
Optimization Models for Fixed Channel Assignment
in Wireless Mesh Networks with Multiple Radios

Arindam K. Das, Hamed M. K. Alazemi, Rajiv Vijayakumar, Sumit Roy

Abstract— The combination of multiple radio nodes
in conjunction with a suitably structured multi-hop or
mesh architecture has the potential to solve some of the
key limitations of present day wireless access networks
that are based on single-radio nodes. This paper ad-
dresses the channel assignment problem for multi-channel
multi-interface (radio) wireless mesh networks. We focus
on static wireless mesh networks where multiple non-
overlapping channels are available for each wireless inter-
face. In this network environment, our objective is to find
a fixed channel assignment which maximizes the number
of bidirectional links that can be activated simultaneously,
subject to interference constraints. We present two mixed
integer linear programming models for solving the fixed
channel assignment problem with multiple radios. Detailed
computational results on various grid topologies are also
presented and discussed.

I. INTRODUCTION

The emergence of cost-effective wireless access net-
working technology such as 802.11 has changed mobile
communications and computing in significant ways. Its
success to date has been largely due to its deployment
in the home and small enterprise segments where it has
limited coverage and serves only a few users simulta-
neously. However there is already good evidence that
the current dominant model of user access based on the
infrastructure mode of 802.11 is poorly suited for the
dense AP networks which will be needed in order to
allow the number of users to scale. This is, in part, due
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to architectural reasons as well as inherent protocol stack
design limitations.

It is well-known from cellular systems engineering
that the key to one-hop capacity scaling (such as be-
tween a client and AP) is enhancing spatial reuse, i.e.,
reducing the re-use distance between co-channel users
on different AP’s. In narrow-band systems, the extent
of spatial reuse is directly proportional to the number
of orthogonal channels (or system bandwidth) available.
Currently, only a very limited number of such orthogonal
channels are available: 3 in 802.11b (2.4GHz) and 12 in
802.11a (5 GHz). Although greater worldwide allocation
is anticipated for unlicensed use in the future, it is clear
that relying primarily on increased available bandwidth
for scaling is not a feasible option. Accordingly, for
any given system bandwidth, optimizing network perfor-
mance necessarily requires improving the entire protocol
stack.

A promising option for scaling the capacity of a wire-
less access network is to configure a Layer-2 mesh as is
being currently planned within the IEEE 802.11s Task
Group. This implies a direct wirelessly inter-connected
set of mesh nodes (which comprise Access Points that
allow direct client access and future ‘routers’ that only
relay packets between other mesh elements) to form a
multi-hop network. The ad-hoc (but static) nature of
mesh node deployments results in a significant spatial
variability of the multi-access interference (MAI) seen at
any node location, implying variable location-dependent
node throughput. Hence, effective topology modification
mechanisms including power control, node clustering
and channel assignments are anticipated to be important
design degrees of freedom.

Traditional multi-hop wireless networks (also called
packet radio networks) have almost exclusively com-
prised of single radio elements. For various reasons,
including notably the following discussion on channel
assignment for a single radio mesh, such networks are
unable to effectively scale to exploit the increasing
system bandwidth available. Consequently, the use of
multiple radio nodes in a mesh network appears to
provide the most promising approach to overcoming
the above problems. Multiple radios greatly increase



the potential for enhanced channel selection and route
formation while the mesh allows more fine-grained in-
terference management and topology (power) control.
This paper addresses the channel assignment problem for
multi-channel multi-radio wireless mesh networks. We
focus on static wireless mesh networks where multiple
non-overlapping channels are available for each wireless
interface.

There are a number of common issues involved in
traditional multi-hop wireless networks. These, as was
noted in [1] and [2], include efficient methods for
sharing the common radio channel, network connectivity,
network capacity, and methods for managing and con-
trolling the distributed network. A particular issue that
is of interest to us is the channel assignment problem
in multi-hop wireless networks with a single radio.
This issue has been subject to several studies in the
literature. Early work by Cidon et al. [3] presented a
distributed dynamic channel assignment algorithm that
is suitable for shared channel multi-hop networks. Hajek
and Sasaki [4] studied the network as an arbitrary
undirected graph and presented two polynomial time
algorithms for link scheduling. They also addressed the
problem of joint routing and scheduling to satisfy end-to-
end demand. They showed that, under a certain simplify-
ing assumption, the routing and scheduling problems can
be decoupled to a large extent, without increasing the
schedule length. Their algorithm complexity was later
improved by Ogier in [5] with a more efficient approach.
When using an arbitrary graph modeling approach, many
scheduling problems were shown by researchers to be
NP-hard [6], [7], [8].

A natural way to increase network capacity and uti-
lization is by exploiting the use of multiple channel
and channel reuse opportunities. Several studies on the
subject of multi channel multi-hop wireless networks
have been the main subject of research in recent years.
In [9], [10], [11], [12], for example, MAC protocols
based on modification of IEEE 802.11 were proposed for
utilizing multiple channels. In particular, Jain et al. [9]
propose a protocol that selects channels dynamically and
employs the notion of “soft” channel reservation. This
reservation based scheme, which was later extended in
[10], gives preference to the channel that was used for
the last successful transmission. So et al. [11] propose
a MAC protocol which enables hosts to dynamically
negotiate channels such that multiple communication can
take place in the same region simultaneously, each in
different channel. The proposed scheme requires only
a single transceiver for each host. They later extend
their study in [12] to propose a routing protocol for
multi-channel multi-hop wireless networks with a single

interface that finds routes and assigns channels to balance
load among channels while maintaining connectivity.

While the above studies requires modification to the
IEEE 802.11, Bahl et al. [13] propose a new protocol,
Slotted Seeded Channel Hopping (SSCH), that extends
the benefits of channelization to ad-hoc networks. Their
protocol runs over unmodified IEEE 802.11 with a single
interface. The SSCH protocol operates at the link layer,
but it can be implemented in software over an IEEE
802.11-compliant wireless network interface card. They
show through extensive simulations that their proposed
scheme yields significant capacity improvement in a
variety of single hop and multi-hop wireless scenarios.

A few approaches to the routing and channel assign-
ment problems in multi-hop multi-radio mesh networks
have been proposed [14], [15], [16], [17], [18]. In
particular, Raniwala et al. [17], [18] propose a central-
ized load-aware joint channel assignment and routing
algorithm, which is constructed with a multiple spanning
tree-based load balancing routing algorithm that can
adapted to traffic load dynamically. They demonstrate
the dependency of the channel assignment on the load
of each virtual link, which in turns depends on routing.
They also show that the problem of channel assignment
is NP-hard.

Kyasanur et al. [16] studied the multi-radio mesh
network under the assumption that the network has
the ability to switch an interface from one channel to
another dynamically. They present a distributed inter-
face assignment strategy that accounts for the cost of
interface switching and does not make any assumptions
on the traffic characteristics. Their routing strategy se-
lects routes which have low switching and diversity
cost taking into account the global resource usage to
maximize the network utilization and allows the nodes
to communicate without any specialized coordination
algorithm.

A different aspect of the multi-hop multi-radio mesh
networks was investigated by Draves et al. [15]. They
propose a new routing metric (WCETT) which is imple-
mented in a routing protocol called Multi-Radio Link-
Quality Source Routing (MR-LQSR), in which all nodes
are assumed to be stationary and the channel assign-
ment is predetermined. The WCETT metric is aimed at
achieving a tradeoff between delay and throughput by
balancing the usual criterion (minimum number of hops)
with the notion of channel diversity. Their results show
that classical shortest path routing is not suitable when
multiple radios are deployed; exploiting channel diver-
sity in multi-radio mesh networks significantly improves
the network capacity and makes better utilization of the
channel resources.



In this paper, we consider the problem of static chan-
nel assignment in multi-hop multi-radio mesh networks
and discuss two integer linear programming (ILP) mod-
els which can be used for solving the problem optimally.
Our objective function is maximization of the number of
links that can be active simultaneously.

The remainder of the paper is organized as follows. We
discuss our network model and assumptions in Section
II and formally define the problem in Section III. In
Sections IV and V, we discuss two different ILP models
for solving the channel assignment problem with mul-
tiple radios. Section VI provides numerical simulation
results for various sizes of grid topologies. Section VII
concludes the paper.

II. NETWORK MODEL AND ASSUMPTIONS

In this section, we outline our network model and
assumptions.

1) We consider a fixed N -node wireless network.
2) Each node has K radios, K ≥ 2.
3) Given a target probability of bit error rate from

node i to node j, the transmitter power at node
i necessary to support the link i → j,1 Pij , is
proportional to P0d

α
ij , where dij is the Euclidean

distance between nodes i and j, α is the channel
loss exponent, typically between 2 and 4, and P0

is the reference power when dij = 1m. Without
any loss of generality, we set the proportionality
constant equal to 1 and therefore:

Pij = P0d
α
ij (1)

4) We assume that Pij = Pji,∀(i, j) ∈ N where N
is the set of all nodes in the network and N = |N |.

5) There is a constraint on the maximum power level
per sector which a node can use for transmission
and that this parameter is identical for all nodes.
We denote this maximum power level by Pmax.

6) Let E be the set of all bidirected edges in the
network and E = |E|. Using the transmitter power
constraint, the set E is given by:

E = {(i↔ j) : (i �= j) ∈ N , Pmax ≥ Pij} (2)

The third condition on the right hand side of (2)
enforces bidirectionality of edges based on the
maximum power constraint. Note that because of
our assumption that the matrix P is symmetric,
Pmax ≥ Pij ⇒ Pmax ≥ Pji. For the sake of
notational simplicity, we will also use the set E to

1We use the notation {i, j} to represent the node pair. A directed
link from i to j will be represented by i → j and an undirected (or,
bidirected) link between i and j will be represented by i ↔ j.

refer to all directed edges, {i→ j}, in the graph,
since:

(i↔ j) ∈ E ⇔ (i→ j) ∈ E & (j → i) ∈ E (3)

We will refer to the graph G = (N , E) as the
reachability graph of the network.

III. PROBLEM FORMULATION

We consider the static channel assignment problem on
a network of N nodes, each of which has K radios. Let
F denote the number of available orthogonal channels,
F > 1. Given an assignment of channels to radios,
nodes i and j can communicate if and only if they
share a common channel and are within communication
range of each other. If these conditions are satisfied,
we say that a link exists between i and j. One of the
goals of the channel assignment problem is to ensure
network connectivity. The approach we will adopt in
this paper is to require that if two nodes are within
communication range of each other, they must share a
common channel for data transmission and reception. An
assignment which satisfies this property ensures network
connectivity and is said to be feasible.

Typically there will be many feasible channel assign-
ments and we would therefore like an optimality criterion
that allows us to pick one of these channel assignments.
The optimality criterion we use is maximization of the
number of possible simultaneous transmissions in the
network. The rationale behind this choice is explained
below.

We assume that the nodes in the mesh employ the
RTS/CTS mechanism to combat the hidden terminal
problem that arises naturally in the context of the rela-
tively large distances involved in the mesh architecture. If
a single channel is available, after a successful RTS/CTS
exchange between a pair of nodes, no node within
communication range of either the sender or the receiver
can communicate for the duration of the subsequent data
packet. Figure 1 shows the set of links that must remain
silent (if they are on the same channel) when the edge
(a ↔ b) is active, given that the set of nodes forms
a grid topology. For this topology, the set contains 22
edges. This illustrates that an ongoing transmission can
potentially silence a large number of other links if they
share the same channel, which motivates the choice of
a channel assignment which maximizes the number of
simultaneous transmissions as our optimality criterion.
Intuitively, such an assignment should maximize the 1-
hop (link layer) throughput (as opposed to multihop
end-to-end throughput) in the network in worst case
traffic; i.e., when the traffic profile is such that there



a

b

Fig. 1. Set of 22 interfering edges for the edge a ↔ b (in bold),
if all are on the same channel. The shaded nodes are neighbors of
either node a or node b and must remain silent when the link a ↔ b
is active.

is simultaneous contending traffic on all links in the
network. It is important to note that maximizing the link
layer throughput through suitable channel assignment
may not guarantee maximum network layer throughput
(an end-to-end metric), which is a dynamic criterion
and depends on the real time traffic conditions in the
network. Also, the channel assignments found using this
metric may not be optimal for other traffic profiles, e.g.,
when there is only a few (source, destination) pairs (and
corresponding routing paths) in the network.

IV. ILP MODEL - ‘A’

Prior work on fixed channel assignment in cellular
networks have used a ‘node model’, or, in other words,
channels are assigned to nodes (base stations). In this
paper, we adopt a ‘link model’, where channels are
assigned to links. Consider the simple 6-node grid topol-
ogy in Figure 2. The solid lines in the figure represent
radio links. Existence of a radio link between nodes i
and j implies that these nodes are within radio range
of each other. For example, the line between nodes 1
and 3 represents that these nodes are within radio range
of each other. A pair of nodes which are within radio
range of each other are referred to as neighbors. Given
a reachability graph G = (N , E), where N is the set
of nodes and E is the set of edges (radio links), our
objective is to find a channel assignment which would
maximize the number of bidirectional links that can
be activated simultaneously, subject to interference and
other constraints (discussed subsequently).

Fig. 2. A 6-node grid topology. The bidirectional edges are
numbered e1 to e7.

Let F = [1, 2, · · ·F ] denote the set of available
channels, where F = |F|. We assume that the available
channels are mutually ‘non-overlapping’. Also, let C =
[Cef : 1 ≤ e ≤ E, 1 ≤ f ≤ F ] denote the E×F binary
channel assignment matrix corresponding to the edges in
E , such that Cef = 1 if edge e is assigned channel f . The
physical interpretation of Cef = 1 is that the end nodes
of edge e will use channel f for communicating with
each other. For example, if F = 4 and channel number
2 is assigned to edge e1 in Figure 2, the first row of
C would be [0, 1, 0, 0], meaning that nodes 1 and 3 (the
end nodes of e1) will use channel 2 to communicate with
each other. Finally, we let �X = [X1, X2, · · ·XE ]T be an
E × 1 binary vector such that Xe = 1 if the edge e is
part of the optimal solution.

With the above notation in place, we can formally
define the objective function for the fixed channel as-
signment problem with multiple radios (FCA-MR):

FCA-MR: maximize
∑
e∈E

Xe (4)

An implicit assumption in our objective function is that
all radio links are potentially traffic-carrying. Or, in other
words, if Et is the set of potentially traffic carrying
links, we assume that Et = E . If, however, Et ⊂ E ,
the summation in (4) can be restricted to the set e ∈ Et.

In the above form of the objective function, all edges
are assumed to be of equal weight. A generalization
of the above objective function can be obtained by
associating a weight we with each edge e. With an a
priori knowledge of the traffic patterns in the network
and given a routing algorithm based on a channel-
unaware metric such as “minimum hop”,2 the weight
we can be interpreted as the fraction of the total load

2If the routing metric is channel-aware, such as the WCETT
(which is a weighted combination of expected transmission times
and maximum channel usage) metric suggested in [15], channel
assignment and routing is best treated as a joint optimization problem.
However, this is outside the scope of this paper.



offered to the network which is carried on edge e.
The objective function for the weighted fixed channel
assignment problem with multiple radios (WFCA-MR)
is therefore:

WFCA-MR: maximize
∑
e∈E

weXe (5)

We now discuss the constraints under which the above
maximization problem is to be solved.

The first constraint forces all edges in E to be assigned
a channel; i.e., ∑

f

Cef = 1; ∀e ∈ E (6)

Our second constraint ensures that the number of distinct
channels assigned to any node is less than or equal to
K, the number of radios at each node. As simple as this
constraint may sound, modeling it within the framework
of ILP model ‘A’ which assigns channels to edges is
non-trivial.

Consider, for example, the 6-node network in Figure 2
and the channel assignment matrix shown in (7) for F =
[1, 2, 3]. The edges to which the rows of C correspond
are also shown in (7). The columns of C correspond to
the three available frequency channels.

C =




1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1




e1 = 1↔ 3
e2 = 3↔ 5
e3 = 1↔ 2
e4 = 3↔ 4
e5 = 5↔ 6
e6 = 2↔ 4
e7 = 4↔ 6

(7)

Take the case of node 3, which has three edges incident
on it, e1, e2 and e4, corresponding to rows 1, 2 and 4
of C. The number of radio channels assigned to node 3
is given by: (C11 ∨C21 ∨C41) + (C12 ∨C22 ∨C42) +
(C13 ∨C23 ∨C43) = 1 + 1 + 0 = 2, where ∨ denotes
the logical OR operation.

Let Y = [Ynf : ∀n ∈ N ,∀f ∈ F ], 0 ≤ Ynf ≤ 1,
be an N × F matrix such that Ynf = 1 if at least one
edge incident on node n has been assigned channel f .
Also, let rows(n) denote the row indices of C such
that n is an end node in the edges corresponding to
rows(n). For example, given the channel assignment
matrix (7), rows(3) = [1, 2, 4] and rows(4) = [4, 6, 7].
The number of edges incident on node n is equal to
|rows(n)|. Constraint (8) ensures that Ynf is equal to
1 if at least one edge incident on n is assigned channel
f . Note that Ynf is free to take on a value of 1 even
if channel f is not assigned to any edge incident on n.
However, because of the upper bound on the number

of channels that can be assigned to node n (9) and our
maximization objective, such an assignment would not
adversely affect the optimal cost.

Ynf = max{Ckf : k ∈ rows(n)},∀n ∈ N ,∀f ∈ F
or equivalently,

Ynf ≥ Ckf ; k ∈ rows(n),∀n ∈ N ,∀f ∈ F (8)

Consider, for example, node 3 in Figure 2 and assume
that f = 1. Using (8), we have the system of inequalities:
(i) Y31 ≥ C11 (ii) Y31 ≥ C21 and (iii) Y31 ≥ C41. If
channel 1 is assigned to any of the three edges e1, e2

and e4, Y31 will be set to 1.
With the matrix Y defined as above, the constraint

on the maximum number of distinct channels that can
be assigned to the edges incident on any node n, or
equivalently, the number of channels assigned to n, can
be expressed as:∑

f

Ynf ≤ K; ∀n ∈ N (9)

where K is the number of radios on each node.
Our next constraint set couples the {Xe} variables

to the [Cef ] variables and is based on the notion of
potentially interfering edges. Given that a particular
transmitter and receiver pair are communicating:

• No node within carrier sense range of the trans-
mitter can simultaneously transmit on the same
channel, because such a node would defer its trans-
mission upon sensing the channel being busy via
the carrier sense (CS) mechanism.

• No node within carrier sense range of the receiver
can simultaneously transmit on the same channel
because such a transmission would result in a colli-
sion at the receiver. Note that the DCF mechanism
in 802.11 does not directly prevent these nodes
from transmitting and causing a collision, except via
the RTS/CTS mechanism. Given the large distances
involved in mesh networks, one must expect a
relatively high possibility of such hidden nodes,
and hence it is likely that RTS/CTS will in fact
be employed.

Since transmitters and receivers exchange roles every
time an ACK is sent, we are led to the constraint that
no edge which is incident on a neighbor of either the
transmitter or receiver (which intend to communicate,
say, on channel f ) can be simultaneously active on
channel f . For any bidirected edge e = (i ↔ j) ∈ E ,
the set of its potentially interfering edges, denoted by
IE(e), is therefore:

IE(e) = all edges incident on {ne(i) \ j} ∪
all edges incident on {(ne(j) \ i)} (10)



where ne(i) is the set of neighbors of node i and
‘∪’ denotes the union operator. Notice that IE(e) is
essentially the total interference set for the single radio,
single channel case. Consider, for example, edge e4 =
3 ↔ 4 in Figure 2. The set of neighbors of node 3,
excluding 4, is {ne(3) \ 4} = {1, 5} and the set of
neighbors of node 4, excluding 3, is {ne(4)\3} = {2, 6}.
From Figure 2, it is seen that the set of all edges incident
on node 1 is {e1, e3}. Identifying the set of all edges
incident on nodes 2, 5 and 6, it can be easily verified
that the set of all potentially interfering edges of e4 is
{e1, e2, e3, e5, e6, e7}. Therefore, if edge e4 is active, say
on channel f , none of the other edges in Figure 2 can
be simultaneously active on channel f .

Given an edge set E , we define an E × E link
interference matrix, LIM, such that the (a, b)th (a �= b)
element of LIM is equal to 1 if (ea, eb) is a potentially
interfering pair. All diagonal elements of LIM are equal
to 0. Note that row (column) a of the matrix LIM refers
to the edge ea.

LIMab =

{
1, if eb ∈ IE(ea)
0, otherwise,

(11)

Observe that the matrix LIM is symmetric. For the 3×2
grid network in Figure 2, the link interference matrix is
shown below. The first row and column of the matrix
corresponds to edge e1, the second row and column
corresponds to e2, etc.



0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 0 1 1
1 1 1 0 1 1 1
1 1 0 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0




(12)

It is interesting to note that the LIM matrix is essentially
the adjacency matrix of the interference graph. Given a
reachability graph G = (N , E) and the LIM matrix, the
interference graph, I(G), is a graph whose node set is
the edge set of G and two nodes are connected by an
edge in I(G) if the corresponding elements in LIM are
equal to 1. Specifically, the nodes ea and eb (ea, eb ∈ E)
in I(G) are joined by an edge if LIMab = LIMba = 1.
See Figure 3 for an illustration.

For networks where all nodes are provided with a
single radio, interference issues would prevent any of the
edges in IE(ea) from coexisting with ea. However, for
networks with multiple radios, this condition is modified
such that “no edge in IE(ea) can coexist with ea if
they are assigned the same channel”. For example, in
Figure 2, if C2, : = C1, : (we use the notation Ci, : to

Fig. 3. A partial interference graph corresponding to the link interfer-
ence matrix (12). The nodes are numbered e1 to e7, corresponding
to the edges in Figure 2. Only the edges which could potentially
interfere with e3 are shown. For example, nodes e3 and e1 share an
edge since LIM31 = LIM13 = 1. Nodes e3 and e5 do not share
an edge since LIM35 = LIM53 = 0.

denote the ith row of C), both e2 and e1 cannot be
chosen in the optimal solution ⇒ X2 + X1 must be
less than or equal to 1. This restriction does not hold
if C1, : �= C2, :. Similarly, e2 and e4 cannot coexist if
C2, : = C4, : and the pair e2 and e5 cannot coexist if
C2, : = C5, :. For the edge e2, our channel dependent
link assignment constraints are therefore (note that this
is an incomplete set; there are other edges which interfere
with e2):

X2 + X1 ≤ 1, if C2, : = C1, :

X2 + X4 ≤ 1, if C2, : = C4, : (13)

X2 + X5 ≤ 1, if C2, : = C5, :

In general, the complete set of channel dependent link
assignment constraints is given by:

∀(ea, eb) such that LIMab = 1,

Xa + Xb ≤ 1, if Ca, : = Cb, : (14)

It is not hard to see that (14) would lead to duplicate con-
straints for each interfering pair of edges since the matrix
LIM is symmetric. To avoid these duplicate constraints,
we rewrite (14) using only the upper triangular portion of
LIM above the leading diagonal (the diagonal elements
are all 0):

∀(ea, eb) such that UT (LIM)ab = 1,

Xa + Xb ≤ 1, if Ca,: = Cb,: (15)

where UT (LIM) is the upper triangular portion of LIM
above the leading diagonal.

Next, we note that the conditional

Xa + Xb ≤ 1 if Ca,: = Cb,:

can be expressed as the following system of linear
inequalities:

Xa + Xb ≤ 3− (Caf + Cbf ); 1 ≤ f ≤ F (16)



where F is the number of available frequency channels.
Equation (16) represents a system of F equations for
each (ea, eb) pair such that UT (LIM)ab = 1. It is easy
to verify that if edges ea and eb are assigned the same
channel, say f , one of the inequalities in (16) will reduce
to Xa+Xb ≤ 1 (the dominating inequality) since Caf =
Cbf = 1. If they are assigned different channels, say f1

and f2, the dominating inequality in (16) will be of the
form Xa +Xb ≤ 2, meaning that both ea and eb are free
to be chosen in the optimal solution.

Our next set of constraints are valid inequalities,
i.e., they help to improve the LP optimum obtained
by relaxing the binary variables, without affecting the
set of feasible integer solutions. For any node n, let
{Xe : n ∈ en(e), e ∈ E} be the set of edges, one of
whose end nodes is n. The notation en(e) denotes the
end nodes of e. Clearly, the number of edges from the
set {Xe : n ∈ en(e), e ∈ E} that can be chosen in
the optimal solution is limited by the number of distinct
channels allocated to node n.∑

e∈E
n∈ en(e)

Xe −
∑

f

Ynf ≤ 0; ∀n ∈ N (17)

Consider node 4 in In Figure 2. Assume F = 3. If the
channels assigned to edges e4, e6 and e7 (which are all
incident on node 4) are 2, 3 and 2 respectively, either e4

or e7 can be chosen in the optimal solution since they
are mutually interfering, possibly along with e6. That is,
X4 +X6 +X7 must be less than or equal to the number
of distinct channels assigned to node 4, which is 2.

Our final set of constraints are also valid inequalities
and is based on the notion of potentially interfering
cliques of edges. Given an edge e, its interfering clique
of edges, denoted by IC(e), is a maximum cardinality
subset of IE(e), possibly non-unique, with the property
that all edge pairs in the group {e∪IC(e)} are mutually
interfering, if assigned the same channel. That is, for
any two edges in the group {e ∪ IC(e)}, say ea and
eb, LIMab = LIMba = 1. From a graph theoretic
viewpoint, the line graph corresponding to the edge
set (e ∪ IC(e) will be fully connected if all edges in
(e ∪ IC(e) are assigned the same channel.

Consider, for example, edge e1 in Figure 2. From
(12), IE(e1) = {e2, e3, e4, e5, e6, e7}. Since e3 and e5

are non-interfering (LIM35 = LIM53 = 0), IC(e1) =
{e3, e2, e4, e6, e7} or {e5, e2, e4, e6, e7}. Irrespective of
which subset is chosen, it can be verified that any two
edges in the set {e1 ∪ IC(e1)} are mutually interfering.

Since all edge pairs in the set {e∪IC(e)} are mutually
interfering if assigned the same channel, equation (16)
ensures that different channels are assigned to all edges

activated from the set, up to a maximum of F . For a
network with F channels, we therefore have:

Xe +
∑

k∈ IC(e)

Xk ≤ F ; 1 ≤ e ≤ E (18)

It is interesting to note that the effectiveness of the above
inequalities decreases as the size of the maximal clique
approaches F . For example, if the cardinality of the set
{e ∪ IC(e)} = F = 8, eqn. (18) merely states that the
sum of 8 binary variables is less than or equal to 8, which
is redundant. In Section VI, we provide details of solver
computational times for different combinations of K and
F which will illustrate that the set of clique inequalities,
and indeed, model ‘A’, performs better when the number
of available frequency channels is relatively small com-
pared to the maximum clique size of the interference
graph. We have also observed that the effectiveness of
the above clique inequalities is higher for higher values
of K. For example, using the LINDO [19] ILP solver,
solving model ‘A’ for a 4 × 4 grid, K = 2 and F = 5,
requires more than 10 hours of solver time, compared to
just over a minute for K = 3 and F = 5 and only 12
seconds for K = 4 and F = 5.

In case IC(e) is non-unique, it is possible to write
down the above constraint for all possible combinations
of IC(e). For example, we could have used both the
inequalities:

X1 + X2 + X3 + X4 + X6 + X7 ≤ F

X1 + X2 + X5 + X4 + X6 + X7 ≤ F

for the edge e1. However, for simplicity, we arbitrarily
choose one of the above and include it in the ILP.
Equation (18) therefore represents a set of E additional
inequalities. Note that (18) may lead to duplicate con-
straints, which we assume is taken care of by the ILP
solver.

Readers familiar with graph theory will recognize that,
for any edge e, finding the set {e∪ IC(e)} is equivalent
to finding a constrained maximum clique for the inter-
ference graph I(G), with the constraint that the node in
I(G) corresponding to e must be chosen. It can be easily
shown that the constrained version of the maximum
clique problem, like the unconstrained version, is also
NP-hard. An exact solution of the constrained maximum
interfering clique can be obtained by solving an auxiliary
ILP; however for our simulations, we have implemented
a variant of the greedy sequential MIN heuristic [20] for
the maximal independent set/maximal clique problem3,
as outlined in Figure 4.

3Solving the maximal clique problem on the graph G is equivalent
to solving the maximum independent set problem on the graph Ḡ
where Ḡ is the complement of G.



Input: I(G) = (N (I(G)), E(I(G))), an edge e ∈ E ,
IE(e) and LIM
Output: The set C = {e ∪ IC(e)}

/* Find the degree vector of the nodes in I(G)
which correspond to the edges in IE(e) */

deg =
∑

b LIMab; ea ∈ IE(e)
/* Initialize C with e */
C ← {e};
flag = 1;
while (flag)
• Find the edge em ∈ IE(G) which has the

highest node degree in I(G).
• If there are multiple edges which have the high-

est node degree in I(G), choose one randomly.
• /* Delete em from IE(e) */

IE(e)← IE(e) \ em;
• Find all other nodes {en} ∈ IE(e) which are

not connected to en; i.e., LIMmn = 0.
• /* Delete {en} from IE(e) */

IE(e)← IE(e) \ {en};
• /* Recompute the degree vector */

deg =
∑

b LIMab; ea ∈ IE(e)
• /* Update C */

C ← {C ∪ em}
• /* Terminate if IE(e) is empty */
if (IE(e) == ∅)

flag = 0;
end

end

Fig. 4. A pseudo-code of the greedy sequential heuristic for
computing a constrained maximal interfering clique of an edge e ∈ E ,
or equivalently, the node e ∈ N (I(G)). Recall that the edges in E
are nodes in the interference graph I(G).

Figure 5 summarizes ILP model ‘A’ for the WFCA-
MR problem. The number of binary variables in this
model is E(F + 1) and the number of continuous
variables is NF . The number of constraints is equal to
2(E+N)+F

∑
n degn+

∑
a,b UT (LIM)ab, where degn

is the degree of node n.

V. ILP MODEL - ‘B’

In this section, we discuss another ILP model which
is based on a transformation of the reachability graph,
G = (N , E). Let us denote the transformed graph by
G′ = (N , E ′), where E′ = |E ′| = E × F . Recall that
F is the number of available frequency channels and N
and E are the number of nodes and bidirected edges in
G.

maximize
∑

e weXe

subject to
0 ≤ Ynf ≤ 1; ∀n ∈ N ,∀f ∈ F

Cef ∈ {0, 1}; ∀e ∈ E ,∀f ∈ F
Xe ∈ {0, 1}; ∀e ∈ E∑

f

Cef = 1; ∀e ∈ E

Ckf −Ynf ≤ 0; k ∈ rows(n),

∀n ∈ N ,∀f ∈ F∑
f

Ynf ≤ K; ∀n ∈ N

Xa + Xb + (Caf + Cbf ) ≤ 3; ∀f ∈ F ,∀(ea, eb) such

that UT (LIM)ab = 1

∑
e∈E

n∈ en(e)

Xe −
F∑

f=1

Ynf ≤ 0; ∀n ∈ N

Xe +
∑

k∈ IC(e)

Xk ≤ F ; ∀e ∈ E

Fig. 5. ILP model ‘A’ for the weighted fixed channel assignment
problem in wireless networks with multiple radios. The notation
UT (LIM) represents the upper triangular portion of the matrix
LIM, excluding the leading diagonal. The notation rows(n) denotes
the row indices of C such that n is an end node in the edges
corresponding to rows(n).

Figure 6 shows a transformation of the reachability
graph shown in Figure 2 for F = 3. Note that each edge
in Figure 2 has been triplicated in Figure 6 since F = 3.
In general, each bidirected edge e ∈ E leads to F copies
in E ′, numbered (e, 1), (e, 2), · · · (e, F ). Let us denote
this set of edges by {e′}; i.e., e ∈ E �→ {e′} ∈ E ′ where
{e′} = [(e, 1), (e, 2), · · · (e, F )]. The set of all edges in
G′ is therefore: E ′ = {(e, f) : 1 ≤ e ≤ E, 1 ≤ f ≤ F}.




e1

e2
...

eE


 ∈ G �→




e11 e12 · · · e1F

e11 e12 · · · e1F
...

...
. . .

...
eE1 eE2 · · · eEF


 ∈ G′

Let C = [Cef : 1 ≤ n ≤ N, 1 ≤ f ≤ F ] be the binary
E × F channel assignment matrix such that Cef = 1 if
edge e ∈ E is assigned channel f .

Also, let X = [Xef : 1 ≤ e ≤ E, 1 ≤ p ≤ F ] denote
the E × F binary matrix such that Xef = 1 if the edge
(e, f) is chosen in the optimal solution. Our objective



Fig. 6. A transformation of the reachability graph shown in
Figure 2, for F = 3. Each edge in Figure 2 has been triplicated.
Specifically, edge e in Figure 2 maps to the set of three edges
{(e, 1), (e, 2), (e, 3)}.

function in ILP model ‘B’ is:

maximize
E∑

e=1

F∑
f=1

weXef (19)

Note that the weights {we} are independent of f ; i.e.,
given an edge e ∈ E and a corresponding weight we, all
edges in the group {e′} = [(e, 1), (e, 2), · · · (e, F )] ∈ E ′
share the same weight we. The constraints under which
the above maximization problem is to be solved are
discussed below.

As in model ‘A’, the first constraint forces all edges
in E to be assigned a channel; i.e.,∑

f

Cef = 1; ∀e ∈ E (20)

The second constraint ensures that an edge (e, f) is
chosen in the optimal solution only if edge e ∈ E is
assigned channel f , i.e., if Cef = 1:

Xef −Cef ≤ 0; ∀e ∈ E ,∀f ∈ F (21)

Note that constraints (20) and (21) together implies:∑
f

Xef ≤
∑

f

Cef = 1; ∀e ∈ E

Our third constraint ensures that the number of channels
assigned to any node is less than or equal to K, the
number of radios at each node. As in model ‘A’, we
define an auxiliary N × F matrix Y = [Ynf : ∀n ∈
N ,∀f ∈ F ], 0 ≤ Ynf ≤ 1, such that Ynf = 1 if at
least one edge incident on node n have been assigned
channel f .

Ynf = max{Ckf : k ∈ rows(n)},∀n ∈ N ,∀f ∈ F
or equivalently,

Ynf ≥ Ckf ; k ∈ rows(n),∀n ∈ N ,∀f ∈ F (22)

The constraint on the maximum number of channels that
can be assigned to the edges incident on any node n can
be expressed as:∑

f

Ynf ≤ K; ∀n ∈ N (23)

Our fourth set of constraints define pairwise edge exclu-
sions based on the LIM matrix. Because of the mapping
e ∈ E �→ {(e, 1), (e, 2), · · · (e, F )} ∈ E ′, the interference
constraints can be simply expressed as:

∀(ea, eb) such that UT (LIM)ab = 1,

Xaf + Xbf ≤ 1; ∀f ∈ F (24)

Equation (24) specifies that a pair of potentially interfer-
ing edges cannot both be part of the optimal solution if
they are assigned the same channel.

Besides the pairwise edge exclusion constraints, we
can also use an aggregated version for each edge e ∈ E .
Let {k : ∀k such that LIMek = 1} denote the set of
potentially interferer edges of e. Consider row 1 of the
LIM matrix (12), corresponding to edge e1. The set of
interferer edges of e1 is {k} = {e2, e3, e4, e5, e6, e7}.
For any f , if X1f = 1, none of its interferer edges can
be chosen if they are assigned the same channel. That
is,

X2f + X3f + X4f + X5f + X6f + X7f

must be equal to 0 if X1f = 1. For any edge e, this can
be represented as:∑

k∈E
LIMek=1

Xkf − |k| · (1−Xef ) ≤ 0; ∀f ∈ F (25)

If Xef = 1, the leftmost summation term is forced to
0. Otherwise, the above constraint is redundant since the
Xef variables are binary. Note that (25) represents a set
of F inequalities for each edge e ∈ E .

The first set of valid inequalities discussed in the
previous section can also be extended straightforwardly.∑

e∈E
n∈ en(e)

∑
f

Xef −
∑

f

Ynf ≤ 0; ∀n ∈ N (26)

For any node n, constraint (26) forces the number of
edges incident on n that can be chosen in the optimal
solution to be less than the number of distinct channels
assigned to n.

Finally, we discuss the clique inequalities. For some
e and a specific channel f , at most one edge in the set
{(e, f) ∪ (k, f) : k ∈ IC(e)} can be chosen, or more
formally:

Xef +
∑

k∈ IC(e)

Xkf ≤ 1; ∀f ∈ F ,∀e ∈ E (27)



It is important to note that the r.h.s of the above inequal-
ity is 1, compared to F in model ‘A’. Because the r.h.s
of (27) is independent of F , the effectiveness of these
clique inequalities does not decrease (in fact, it increases)
as the size of the maximum clique increases, as was the
case in model ‘A’. The impact of this on solver times for
ILP models ‘A’ and ‘B’ will be apparent from Section
VI.

Figure 7 summarizes ILP model ‘B’ for the WFCA-
MR problem. The number of binary variables in this
model is 2EF (compared to E(F +1) for model ‘A’) and
the number of continuous variables is NF . The number
of constraints is equal to 2N+E(1+2F )+F

∑
n degn+∑

a,b UT (LIM)ab, where degn is the degree of node n.
While models ‘A’ and ‘B’ may appear to be similar,

except for the clique inequalities, simulations on various
grid topologies suggest that the polyhedron defined by
ILP ‘B’ is probably tighter than the polyhedron defined
by ILP ‘A’. In our simulations on 4 × 4 topologies,
the solutions obtained from model ‘B’ turned out to be
integer even when the C variables were relaxed (i.e.,
when they are allowed to take continuous values between
0 and 1.). This is not the case for model ‘A. Relaxing
the C variables in model ‘A’ led to fractional values for
both C and Y variables. Whether the naturally occurring
integer solutions with C relaxed is specific to the grid
topologies considered or is generally true requires an
analysis of the polyhedral aspects of models ‘A’ and ‘B’.
We plan on undertaking such a study in the future.

VI. SIMULATION RESULTS

In this section, we present the ILP solutions for regular
grid topologies of size 4 × 4, 5 × 5 and 6 × 6. Before
presenting the results however, we undertake a brief
qualitative discussion of the channel assignment problem
on grid topologies. Consider the 8 edge subset of a
grid shown in Figure 8. It is easy to verify that these
edges all potentially interfere with each other, i.e., the
corresponding nodes in the interference graph form a
clique (this clique is in fact maximal). Therefore on any
subset of 8 edges of this form, no more than F edges can
be active simultaneously, where F is the total number
of available channels. For the rest of this discussion, we
will restrict ourselves to the case where F = 3 and the
number of radios K = 2 (which would be a typical
scenario in 802.11 b/g meshes). Now note that the square
lattice can be tiled with sets of edges of the form of the
maximal clique, as seen in Figure 9. The latter figure
also shows an assignment of 3 channels to edges in the
clique which ensures that no two links with the same
channel assignment interfere with each other. Therefore
with 3 available channels and 2 radios per node, the

maximize
∑E

e=1

∑F
f=1 weXef

subject to
0 ≤ Ynf ≤ 1; ∀n ∈ N ,∀f ∈ F

Cef ∈ {0, 1}; ∀e ∈ E ,∀f ∈ F
Xef ∈ {0, 1}; ∀e ∈ E ,∀f ∈ F∑

f

Cef = 1; ∀e ∈ E

Ckf −Ynf ≤ 0; k ∈ rows(n),

∀n ∈ N ,∀f ∈ F∑
f

Ynf ≤ K; ∀n ∈ N

Xaf + Xbf ≤ 1; ∀f ∈ F ,∀(ea, eb)

s.t. UT (LIM)ab = 1∑
k∈E

LIMek=1

Xkf − |k| · (1−Xef ) ≤ 0; ∀f ∈ F ,∀e ∈ E

∑
e∈E

n∈ en(e)

∑
f

Xef −
∑

f

Ynf ≤ 0; ∀n ∈ N

Xef +
∑

k∈ IC(e)

Xkf ≤ 1; ∀f ∈ F ,∀e ∈ E

Fig. 7. ILP model ‘B’ for the weighted fixed channel assignment
problem in wireless networks with multiple radios. The notation
UT (LIM) represents the upper triangular portion of the matrix
LIM, excluding the leading diagonal. The notation rows(n) denotes
the row indices of C such that n is an end node in the edges
corresponding to rows(n).

fraction of all edges that can be active simultaneously
approaches 3/8 (37.5%) asymptotically as the number
of nodes grows large.

However, for the finite grids that we will consider in
this section, a higher fraction of edges can be simulta-
neously active; this is achieved by a suitable assignment
to the border edges in the graph. For the 4× 4 case, the
number of edges in the optimal solution, as found by
the ILP, was 12 (or 50% of all edges). In the 5× 5 and
6 × 6 cases, 18 and 27 edges respectively were in the
optimal solution, corresponding in both cases to 45% of
all edges. Figure 10 illustrates the channel assignment
for the 6 × 6 grid. In this figure, each edge is labeled
with the channel assigned to it, and edges that are part
of the optimal solution are drawn in bold.

A. Detailed results for the 4× 4 grid

In this section, we provide detailed simulation results
for the 4 × 4 grid. Table I lists the solver times for



Fig. 8. Maximum clique of 8 edges that all interfere with each other.
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Fig. 9. Illustrating tiling of lattice with cliques.
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Fig. 10. With 3 channels and 2 radios, 27 edges can be active
simultaneously in the 6 × 6 grid. Edges which are active are shown
in bold.
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Fig. 11. With 3 channels and 2 radios, 12 edges can be active
simultaneously in the 4 × 4 grid. Edges which are active are shown
in bold.

model ‘A’ and optimal ILP costs with different K and F
combinations. All simulations were conducted using the
LINDO mixed integer linear programming solver [19].

We see from the results that the number of active
links in the optimal solution grows from 4, if there
is only one channel available, to 24 (i.e. all links in
the network) when there are 4 radios and 8 channels
available. Figure 11 shows the channel assignment for
the same 2 radio and 3 channel case that we considered
earlier for the larger grids.

It can be seen from Table I that, typically, for a fixed
K, the solution time increases with F , though there are
some exceptions. For example, the solver time for K = 4
and F = 7 is almost 30 times that for K = 4 and
F = 8. The most striking observation, however, is the
huge jump in solver time from F = 3 to F = 4 for
K = 2 (almost 450 times) and, to a certain extent, from
F = 4 to F = 5 (almost 15 times). We have tested
the computational efficiency of model ‘B’ for some of
the cases where model ‘A’ required long solver times. A
comparison is provided in Table II. Observe that model
‘B’ requires less than 50% solver time than model ‘A’
for all these cases.

VII. CONCLUSION

We have presented two ILP formulations for the fixed
channel assignment problem in multi-radio meshes with
the goal of maximizing the number of simultaneous
transmissions in the network. Our numerical results
illustrate the benefits obtained by increasing the number
of radios per node and the number of available channels
in the network. However, realizing the full potential of



TABLE I

Solver times and optimal ILP costs (maximum number of links that

can be active simultaneously) for simulations conducted on a 4 × 4

grid with different K and F combinations. The solution times

listed are for model ‘A’.

K F Time (secs) Opt. Cost
1/2/3/4 1 < 1 4

2 1 8
2 3 6 12

4 2727 14
5 39363 14
2 1 8
3 4 12

3 4 11 16
5 72 20
6 37 21
2 2 8
3 2 12
4 13 16

4 5 12 20
6 14 21
7 947 22
8 35 24

TABLE II

Comparison of solver times for models ‘A’ and ‘B’, 4 × 4 grid.

K F Time (secs.) ILP ‘A’ Time (secs.) ILP ‘B’
2 4 2727 1171
2 5 39363 15631
3 5 72 28
4 7 947 57

multiple radios and multiple channels will require the
use of an appropriate routing algorithm which can use
these channel assignments along with information about
the traffic pattern optimally. Ongoing work focuses on
studying the choice of routing algorithm and evaluating
the impact of the channel assignment and routing al-
gorithm on the throughput and delay characteristics of
the network. In particular, we are interested in studying
the use of appropriate weights on the links to tune the
channel assignment based on knowledge of the expected
traffic patterns. We are also investigating heuristic algo-
rithms for the channel assignment problem; the results
in this paper will be used as benchmarks against which
the performance of any heuristic can be compared.
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