribution, and the length
of the path taken by packets. Several factors can impact each
of these performance metrics, namely, the number of nodes in
the network, the number and amount of flows, the mobility
process, the amount of the transfer threshold ∆, communi-
cation range, and the algorithm used to route the messages.
In order to evaluate the impact of each of these parameters
on a given performance metric, in our experiments, we fix all
but one or two of these parameters, and analyze the impact
of changing these parameters on the system performance. In
the experiments of this section, unless stated otherwise, the
network consists of 100 nodes, each node has a communication
range of 0.26, movement velocity ranges from 0.01 to 0.2, and
∆ = 2.

Packet Loss Ratio. The first performance metric we study is
the packet loss ratio in the system, i.e., the fraction of packets
that are dropped due to insufficient buffer size at the nodes
of the system. We study packet loss, since it is an indication
of the stability of the system; clearly, if the system is strictly
stable and the queue sizes are chosen appropriately, the packet
loss is equal to zero.

• Flow Demand. Figure 9 (a) shows the packet loss ratio
(and thus the stability region) of VRS in a single-flow
network, as a function of the number of packets injected
to the system at each time slot. We observe that the packet
loss ratio of the system does not depend on the mobility
process, and is almost the same for the random walk and
the waypoint processes. An interesting point here is that
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Fig. 9. Stability of VRS in a single-flow network.

if queue sizes are chosen large enough (in our example
the maximum queue size is 1000 packets) the stability
of the system does not change with increasing the queue
sizes. When the flow demand is beyond the capacity of
the system, no matter how large the queues are, if the
system runs for a sufficiently large time, the queues will
start to overflow.

• TD-VRS vs. MP-VRS. In any single flow network TD-
VRS and MP-VRS behave identically. Thus, we compare
the packet loss ratio of TD-VRS and MP-VRS in a
network with two flows. The demand of each flow ranges
from one to twenty five packets per time slot. Parts (a),
(b), and (c) of Figure 10 illustrate the amount of packet
loss for flow one, the packet loss for flow two, and the
total amount of packet loss in a network running TD-
VRS. We can see that once the demand of flow one or
flow two goes beyond nine packets per time slot, the
system starts loosing a fraction of packets. However, as
we can see in parts (e), (f), and (g) of Figure 10, if we run
MP-VRS on the same network, the system can tolerate
up to eighteen packets for each of the two flows.
The fact that the system remains stable under MP-VRS
when both flows have a demand of eighteen packets per
time slot, might seem unexpected at first glance. Since
TD-VRS (which assigns all links to each of the two flows
every other time slot) can tolerate up to nine packets
per flow, we expect the system remain stable when one
of the two flow demands goes up to eighteen and the
other remains zero. In this case, MP-VRS will assign all
links to the flow with demand eighteen, but when both
flows have a demand of eighteen, we expect the system to
become unstable, since the total flow is thirty six in this
case. However, a closer look at our network shows that
the constraining factor for instability of TD-VRS is the
average number of links going out of the source. In this
experiment, the average degree of each nodes is about
eighteen. Since TD-VRS assigns the links to each flow
every other time slot, the source node can inject up to
eighteen packets in every two time slots or nine packets

per time slot. However, if the source and destination of
the two flows are distinct nodes, the bottle-neck is not the
average degree of the source or destination anymore, and
MP-VRS can route up to eighteen packet for each flow.
Parts (g), (h), and (i) of Figure 10, illustrate the packet
loss of a network with two flows sharing the same source
node. Here, like the TD-VRS case, the bottleneck is the
number of links going out of the source node, and when
the demand of both flows is increased the system becomes
unstable.

• Communication Range. For a fixed number of nodes
in the network, expanding the communication range of
each node increases the average degree of each node,
which in turn, enhances the connectivity of the network
and reduces the packet loss ratio. Figure 11 (a) depicts
the packet loss of a single-flow network with a demand
of fifteen packets per time slot. In Figure 11 (b) packet
loss is represented as a function of the flow demand for
various values of communication range.

• Number of Nodes. If the communication range of each
nodes is fixed, increasing the number of nodes in the
network reduces the packet loss3 (Figure 12 (a)).

• Transfer Threshold ∆. Figure 12 (b) depicts the packet
loss of a network for various values of ∆. In this network,
the maximum queue size is 1000 packets. We observed
that when the amount of ∆ is relatively small compared
to the maximum queue size, the packet loss ration of
the system does not depend on ∆. However, when ∆
becomes a large fraction of the maximum size, it can
significantly increase the packet loss ratio.

• Mobility Process. In Figure 9 we noticed that choosing
between random walk or waypoint mobility process does
not affect the stability of the system. Here, we measure
the impact of changing the velocity on the packet loss
ratio of the system. We can see in Figure 13 (a) that
reducing the velocity to values near zero, can lead to
subtle instabilities in the system. The reason is that in
this case topology changes are very slow, therefore, if
some node happens to have a very small number of
adjacent neighbors, it might degrade the routing process.
We notice that for larger velocities, the packet loss ratio
of the system does not depend on the node movement
speed (Figure 13 (b)).

Queue Size Distribution. The average queue size for any
given flow is an important metric for evaluating the perfor-
mance of the routing scheme, since it is directly proportional
to the average delay observed by packets. To see this, we
consider an N -node network carrying a flow with demand
D. We denote the average number of packets residing in the
network at any time slot with Pavg , and the average delay
observed by packets with Wavg . Then,

Pavg = D ×Wavg, (9)

3We assume that a higher number of nodes does not increase the interfer-
ence.
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Fig. 10. Packet loss ratio for TD-VRS vs. MP-VRS.
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Fig. 11. Packet loss vs. communication range.
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Fig. 12. (a) Packet loss vs. the number of nodes in the network. (b) Packet loss vs. transfer threshold ∆.
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Fig. 13. The packet loss ratio of the network vs. the node movement velocity.

and,

Pavg = Qavg ×N. (10)

Therefore,

Wavg =
Qavg ×N

D
. (11)

Equation 11 shows the relationship between the average
delay observed by packets and the average queue size. Next,
we will study the impact of changing system parameters on
queue size distribution.

• Flow Demand. Figure 14 (a) depicts the average queue
size, maximum queue size and the standard deviation
of queue sizes in a network as a function of the flow
demand. We can see that when the network is lightly
loaded, the average queue size and the maximum queue
size are very close to each other. Only when the network
becomes heavily loaded, the maximum queue size grows
severely.
Figure 14 (b) shows the queue size distribution for
different amount of flow demand. We can see that 99%

of the time the queue sizes are less than ten, even though
the maximum queue size is about 100. We notice that
the theoretical bound on the number of packets residing
in the network (Theorem 2), which is 199 packets per
nodes, is far from the number of packets in practice. In
other words, in practice we expect the packets to have a
relatively short delay under VRS.

• TD-VRS vs. MP-VRS. Figure 15 parts (a), (b) and (c)
respectively present the average queue size in a two-flow
network under TD-VRS, MP-VRS with disjoint source-
destination nodes, and MP-VRS with a node which is a
source of two flows. Comparing these graphs with those
in Figure 10 we can see that as unless the network is
very highly loaded, the average queue size remains small
under both TD-VRS, and MP-VRS.

• Communication Range, Number of Nodes, and the
Mobility Process. Our simulations show that when the
network is not highly loaded, the average and maximum
queue sizes do not change with the communication range,
the number of nodes, and the mobility process. However,
when the network becomes highly loaded as a result
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Fig. 15. Average queue size under TD-VRS and MP-VRS in a two flow network.

of reducing the communication range or decreasing the
number of nodes, the average and maximum queue sizes
increase (similar to Figure 14).

• Transfer Threshold ∆. Figure 16 (a) shows the average
and maximum queue size in the network as a function of
the transfer threshold ∆. As expected, the average and
maximum queue sizes grow when ∆ is increased. We
note that unless ∆ is set to very large amounts (relative
to the maximum available queue size), the average and
maximum queue sizes remain small.

Routing Path Length. Finally, we evaluate the performance
of VRS based on the routing path length of the packets. Note
that the routing path length and the delay are not necessarily
correlated, since a packet might wait for a long time in a queue
even though it is routed on the shortest path. Based on our
analysis in Section V, the only parameter that directly impacts
the path length is the transfer threshold ∆. Figure 16 (b)
depicts the ratio between the routing path length under VRS
and the shortest path in a lightly loaded network with a fixed
topology. Note that when ∆ = 0, nodes move randomly in the
network, but as soon as ∆ = 1 paths start to take the shortest
path.

VII. CONCLUSIONS

While mobile ad-hoc networks are new, and few systems
have been deployed, it is not yet clear how dynamic they
will be. Perhaps, over time, experience will show them to be
relatively static, with only slow changes in topology. However,
it is reasonable to expect that mobility will be hard to describe
or constrain; and applications might emerge which are highly
dynamic, with rapidly moving sensors. In this case, existing
routing algorithms will be of little use.

In rapidly changing networks in which nodes are periodi-
cally (although perhaps infrequently) generating new packets,
then Volcano Routing seems simple (it has no discovery
phase), reliable (packets will eventually reach their destina-
tion), and stable (the number of packets in the network is
bounded). We don’t know of any other routing algorithm with
these properties.
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APPENDIX

Stability of SF-VRS

We need to prove a number of preliminary results before
proving the stability of SF-VRS (Theorem 1 and Theorem 2).

Lemma 2: At a given time t, if there is a subset of nodes
U , with |U | = k and PU (t) > B(k), we can find a subset of
nodes U ′ consisting of k nodes such that for any node v ∈ U ′

and any node w 6∈ U ′ we have Pv(t) ≥ Pw(t).
Proof: If for any node v ∈ U and any node w 6∈ U we

have Pv(t) ≥ Pw(t), then we let U ′ = U and the lemma is
proved. Otherwise, there must be a node v ∈ U , such that
Pv(t) < Pw(t) for some node w 6∈ U . We can swap the two
nodes getting another set U ′ (i.e. U ′ = (U − v) ∪ w). The
number of elements in U ′ is still k, but the number of packets
residing in U ′ is more than that of U . We can repeat this
process for only a limited number of times, which proves the
lemma.

Lemma 3: At a given time t, if U is a minimal subset of
nodes with |U | = k and PU (t) > B(k), for any node v ∈ U
we have

Pv(t) > ∆× (N − k) + 1. (12)
Proof: Since U is a minimal set with PU (t) > B(k), we

have P(U−{v})(t) ≤ B(k − 1) for any node v in U . We also
know that P(U−{v})(t) = PU (t)− Pv(t); therefore



Pv(t) > B(k)−B(k − 1), (13)

or

Pv(t) > ∆× (N − k) + 1. (14)

Now we are ready to prove the main result of Section IV-A.
Proof: (Theorem 2). There are no packets residing in

the network at time zero. Let us assume time slot t is the
first time that there is a minimal subset U (|U | = k) with
PU (t) > B(k). Let us also assume that U is composed of the
nodes which have at least as many packets buffered as any
other node in the network (Lemma 2 shows that such a set
always exists).

The source node resides in U (otherwise we cannot have
PU (t) > B(k)), therefore F new packets have entered U
during the time slot t − 1. Since at time t − 1 we have
PU (t − 1) ≤ B(k) the number of packets which have left
U , say F ′ is less than F .

Let us consider the cut C = (U, V − U) separating S and
D. Since the network is F -min-provisioned, the capacity of C
is at least F , and there are at least F nodes outside U which
are adjacent to some node in U at time slot t − 1. Based on
Lemma 3 and the fact that U is minimal, for any node v ∈ U
we have Pv(t − 1) > ∆ × (N − k) + 1. Now, since only F ′

packets have left U at time t−1, at least F −F ′ neighbors of
U must have packets more than ∆× (N −k− 1)+1 residing
in them (otherwise the number of packets leaving U would be
more than F ′, which is not possible). Let us denote this set
of neighbors of node in U with U ′.

We consider the set of nodes U ∪U ′ at time t− 1. This set
has k + F − F ′ nodes in it and

P(U∪U ′)(t− 1) >

B(k)−F + F ′ + ∆× (F −F ′)(N − k− 1) + F −F ′. (15)

Simplifying this equation we get

P(U∪U ′)(t− 1) > B(k + F − F ′). (16)

This is not possible (time t is the first time for which the
bound is broken), therefore the theorem holds.

Stability of TD-VRS

Proof: (Theorem 3) During any period of K time slots,
the total number of packets generated by the i-th flow (1 ≤ i ≤
K) is at most KF . Since the capacity of any cut separating
Si and Di is at least KF , and since all the links are dedicated
to flow i at least once during these K time slots, Theorem 2
shows that the system is strictly stable with respect to flow i.

Routing Path Length Under VRS

In order to prove Theorem 4 we need the following lemma.

Lemma 4: In a single-flow network with a fixed topology,
and flow demand 1− ε, for any node v at distance dist(v) of
the destination node, we almost surely have

Pv(t) ≤ ∆× dist(v). (17)
Proof: We use mathematical induction on the distance of

the nodes from the destination. The only node with dist(v) =
0 is the destination node D, for which we always have
PD(t) = 0. Let us assume that for any node at distance less
than or equal to m − 1 of the destination, the lemma holds.
Now, consider a node v, with dist(v) = m. There is a node
w, with dist(w) = m − 1 which is connected to v. Based
on induction hypothesis, we know that with probability one
Pw(t) ≤ ∆ × dist(w). Therefore, if Pv > ∆ × dist(v), the
link (v, w) will drain packets from v with rate equal to one.
However, we know that with probability one the arrival rate
to node v is less than or equal to 1 − ε, and whenever the
arrival is greater than 1 − ε it is limited to the number of
adjacent nodes to v. Therefore, whenever there are more than
one packets arriving at v, they queue is immediately drained,
since the draining rate is one. Therefore, with probability one
inequality 17 holds.

Proof: (Theorem 4) Let us assume that the length of
the shortest path, say P , is L. Let us also consider another
path, P ′, of length L′ > L. packets take path P ′ to reach the
destination node, we must have

PS − (∆− deg)× (L′ − 1) ≥ ∆. (18)

where deg is the maximum degree of any node in the
network. To see this we consider a packet X at the source
node S, which follows the path P ′ to reach the destination.
Let us assume that the height of X is the size of the queue in
which it resides in. Then, the height of X will be PS at the
beginning. Now, whenever X is transferred from a node v to
a node w, since Pv − Pw ≥ ∆ and the maximum number of
packets arriving to w is deg, the height of X will be reduced
by at least ∆−deg. However, since X reaches the destination,
its height when it arrives to an adjacent node of the destination
must be at least ∆ (otherwise it will not be transferred to the
destination). Thus, inequality 18 holds. We can rewrite this
inequality as follows.

PS ≥ (∆− deg)× (L′ − 1) ≥ ∆. (19)

But based on Lemma 4 we know that with probability one

PS ≤ ∆× L. (20)

Combining inequalities 19, and 20 we get

L′ ≤ ∆× L

∆− deg
− ∆

∆− deg
+ 1. (21)

We can see that as ∆ →∞, the length of any path L′ taken
by packets must be very close to L, the length of the shortest
path. Therefore, if we let ∆ to be large enough, all the packets
must follow the shortest path with probability one.


