
1

Island Hopping: Efficient Mobility-Assisted
Forwarding in Partitioned Networks

Natasa Sarafijanovic-Djukic,Student, IEEE, Michał Piórkowski, Student, IEEE,
and Matthias Grossglauser,Member, IEEE

Abstract— Mobile wireless ad hoc and sensor networks
can be permanently partitioned in many interesting sce-
narios. This implies that instantaneous end-to-end routes
do not exist. Nevertheless, when nodes are mobile, it is
possible to forward messages to their destinations through
mobility.

In these many interesting settings we observe that spa-
tial node distributions are very heterogeneous and possess
concentration points of high node density. The locations of
these concentration points and the flow of nodes between
them tend to be stable over time. This motivated us
to propose a novel mobility model, where nodes move
randomly between stable islands of connectivity, where
they are likely to encounter other nodes, while connectivity
is very limited outside these islands.

Our goal is to exploit such a stable topology of concen-
tration points by developing algorithms that allow nodes
to collaborate in order to discover this topology and to
use it for efficient mobility forwarding. We achieve this
without any external signals to nodes, such as geographic
positions or fixed beacons; instead, we rely only on the
evolution of the set of neighbors of each node.

We propose an algorithm for this collaborative graph
discovery problem and show that the inferred topology
can greatly improve the efficiency of mobility forwarding.
Using the proposed mobility model we show through
simulations that our approach achieves end-to-end delays
comparable to those of epidemic approaches and requires
a significantly lower transmission overhead.

Index Terms— Delay-tolerant networks; Store and for-
ward networks; Mobile communication systems; Routing
protocols; Simulation and modeling; Mobility modeling.

I. INTRODUCTION

I N many applications of wireless ad hoc and sen-
sor networks, the network is frequently or perma-

nently partitioned, i.e., end-to-end routes between
some pairs of nodes do not exist. Such scenarios
include large-scale emergency and military deploy-
ments without fallback infrastructures, environmen-
tal monitoring [1], transportation networks [2], self-
organized “pocket-switched” networks [3]. These
networks may be partitioned because of subcritical
node density, channel fluctuations (shadowing and
fading) and node mobility.

Although instantaneous end-to-end routes do not
always exist a message can nevertheless be delivered
over time, where the message has to be temporarily

buffered at intermediate nodes to wait for the avail-
ability of the next link towards the destination. The
problem of finding a route over time amounts to
finding a sequence of mobile nodes that physically
carry the message towards the destination. This
approach has been referred to asmobility-assisted
forwarding, or also asstore-carry-forward [4], [5].
Finding such routes through space and time is ob-
viously a complex problem in general and depends
heavily on the joint statistics of link availability [6].

In this paper, we are interested in the case where
network partitions arise because the distribution of
nodes in space is heterogeneous. Specifically, we
assume that the network possesses concentration
points (CPs), i.e., regions where the node density
is much higher than on average, and where nodes
have therefore a much better chance of being con-
nected to other nodes than on average. We believe
that many real networks possess such concentration
points, even though most network models assume
homogeneous node distributions for convenience
and tractability [7], [8].

Furthermore, we argue that the CPs, and the
average flows of nodes between CPs, typically re-
main stable over relatively long time-scales. This is
because they depend on features of the natural or
constructed environment, which change over time-
scales much longer than the delivery time of mes-
sages.

Our goal is to develop for mobility-assisted for-
warding efficient schemes that take explicit advan-
tage of the presence of stable concentration points.
To achieve this goal, we make three distinct, but
strongly related contributions: (i) we introduce a
mobility model that explicitly embodies CPs, and
we justify it through an analysis of two large
mobility traces; (ii) we describe how a collection
of mobile nodes can infer the CP topology without
any explicit signals from the environment, such as
GPS coordinates or beaconing signals; and (iii) we
describe the Island Hopping (IH) algorithm that
forwards messages through mobility. Finally, we
summarize these three contributions.

2

A. Mobility Model with Stable Concentration Points
(CPs)

Our first contribution is a new mobility model that
embodies the presence of stable CPs. This model is
pessimistic, in the sense that we assume that nodes
are only able to communicate with other nodes at
the same CP; outside these islands of connectivity,
they are not able to communicate. We therefore view
the network as a graphG(V, E), where the vertex set
V represents the CPs, and the edge setE represents
flows of mobile nodes between the CPs.

Note that the only assumption we make about
the connectivity of the set of nodes within a same
CP is that they form a connected subgraph, i.e.,
that each node can reach other nodes. If all the
nodes are within radio range of each other, then
this is straightforward; if not, then a message sent
between two nodes at a same CP may have to
traverse multiple intermediate hops. Our routing and
graph discovery algorithms rely on simple broadcast
primitives within a CP. They can be implemented
through physical-layer broadcast, or through flood-
ing algorithms.

Results from Large Mobility Traces. We pro-
vide some evidence from two distinct large-scale
data sets to justify the validity of our mobility
model. We analyze a trace of the movements of
∼ 800 taxis over a three-month period in the city of
Warsaw, Poland and of∼ 600 taxis over a month
period in the city of San Francisco, USA. We find
that for both agglomerations there are some areas,
where the expected number of cars within radio
range of each other is much higher than elsewhere.
Furthermore, we find that for both agglomerations
these areas are stable over time, in the sense that an
area that sees a high density of cars on a particular
day is likely to see a high density on another day
as well. This justifies our assumption of a stable
topology of CPs in two realistic scenarios.

B. Collaborative Graph Discovery (COGRAD)

Our second contribution is a distributed algorithm
that allows the nodes to collaboratively discover
the CP graph,in the absence of any signal from
the environment, such as GPS coordinates or fixed
beacons. This is important, because it would be
unrealistic to assume that the graph of CPs and the
flows of mobile nodes between CPs is known a-
priori. Instead, we assume that the only information
that nodes have available is the set of other nodes
that they can reach (either directly or over multiple
hops), which can be discovered in a straightforward
manner (hello messages, flooding, etc.)

In a nutshell, the COGRAD algorithm achieves

this in two phases: vertex labeling and edge discov-
ery.

Vertex Labeling. The goal of this phase is to
generate a label, i.e., a unique identifier, for each
vertex of V , that will remain stable over time,
even though nodes move in and out of each vertex.
Suppose that at a given time the nodes currently
located at the same CP agree on a label for this
vertex. Now another nodei arrives at this vertex.
Nodei has not received, from the environment, any
explicit clue that it has moved, and the other nodes
have not received a clue that they have not moved.
However, nodei’s set of neighbors has changed
rather markedly, whereas the other nodes’ neighbor
set has only seen the addition ofi. These nodes can
therefore decide jointly that it is likely that nodei
has moved, and the other nodes have not; nodei
therefore accepts the label of this vertex.

This process associates labels with vertices. The
labels remain stable even though the set of nodes
at a vertex changes all the time. Although errors
can occur in this process (e.g., if a vertex becomes
completely empty for a while), this does not affect
the performance of the routing algorithm if this
occurs rarely.

Edge Discovery.Once we have associated a label
with each vertex, a node discovers the edges of the
CP graph as it moves from vertex to vertex. We
also let nodes exchange edges they have discovered
through a gossip protocol. This ensures that each
node learns the entire graph, even though it may
only visit part of the graph. Also, this ensures
that outdated information (labels that have become
invalid after errors) is flushed out.

C. Mobility-Assisted Forwarding in the CP Model

Our third contribution is a novel mobility-assisted
forwarding algorithm called Island Hopping (IH).
This algorithm explicitly exploits knowledge of the
CP graph. It forwards a message through a sequence
of CPs to its destination. Each CP represents an
opportunity to pass the message to other nodes.

The key question is how to pass a message from
one CP to the next CP through nodes whose future
movements are random and unpredictable. If the
future movements of nodes were known, we could
pass the message to a single node that would move
in the right direction, i.e., to a CP closer to the
destination inG(V, E). However, given that future
movements are unpredictable, the IH algorithm
makes a small number of copies of a message at
each CP, in the hope that at least one copy will
move to the intended next CP and the other copies
will be discarded. The process repeats at the next
CP, until the message reaches its destination. The

3

key challenges are to (i) not lose the message
completely, and (ii) to avoid that an unnecessarily
large number of copies are generated.

To summarize, we argue that stable concentra-
tion points are prevalent and that they can be
exploited for efficient mobility-assisted forwarding.
We present evidence to this effect, and a mobil-
ity model embodying CPs, in Section III. In Sec-
tion IV, we describecollaborative graph discovery
(COGRAD), a distributed algorithm that infers the
CP graph from each node’s dynamic neighborhood
set. This allows the routing algorithm to operate
without any explicit clue to nodes about their loca-
tion and movement. In Section V, we then describe
the routing algorithm for mobility-assisted forward-
ing in the presence of stable CPs. For simplicity of
presentation, we describe this algorithm assuming
that the CP graph, and node positions on the graph,
are known. In Section VI, we show extensive simu-
lation results on synthetic graphs. We show that our
IH algorithm in conjunction with COGRAD results
in a scheme that achieves delays of the order of
much more aggressive flooding-based schemes and
requires a much smaller number of copies of each
message. We conclude the paper in Section VII.

In our earlier paper [9], we describe our main
ideas of this work, also present here. The novelties
in this paper are: (i) we validate our mobility model
in another large scale data trace, (ii) we present
a new method for inferring CPs from large scale
mobility traces by using only information about the
nodes’ connectivity and (iii) we improve both the
COGRAD algorithm and the IH algorithm. The im-
proved algorithms are now more robust to realistic
mobility settings where the CPs might be unstable
and where the connectivity is not as sharply divided
into CPs and non-CPs as in our mobility model.

II. RELATED WORK

Most mobility models give rise to homogeneous
node distributions over a two-dimensional area [7].
These models lack an important feature of realistic
mobility patterns, the fact that nodes often cluster
around preferred areas [10]. Hsu et al. [11] propose
a realistic Weighted Way Point (WWP) mobility
model that incorporates the fact that destinations
are not uniformly selected from the simulation area.
The authors designed the WWP model as a time-
varying Markov model, fitted to data from a survey
on the USC campus. Tang and Baker in [12] analyze
mobile traces with 24773 radios in a metropolitan-
area network. They observe a significant clustering
of radios in some areas, e.g., a financial district;
however, they do not attempt to model user mobility.

Tuduce and Gross in [13] studied the character-
istics of mobile WLAN users and they proposed
a framework for extracting mobility characteristics.
Although they do not propose a mobility model that
captures spatial distribution of CPs, they do however
provide a powerful validation methodology of the
realistic mobility models. In [14] Kim et al. provide
a framework for extracting mobility characteristics
from mobile traces of WLAN users. They propose a
mobility model that focuses on movements between
popular regions so-calledhot-spot regions - popular
destinations at which mobile users spend most of
the time.

Our approach refers to CPs as to specific regions
that are not necessarily preferred destinations. We
envision CPs as places that provide mobile users
with a high opportunity to encounter other mobiles.
Moreover, we also propose a new method for in-
ferring CPs that is based exclusively on the time
evolution of the connecitivity of nodes without any
additional information about their location.

Routing in partitioned networks has been investi-
gated in two scenarios: (i) when the dynamics of
connectivity between nodes is known in advance
([6]), and (ii) when it is unpredictable ([5], [15],
[16], [17], [18], [19]). The latter can be further clas-
sified as controlled mobility and random mobility.
Under controlled mobility [5], node trajectories can
be controlled and adapted. Forwarding algorithms
for random mobility are usually based on some
form of flooding. For example, in epidemic routing
(ER) [15], when two nodes meet, they exchange all
messages that only one of them has a copy of. In this
way, a message is essentially flooded to all nodes,
which ensures that it will reach the destination.
This flooding can be constrained by taking into
account the mobility history of nodes, e.g., patterns
of encounters of nodes, but also other parameters,
such as the energy left at the node. PROPHET
[16] is based on ER, where message exchanges
between nodes take into account a probability that
a node will meet the destination of a message in
the future. This requires the exchange of vectors of
estimated probabilities. In DTC [17] a node carrying
a message checks periodically whether to transfer
the message. The message is transferred if in the
set of nodes (possible via multihop) connected to
this node there is a node “closer” to the destination.
“Closeness” depends on mobility history, system
parameters, and future mobility (if available). A
mathematical framework for calculating this ”close-
ness” based on utility functions is given in [18]. In
MDDV [19], forwarding decisions in a vehicular
network are made based on knowledge of the road
map, where nodes are equipped with GPS receivers.
In the Spray and Wait algorithm by Spyropoulos et

4

al. [20], the number of transmissions of a message
is constrained by letting only a fixed numberL
of copies of a message to be ”sprayed” into the
network. Then these copies ”wait” until they meet
the destination. The authors show that the parameter
L controls the tradeoff between end-to-end delay
and overhead.

Our approach considers random unpredictable
mobility and distinguishes itself in that we explicitly
infer and use spatial information of node mobility
to limit flooding.

III. A M OBILITY MODEL FOR PARTITIONED
NETWORKS

In this section, we introduce a mobility model for
partitioned networks. In particular, we focus on one
feature that appears to be quite ubiquitous in real
mobility processes:concentration points (CPs), i.e.,
regions where mobile nodes have a much higher
chance of encountering other nodes than elsewhere.

Examples of CPs include:
• People in urban environments: workplace,

restaurants, public transportation (train stations,
airports), movie theaters, etc.

• Wildlife monitoring: watering holes, clearings,
oases, etc.

• Office buildings: cafeterias, conference rooms,
water coolers, hallways, etc.

• Road traffic: intersections, parking lots, gas
stations, traffic lights, etc.

• Military: bases, camps, forts, ports, etc.
We argue that the presence and ubiquity of such

concentration points has profound implications for
the design of efficient means for dealing with and
exploiting mobility.

In order to find an evidence for CPs we analyze
two large-scale data sets of mobile traces of two taxi
fleets in two large cities in Poland and in USA. We
also propose and evaluate a method for extracting
CPs from fine-grained mobile traces.

A. The Stability of Concentration Points in a Mo-
bility Trace

Here we analyze the mobility traces of taxi cabs
from two cities (Warsaw, Poland1 and San Fran-
cisco, USA2). The Warsaw data set contains GPS
coordinates of 825 taxis collected over 92 days in
the Warsaw agglomeration area. The San Francisco
data set contains GPS coordinates of 665 taxis
collected over 39 days in the Bay area. In both cases
each taxi is equipped with a GPS receiver and sends

1http://www.taximpt.com.pl
2http://www.yellowcabsf.com

a location update (timestamp, identifier, geograph-
ical coordinates) to a central server. In the case of
the Warsaw data set the updates are infrequent -
the median time interval between two consecutive
location updates generated by an arbitrary cab is
approximately 500 seconds. In the case of the San
Francisco data set the updates are more frequent -
the median time interval between two consecutive
location updates generated by an arbitrary cab is
approximately 70 seconds.

Fig. 1. The spatial distribution of location updates for theWarsaw
data set (825 taxis over 92 days). Each cell, represented by apixel, is
coloured according to thef(k, l) averaged over the entire period. The
darker the cell(k, l) the higher the normalized populationf(k, l).

Fig. 2. The spatial distribution of location updates for theSan
Francisco data set (665 taxis over 39 days). Each cell, represented
by a pixel, is coloured according to thef(k, l) averaged over the
entire period. The darker the cell(k, l) the higher the normalized
populationf(k, l).

To confirm the existence of stable CPs we apply
the following heuristic. First, we superimpose on
the area of Warsaw and of San Francisco agglom-
erations a grid of cells of equal size. Then, for each
day d and each cell(k, l) we find thenormalized
population - f(k, l; d), interpreted as the empirical
probability that a random update falls into the cell
(k, l) on dayd (cf. Figure 1 and 2). Our analysis
shows the following:

1) The Spatial Distribution is Heavy Tailed:
Figures 3(a) and 3(b) show the empirical comple-
mentary cumulative distribution function (CCDF) of
f(k, l; d) for the two data sets - from Warsaw and
from San Francisco respectively. Both distributions
have heavy tails, which implies that some cells in
both cities have population density much above the
average.

5

2) The Spatial Distribution is Stable Over Time:
Figures 3(a) and 3(b) insets show a scatter plots
of f(k, l; d) for one randomly chosen pair of days
(d1, d2). In both cases we observe significant cluster-
ing along the diagonal, which means that the spatial
distribution on different days tends to be strongly
correlated. Furthermore, we observe that the more
densely populated cells (upper-right quadrant) tend
to be particularly close to the diagonal, which is
a good visual confirmation of our hypothesis. We
observe the same behaviour for other pairs of days.

B. Model Based on a CP Graph
Given the above observations, we now define an

idealized mobility model that embodies CPs. The
network topology is given by a directed connected
graph G(V, E) whose vertex setV represents the
CPs, and whose edgesE describe the possible
movements of nodes between CPs. We call this
graph a CP graph. There aren nodes that move on
this graph. At every timet, every nodei is either
located at one CP, or is en-route between two CPs
u and v. We denote the current position of nodei
by Xi(t). We assume that time is continuous.

We assume that nodes located at the same CP
can communicate with each other (either directly or
through multi-hop), whereas nodes at different CPs
cannot. We callBi(t) the set of neighbors of nodei
at timet, where if nodei is at a CP thenBi(t) is the
set of nodes located at the same CP asi (including
i) and if nodei is en-route between two CPs then
Bi(t) = {i} (cf. Figure 4).

vertex1

2

3

Bi(t)

nodei

5

4

Fig. 4. Nodes move on a graphG(V, E), which describes the
network topology in terms of its CPs and the ways nodes can move
between them.

C. Inferring the CPs from Mobility Traces
In section III-A we have revealed that in the real

world the distribution of mobile nodes is hetero-
geneus and stable. Here our goal is to infer from
mobile traces the stable high-density areas, where
the islands of connectivity are likely to appear.
The main idea behind our method is to focus on
connected components, that represent these islands
of connectivity, and to see if they are stable over
time. The lesson we learn here is used further in

the paper in Section IV-A to derive the distributed
algorithm for vertex labeling of the collaborative
graph discovery method.

As we explained in Section I, CPs represent
regions where node density is higher than average
and is stable over time. In order to find such
regions one could apply one of the well-known
data clustering algorithms, e.g.k-means clustering
[21] - for every time instant one can find such
regions and then identify which of them last for
a long time. However, we take another approach
- we identify connected components that last for
a long time. Here we rely on an intuition that in
highly populated regions nodes should form stable
connectivity islands.

Let us first formally define theconnectivity graph
formed by nodes. We assume that a mobile nodei
is connected to nodej if the distancerij between
them is less than the connectivity rangerc. We
assume thatrc is fixed and can be interpreted as
the maximal radius allowed by power constraints.
The mobile nodes and the corresponding wireless
links define theconnectivity graph H(N, R), where
N(H) is the vertex set - the set of mobile nodes and
R(H) is the edge set - the set of radio links between
mobile nodes, i.e.,R(H) = {e = (i, j)|rij < rc}.
We define a clusterHn as a connected compo-
nent of H. We also define a set of all clusters
that decompose the connectivity graph as follows:
C(H) = {H1, H2 · · · , Hm}, whereH =

⋃n=m

n=0
Hn.

As nodes are mobile, the connectivity graphs
change dynamically over time. Thus, we define a
CP as a connected component that lasts long enough
in the time-sequence of consecutive connectivity
graphs. If we take a snapshot of the connectivity
graph at timet it might be very different form the
one taken at timet− = t−∆t. We can easily identify
clusters at every time instantt, but how do we
decide which clusters correspond to which clusters
from the previous time instancet− = t − ∆t?
To answer this question, we study the differences
between sets of clusters defined for consecutive
connectivity graphs, i.e.,C(H(t−)), C(H(t)). In
our approach we want that a cluster at timet
corresponds only to one cluster at timet−, i.e. a
cluster at timet shares the same identity as a cluster
at timet−. Obviously it is possible that a cluster at
time t corresponds to none of the clusters at time
t−, e.g. nodes that were alone at timet− form a
new cluster at timet - then this cluster obtains new
identity.

We first show two examples that explain two rules
we use to decide which clusters from consecutive
time instances correspond to each other, and then
we give the algorithm formally. First, assume a
scenario shown in Figure 5 and concentrate only on

6

(a) Warsaw data set (b) San Francisco data set

Fig. 3. Empirical CCDF off(k, l; d) for the entire period for three levels of discretization fortwo data sets (a) Warsaw and (b) San
Francisco. Insets in (a) and in (b) shows the scatter plot off(k, l; d) on two random days - each point on the plot corresponds to a density
in a cell (k, l) for different days.

clusterH1(t
−). At time t, nodes from this cluster

are distributed over three clusters:H1(t), H2(t),
andH3(t). So, which of these three clusters should
correspond to clusterH1(t

−)? We take it to be the
one that shares the maximum number of nodes with
H1(t

−); in our case it isH2(t). This is our first rule.
More formally we can say:

Rule 1: A cluster Hn(t−) can pass its label to
a clusterHm(t) if the number of nodesHn(t−)
shares withHm(t) is maximum compared to all
other clusters at timet.

H2(t
−)

H1(t
−)

H3(t
−)

t−

H1(t)

H2(t)

H3(t)

t

Fig. 5. The first rule used in the CCL algorithm that allows to decide
which clusters from two consecutive connectivity graphs correspond
to each other. The large black dots represent nodes that werepart of
clusterH1 at time t−.

Next, if we apply our first rule to a scenario
shown in Figure 6, then all three clusters at time
t−: H1(t

−), H2(t
−), andH3(t

−) correspond to one
clusterH1(t) at time t. Because we want to have
a one-to-one correspondence between clusters, we
assume thatH1(t) corresponds to the one cluster at
time t− that shares the maximum number of nodes
with H1(t); in our case it isH2(t

−). This is our
second rule. More formally we can say:

Rule 2: A cluster Hm(t) can inherit the label
from a clusterHn(t

−) if the majority of the nodes
from clusterHm(t) come from clusterHn(t−).

Only if the above two rules are satisfied for a pair
of clusters from two consecutive time instances then
we say that these clusters correspond to each other.
We want to track this correspondence of clusters
in order to find out how long clusters live. To be

t

H1(t
−)

H2(t
−)

H3(t
−)

t−

H1(t)

Fig. 6. The second rule used in the CCL algorithm that allows
to decide which clusters from two consecutive connectivitygraphs
correspond to each other. The dashed arrowsconnect those clusters,
from time t− that satisfy the 1st rule, with theH1 cluster at timet.
The solid arrowconnects cluster from timet−, which satisfies both
rules, with the cluster at timet, i.e., clusterH1(t) inherits the label
from clusterH1(t

−).

able to do this formally, we introduce the concept
of cluster labeling. This means assigning an unique
identifier y (we call it a label) to every cluster
Hm(t), i.e., y = Y (Hm(t)), in such a way that the
two corresponding clusters at the consecutive time
moments have the same label. Hence, the cluster
labeling means first giving an initial label to a newly
formed cluster (we assign to such a cluster a random
label drawn from the very large set of integers), and
then finding the correspondence between clusters,
which are defined by our two rules explained above.
We call our labeling method as the Centralized
Cluster Labelling (CCL) algorithm (cf. Algorithm
1). We use theA(Hm(t)) to denote a set of applicant
clusters from timet− that (according to our first
rule) can pass their label toHm(t). We also use the
η(Hn(t

−), Hm(t)) = |N(Hn(t−)) ∩ N(Hm(t))| to
denote a function that given a cluster from current
time instant and a cluster from the previous instant
finds the number of shared nodes.

Algorithm 1: The CCL Algorithm - Input: H(t−), Y (H(t−)),
H(t); Output: Y (H(t))

1 For eachHm(t) ∈ H(t)

2 /*First rule*/

7

3
A(Hm(t)) = {Hn(t−) : Hm(t) =
= argmaxHo(t)∈H(t) η(Hn(t−), Ho(t))}

4 If A(Hm(t)) = ∅

5 Y (Hm(t)) = random
6 Else
7 /*Second rule*/
8

Hn(t−) =
= argmaxHo(t−)∈A(Hm(t)) η(Ho(t

−), Hm(t))

9 Y (Hm(t)) = Y (Hn(t−))

10 End If
11 Y (H(t)) = Y (H(t)) ∪ Y (Hm(t))

12 End For

t− t
H1(t

−) H1(t) H1(t
+)

H2(t)

H3(t)

H4(t)

H2(t
+)

H3(t
+)

H2(t
−)

H3(t
−)

H4(t
−)

t+

︸ ︷︷ ︸

C(H(t−))
︸ ︷︷ ︸

C(H(t))
︸ ︷︷ ︸

C(H(t+))

← yw

← yv

← yu

Fig. 7. An example of the execution of the CCL algorithm. The
black balls represent clusters. The size of each ball corresponds
to the number of nodes that form a cluster. The lines represent
migration of nodes between clusters - the solid line means:the label
of Y (Hm(t−)) is passed to cluster Hn(t) since both rules apply.
The dashed line means:nodes from a cluster Hm(t−) are part of a
cluster Hn(t). In this example the CCL algorithm finds three distinct
labels, i.e.,yu = Y (H1(t

−)) = Y (H1(t)) = Y (H2(t
+)), yv =

Y (H2(t
−)) = Y (H2(t)) = Y (H1(t

+)) and yw = Y (H3(t
−)) =

Y (H4(t)) = Y (H3(t
+)).

In Figure 7, we show in a more abstract way
an example of the execution of the CCL algorithm,
where the clusters are denoted as balls of different
size depending on the clusters’ size. We can see
here which clusters can pass their label to which
clusters (our first rule) and which label is accepted
(our second rule). In the example shown on Figure
7 we can identify three CPs, i.e.u, v and w that
are labeled with three distinct labels:yu, yv andyw

respectively.
In the sequence of corresponding clusters:

{Hm(tbirth), . . . , Hn(tdeath)}, where tbirth corre-
sponds to the time when a sequence of corre-
sponding clusters was first observed andtdeath -
to the disappearance of this sequence, all clusters
have the same unique label. Thus each sequence
of corresponding clusters is uniquely identified by
a label. We expect CPs to be stable over time
and have a large size, thus we seek labels that
last for a long time and are owned by a large
(on average) number of nodes. Note that the CCL
algorithm does not use nodes’ positions - it uses
only the connectivity graph, which is one advantage

over the data clustering algorithms. Because of that
there is no information whatsoever about location of
the CPs. However, given the evidence presented in
section III-A, we believe that stable clusters should
appear at certain fixed locations. We examine this
hypothesis in the following subsection.

D. CPs in San Francisco

We use the CCL algorithm to infer CPs from
the fine-grained San Francisco trace. In order to
construct a time sequence of connectivity graphs we
need to know the location of each taxi at every time
instant. Unfortunately, the GPS devices installed in
cabs are not synchronized. Luckily, the data set is
fine-grained enough to allow us to interpolate the
position of every taxi given two consecutive location
updates. We assume that the vehicle’s speed be-
tween two consecutive location updates is constant.
We assume that if a cabdisappears (due to the
GPS receiver being shut down) for some time and
thenre-appears again in proximity, it did not move
between these two consecutive location updates.

Here we specify the metrics we use to analyze
sequences of corresponding clusters:

• ρ: median size of a labeled cluster from a
sequence of corresponding clusters

• τs = tdeath − tbirth: lifetime of a label
In order to extract CPs from collection of con-

nectivity graphs, by applying the CCL algorithm,
we use the part of the San Francisco traces -
approximately 500 taxis over 24 hour period. The
connectivity graphs are generated every∆t = 10
seconds for connectivity rangerc = 300 meters.

Fig. 8. Correlation between the lifetime of a labelτs and the median
size of a labeled cluster from a sequence of corresponding clusters
h in loglog scale.

We use the scatterplot in loglog scale shown in
Figure 8 to check how the lifetime of a label is
related to its median size. The visual inspection
allows us to draw a conclusion that there are at

8

least two types of labels - (i) those that are highly
populated and live a long time and (ii) those that
are owned by a small number of nodes and live a
short time. The former ones are the best candidates
for real CPs. We used two threshold values, one
for the lifetime and second for the size of the
label: 1800 seconds and 10 nodes respectively, to
determine which labels may correspond to CPs. We
found 19 such labels. However, these 19 labels do
not specify 19 distinct CPs. This is because the
same connectivity island may re-appear at different
time of the day, which cannot be captured by the
CCL algorithm. In order to better understand the
characteristics of these stable labels and to find to
how many CPs they correspond to, we perform
three additional tests. First, we check if a labeled
cluster appears in the same area during its lifetime.
We superimpose on the map of San Francisco the
locations of nodes that own the same label for three
different snapshots. We visualize this on Figure 9
where the taxis that own the same label (marked
with the same type of a marker) cover the same
area at different time instants (different colors of
the same marker). This confirms our intuition that
islands of connectivity are stable in space as well.
Second, we check the location of the nodes that
own distinct labels. We identify four such loca-
tions - namely the aquatic park/shopping center, the
downtown area, the taxi company premises and the
airport (cf. Figure 9). Third, we check how many
different labels correspond to the same CP. It turns
out that the CP located in the downtown area is
represented by ten distinct labels, the taxi company
premises - by five distinct labels, the airport - by
three distinct labels and the aquatic park by one
label only. Although the number of CPs for this
particular mobility trace is small, the results of our
analysis justify the presence of CPs in the real world
and our CP graph mobility model.

One should keep in mind that the mobility pattern
of taxis is very specific and may not give sufficient
evidence of other CPs located for example nearby
sport centers, gas stations, movie theaters etc. Thus
we believe that given a large set of mobile traces for
the same area, which contains GPS location updates
of different types of vehicles, it should provide us
with more CPs. We also believe that CPs might
be much easier observed at a larger scale, e.g. not
at the San Francisco agglomeration scale only, but
at the whole Bay area scale. Note also that this is
the first attempt to identify CPs where a connected
component is chosen to give the evidence for the
CP existence. The presented results show that this
choice might be too extreme for determining if a
CP exists or not.

Fig. 9. Four CPs in San Francisco identified by the CCL algorithm.
Markers represent taxis that belong to CPs. Different typesof markers
correspond to different CPs:triangles - the aquatic park/shopping
center, balls - the downtown area,crosses - the taxi company
premises,squares - the airport. The color of each marker represents
members of a corresponding CP at different time moments..

IV. COLLABORATIVE GRAPH DISCOVERY
(COGRAD)

We now specify howcollaborative graph discov-
ery (COGRAD) infers the CP graph in a distributed
way, from changes in neighborhood sets without any
other signal from the environment. Note that a single
node would obviously be unable to find out anything
about the network topology; a COGRAD protocol
is necessarily collaborative. More formally, the goal
of COGRAD is:

• for every node to learn the CP graphG(V, E);
• for every nodei to know its current position

Xi(t) at all timest.
As we have mentioned in Section I, COGRAD

achieves this by having the nodes run two algo-
rithms: vertex labeling and edge discovery. The
vertex labeling algorithm decides for each node if
this node is currently at a vertex (CP) or en-route
between two vertices; in the former case, it also
identifies the CP through a label. The output of
this algorithm is then used as input into the edge
discovery algorithm. The edge discovery algorithm
estimates the edge setE of the CP graph. We next
describe these two algorithms.

A. Vertex Labeling

Every nodei maintains a variableYi(t), which is
eitherYi(t) = φ if node i thinks that it is en-route
between CPs at timet or Yi(t) = y if node i thinks
that it is at the CP with labely. In the former case
we say that nodei does not have any label, whereas
in the latter case we say that nodei has labely. The
goal of a vertex labeling algorithm is therefore that
every nodei decides onYi(t) at every timet.

We assume that the only information available to
nodei at time t is:

9

• Bi(t) - the set of neighbors of nodei at
time t, i.e., the set of nodes in the connected
component (cluster) where nodei is;

• Yj(t
−) for everyj ∈ Bi(t) - the values of labels

of all nodes in the cluster where nodei is at
the time instant before timet (denoted ast−).

It is impossible that nodei knows this information
at every continous timet. Instead, we assume that
there is a generic neighbor discovery protocol that
periodically every∆t gives this information to node
i, where∆t is a short period of time. Thus,t− is
in fact t−∆t.

Now, after we defined which information is avail-
able to nodei, let us see how nodei determines
its new labelYi(t) at time t. If Bi(t) = Bi(t

−)
(the neighborhood set of nodei did not change)
then nodei keeps its label (i.e.,Yi(t) = Yi(t

−)).
If Bi(t) 6= Bi(t

−) (the neighborhood set of node
i changed) then nodei recomputes its label. From
the data ofYj(t

−), j ∈ Bi(t) nodei first computes
the set of tuplesLi(t) = {(y, by(t), by(t−))}, where
by(t) is the number of nodes inBi(t) that had labely
at time t− and by(t−) is the total number of nodes
that had labely at time t−. If none of nodes in
Bi(t) have a label thenLi(t) = ∅. Then, nodei runs
a Decentralized Cluster Labeling (DCL) algorithm
(cf. Algorithm 2) with the input (B(t), L(t)) =
(Bi(t), Li(t)) to get the outputYj(t) = Y (t). Note
that all nodes in a cluster must have the same label,
because all nodes in this cluster obtain the same
information from the neighbor discovery protocol.

Algorithm 2: The DCL Algorithm - Input:
(B(t), L(t)), Output: Y (t).
1 Y (t) = φ
2 While L(t) 6= ∅
3 z = argmaxy by(t)
4 If bz(t) > bz(t−)/2 then
5 Y (t) = z /* nodes lose labely */
6 Break /*stop while loop */
7 Else
8 L(t) = L(t) \ (z, bz(t), bz(t−))
9 End if
10 End while
11 If Y (t) = φ and |B(t)| ≥ h then
12 Y (t) = random /* nodes assign new label

*/
13 End if

Note that the DCL algorithm is directly inspired
by the CCL algorithm described in Section III-C.
The DCL algorithm 2 is based on two ideas. The
first is how a CP is formed, and the second is how
the CP is maintained. A CP is formed when there
are more thanh nodes in a cluster with no assigned
label. The new CP gets a unique new labely (e.g.,

a random number). Let us now see how the CPy is
maintained. Assume that nodes move and that after
time ∆t the change in neighborhood is noticed in
several clusters. The idea is that only the one cluster
with more than half nodes from CPy can be labeled
asy. In this way we ensure that only one cluster can
inherit label y. If there are several possible labels
for a cluster then the majority label will be accepted
by all nodes in the cluster.

Let us now show in a concrete example how
the labeling algorithm works. Figure 10 shows a
network at timet− that has three clusters of which
only one is a CP and it has label15. The number
above the node is a label if the node has it. Figure
11 shows the network at timet before the labeling
took place.

CP 15
15

15 15

15

159

5
15

1

2

3

4

6

7

8

Fig. 10. At time t−: three clusters, one is a CP with label 15,
b15(t−) = 6.

15
15

15
9

1

3

4

7

6

2 8

5

15

15

15

Fig. 11. At timet, before labeling.

Let us study how for example nodes9, 4 and 8
determine their new labels at timet. The informa-
tion that node9 obtains from the neighbor discovery
protocol is:

B9(t) = {9},
L9(t) = ∅, (1)

The information that node4 obtains is:
B4(t) = {1, 3, 4, 6, 7},
L4(t) = (15, 4, 6), (2)

and the information that node8 obtains is:
B8(t) = {2, 5, 8},
L8(t) = (15, 2, 6). (3)

Note that B9(t
−) = {9}, B4(t

−) =
{1, 2, 3, 4, 5, 6} and B8(t

−) = {7, 8}. Because

10

B9(t) = B9(t
−), B4(t) 6= B4(t

−) and
B8(t) 6= B8(t

−) only nodes4 and9 run Algorithm
2.

The DCL algorithm in node4: b15(t) > b15(t−)/2
(becauseb15(t) = 4, b15(t−) = 6) and therefore
Y4(t) = 15. The DCL algorithm in node8: b15(t) ≤
b15(t−)/2 (becauseb15(t) = 2, b15(t−) = 6) and
thereforeY8(t) = φ. Figure 12 shows new deter-
mined labels at timet.

15
15

15

15

CP 15

15

9
1

3

4

6

7

2 8

5

Fig. 12. At timet, after labeling.

Difference with the Vertex Labeling Algorithm
given in [9]. The vertex labeling in [9] relies on two
simplified assumptions. One is that the connectivity
of nodes outside of CPs is very poor such that a
node can not communicate with anyone else if it
is traveling between CPs. The other is that every
node knows its neighborhood set at any continuous
time t and hence the neighborhood in two different
times can not differ for more than one node. The
improved vertex labeling in this paper relaxes these
assumptions. We achieve this by changing both
the way a CP is formed and the way the CP is
maintained. In [9] two nodes are sufficient to form
a CP, thus there we haveh = 2, whereas here we set
h to a higher value. Moreover, in [9] a node can lose
a label only if it becomes isolated, whereas here the
node can lose a label both if the majority of nodes
in its cluster left and if the node becomes isolated.

1) Determining h: Next, we discuss how to
determine the parameterh of the vertex labeling
algorithm. A largerh results in more stable CPs,
but also in a smaller number of formed CPs. As we
have seen in Section I, for IH it is desirable that
CPs be stable. However, if the number of CPs is
smaller then IH may be less efficient because it loses
opportunities to forward messages. For IH we want
to have as many stable CPs as possible. Therefore,
we want to find the minimumh that ensures the
stability of a label.

To simplify our analysis, we look at the evolution
of single cluster and we model it by a simple
queuing model. We assume that nodes arrive and
leave this cluster according to a random process
and we assume that arriving nodes do not have any
labels. We apply the labeling algorithm described
above on this single cluster. Depending on how the

number of nodes in the cluster fluctuates, the cluster
is a CP with a label for some time, then it loses the
label and is not a CP for some time, then it generates
a new label, and so on. We show this in Figure 13,
where we denote asTCP the time the cluster is a CP
and Tnon−CP the time the cluster is not a CP. Our
goal is to findh such that a new label for this cluster
is generated rarely. More formally, we want to find
the minimumh such thatE[TCP + Tnon−CP] ≥ τs,
whereτs is a value that controls the desired stability
of the CP.

CP:35 CP:57

tof nodes
Number

TCP Tnon−CPTCPTnon−CP

Fig. 13. Evolution of the labeling process of a cluster.

We model the cluster as anM/M/∞-queue,
where nodes arrive according to a Poisson process
with arrival rate λ and every node stays for an
exponentially distributed time with meanµ−1. The
mean number of nodes at the cluster is denoted by
ρ = λ/µ. Let the Markov processNt ∈ {0, 1, 2, . . .}
denote the number of nodes at the cluster at timet.

To further simplify the analysis, we assume that a
period∆t is short with respect toµ−1, so that only
one node can leave the cluster during the period∆t,
i.e., between the two consecutive executions of the
labeling algorithm. This means that the cluster may
lose its label only whenNt = 1.

Let

Dp(q) := inf{t > 0 : Nt = p|N0 = q}

denote the first passage time of statep from state
q. Then, the value of interest for us is an expected
value of D := TCP + Tnon−CP = D1(h) + Dh(1).
Therefore, we search for the minimumh such that
E[D] ≥ τs for every value ofλ andµ.

Using the following results [22]:

E[D1(h)] =
h−1∑

k=1

1

λ

∞∑

j=k+1

k!

j!
ρj−k

E[Dh(1)] =
h−1∑

k=1

1

λ

k∑

j=0

k!

j!
ρj−k,

we find:

E[D] =
eρ

λ

h−1∑

k=1

k!

ρk
.

Let us expressτs = ns/λ, wherens is a constant
that we can tune depending on the desired stability

11

of CPs. Thus, we need to find the minimumh such
that

Fh(ρ) = eρ

h−1∑

k=1

k!

ρk
≥ ns for everyρ.

Because it is impossible to find this analyti-
cally, we plot Fh(ρ) for the fixed values ofh =
10, 12, . . . , 20 (c.f. Figure 14). We see thatFh(ρ) has
one minimum. Thus if we seth to a certain value,
then the minimum ofFh(ρ) over all ρ, denoted as
F min

h , is the constantns we can certainly achieve
for all ρ. We findF min

h numerically by findingρ for
which dFh(ρ)/dρ = 0 and plugging it intoFh(ρ).
We show the dependence ofF min

h = ns on the
values ofh in Figure 15. Depending on the desired
stability of CPs, we specify the parameterns and
then we findh using this figure.

In Figure 15 we see that an increase ofh leads
to an exponential increase ofF min

h . This means
that the time during which a CP is stable grows
exponentially with an increase ofh, which is good
news. Thus, for IH to work well, we expect that a
fairly small value ofh will be able both to make CPs
stable enough and to form a large enough number
of CPs in the network.

2 4 6 8 10 12 14 16
10

2

10
4

10
6

10
8

10
10

ρ

F
h(ρ

)

Dependence of E[D] on ρ for the different values of h

h=10
h=12
h=14
h=16
h=18
h=20

Fig. 14. Dependence ofE[D] on ρ for different fixed values ofh.

B. Edge Discovery
As a node moves on the graph, it observes the

label of every CP it visits, as described in the
previous section. If a node moves directly from CP
u with label yu to CP v with label yv, then this
indicates the existence of a labeled edge(yu, yv),
and we say that the nodedirectly observes this edge.

To discover the edge setE, it would be possible
for each node to rely only on its own observations
of the edges it traverses. However, this approach
has the following drawbacks. First, if node mobility
is such that a node does not visit the entire graph,

5 10 15 20
10

1

10
2

10
3

10
4

h
min

n s

Stability of CPs depending on h

Fig. 15. Minimum value ofE[D] as a function ofh.

then this node will never discover some parts of
the graph, which can result in poor forwarding
decisions. Second, even if a node moves over the
entire graph, the discovery process would be rather
slow, and the transient time (until every node knows
most of the CP graph) would be excessively long.

We therefore would like to accelerate the dissem-
ination of edge information to allow every node to
learn the entire graph. One approach is for nodes to
exchange labeled edges through a gossip protocol.
This allows nodes to learn the entire CP graph more
quickly.

Note however that the CP graph may change
over time. This is either because nodes change their
moving patterns and new CPs appear or the existing
ones disappear, or because a CP changes its label
due to the labeling process as explained in Section
IV. For example, if the label of a CPu changes
from yu to y′

u, then all edges with labelyu become
obsolete. We use an aging mechanism to eliminate
such obsolete edges.

More precisely, in our gossiping scheme, node
i’s view of the CP graph,Gi, is represented by the
set of pairs(e, tobs), where tobs is the time when
edgee was directly observed. Nodei has edgee in
Gi either if it has directly observede, or if it has
receivede through gossiping from other nodes.

Every node, upon arrival at a vertex, gossips
a constant numberne of randomly chosen entries
(e, tobs) from its view of the graphGi to all nodes
at this vertex. Nodei updatesGi either when it
directly observes an edge, or when it receives a
gossip message from another node. When nodei
directly observes edgee at time t, it adds(e, t) to
Gi and deletes the old entry fore from Gi if it
exists. When nodei receives an observation(e, tobs)
through gossiping for which it already has an entry,
it retains the more recent of the two. If it does not
have an entry fore, then it adds(e, tobs) to Gi.

12

As we said, in addition to the process of learning
edges, a node uses an aging mechanism to remove
an edge from the graph if the edge grows too old.
More precisely, a node removes entry(e, tobs) from
its graph at timetobs + Tage, whereTage is a fixed
constant for all nodes.

V. ISLAND HOPPING (IH)

Island Hopping (IH) is a mobility-assisted for-
warding algorithm in which a node makes decisions
about when to pass a copy of a message to other
nodes and when to discard it, by using the knowl-
edge of:

1) the CP graph, and its own position in that
graph, and

2) the destination’s position in the CP graph.
The three design goals are to minimize the number
of copies made of a message, to minimize the end-
to-end delay, and to maximize the delivery rate.

In this section we describe our IH scheme under
the assumption that a node has knowledge of the CP
graphG and its own position inG at all times. Infer-
ring this knowledge in scenarios where nodes have
external signals from the environment (such as GPS
coordinates or signals from fixed beacons) is easier
than in the case where no such external information
exists. In Section IV, we showed how nodes could
infer this knowledge without such external signals.

A. Message Progression Towards a Fixed Destina-
tion

In this subsection, we show the main ideas of IH
under the further simplifying assumption that nodes
know the position inG of a message’s destination.
In the next subsection, we then show how nodes can
locate the destination.

Our IH scheme uses the following three ideas,
which we illustrate in Figure 16.

1) Routing a Message through a Sequence of
CPs: Assume that a nodei, currently located at
vertex u ∈ V , has a messagem with destination
node D located at vertexw ∈ V . The key is for
nodei to decide which vertexv should be the next
hop in V for messagem in order to make progress
towards the destination. This desired next hopv is
stored in the message in the fieldm.next hop. We
choose this next hopv as a neighboring vertex on
the shortest path between verticesu and w in the
CP graph.

The next move of nodei is in general not yet
known. We allow nodei to keep m for several
hops until it reaches the desired next hop. For this
purpose, there is a fieldm.ttl set to the maximum
allowed number of hopsnh. Thus, every time node

i moves to a new vertexv′ 6= v it decrementsm.ttl.
Node i discardsm when m.ttl = 0. If node i
happens to move to the desired next hopv, then
nodei keepsm and sendsm to other nodes in vertex
v.

This process continues until the message reaches
nodeD at vertexw.

In Figure 16(a), nodeS at vertex1 originates a
messagem to nodeD at vertex4. NodeS makes
several copies ofm with m.next hop := 2 and
m.tll = 1 (because of simplicity we setnh = 1
in this example). Figure 16(b) shows what happens
when these copies move to neighboring vertices.
The node with the copy that moves to vertex2
makes new copies ofm with m.next hop := 4;
whereas the node with the copy that moves to vertex
3 discardsm becausem.next hop 6= 2 and hence
m.ttl = 0.

2) At Least One Copy Moves to the Next-hop
CP: If none of the copies of messagem move to
m.next hop, then all these copies ofm will be even-
tually discarded, andm will be lost. To boost the
probability that at least one copy ofm progresses
towards the next-hop vertex, we introduce a “one-
hop” acknowledgment (ACK) scheme. The goal of
this scheme is to piggyback one-hop delivery in-
formation about messagem through nodes moving
in the reverse direction, and to generate additional
copies if needed.

Assume that there exist copies ofm at vertexu
with m.next hop = v. Nodes at vertexu should be
informed when a copy ofm has reachedv. When
a node withm arrives atv, it broadcasts this fact
to all nodes atv. If one of these nodes then moves
to u, it broadcasts an ACK form. All nodes atu
can then discardm. But if a node atu holding m
has not received an ACK by the time where only a
small numberc1 of copies ofm are left, it generates
additional copies ofm. This process repeats for at
mostc2 times.

In Figure 16(b), a node withm moves from vertex
1 to vertex 2, where it generates new copies and
broadcasts to all nodes the identity ofm. In Figure
16(d), one of these nodes arrives at vertex1 and
broadcasts an ACK form. Then all copies ofm at
vertex2 are discarded.

3) Only One Copy Survives to the Next-hop CP:
If more than one copy ofm with m.next hop = v
moves into vertexv, then new copies ofm can be
generated atv several times. This could lead to an
exponential increase of the number of copies. We
include a mechanism to suppress additional rounds
of copying. If nodei moves tov, it makes new
copies only if none of the nodes currently atv have
seen an earlier copy ofm arrive atv.

Figure 16(c) shows what happens when a second

13

copy of m arrives at vertex2 from vertex1. Even
if m.next hop = 2, the copy is discarded, because
m has already been at vertex2.

2

3

5 5

S

1 2 1

4

* D

4

* D

3

m.next hop := 2

(a) NodeS originates a messagem to nodeD.
55

1 2 1 2

* D

3 4

* D

34

m.next hop
6= 3

m.next hop
m.next hop := 4= 2

(b) Node with a copy ofm moves to another vertex.
55

1 2 message
was here

1 2

4

* D

3 4

* D

3

m.next hop
= 2

(c) Node with a copy ofm moves to a vertex wherem has
already been observed.

5 5

1 2 1 2
one−hop ACK

4

* D

3 4

D

3

(d) One-hop acknowledgment.

Fig. 16. Island hopping - example.
Small dots - nodes without a copy ofm; large dots - nodes with a
copy of m; empty dots at a vertex - nodes without a copy ofm, but
that know thatm was at this vertex.

Difference with the Island Hopping Algorithm
given in [9]. In the IH algorithm given here we
allow copies of a message to live for a fixed number
of hops (nh > 1) until they move to the intended

next CP, whereas in the algorithm [9] we allow
copies to live only one hop (nh = 1) until they
move to the next intended CP. This makes IH more
robust to the changes in the CP graph. To see this,
look at a scenario shown in Figure 17 where an
edge56 − 95 becomes obsolete. Assume that the
node shown in vertex56 still thinks that this edge
exists. Then, this node might choose vertex95 as
the next hop for a messagem. If the node discards
m immediately when it moves to a vertex that is not
the intended next hop, thenm would be lost. But,
if the node still keepsm for several hops (nh > 1),
thenm would have a chance of reaching the desired
vertex95.

56

19

95

56

19

(a)

(b)

95

m.next hop = 95

m.next hop = 95

Fig. 17. CP graph: (a) the view of the red node (b) real.

B. Dynamically Locating Destination through Last
Encounter Routing

So far, we have assumed that the location of
the destination is fixed and known to the message,
which is unrealistic. To discover the location of
the destination of a message, we cannot resort to
the classical methods such as flooding, because the
network is partitioned.

To solve this problem, we borrow an approach
from [23] called Last Encounter Routing (LER),
where a node maintains a Last Encounter Table
(LET), with an entry for every other node. An entry
consists of the time and location of its last encounter
with the node. In [23], the location of the node is
its geographic location. We adapt this to our setting,
where the location of the last encounter is a vertex:
each node remembers for all other nodes the time
and the label of the CP where they were last time
collocated.

The LETs are used by a message to continually
obtain more recent information about the location
of the destination, as follows. Assume again that
a nodei at a vertexu has a messagem destined
for a nodeD. As we saw in Section V-A, node
i needs to determine the next-hop vertex form.

14

Before doing so, nodei searches all nodes atu
for the most recent LET entry for nodeD. This
location is then used as an estimate of the position
of nodeD to determine the next-hop vertex unless
the node already has more recent information. The
message remembers this estimate in a fieldm.le. As
the message gets closer, it tends to find more recent
information, “zeroing in” on the destination.

C. Operation of IH and COGRAD

So far, we have described the IH algorithm as
operating on top of an oracle that reveals to every
node the CP graphG and the node’s position on
G. We now describe how IH operates on top of
COGRAD, where the CP graphG, and each node’s
position onG, are obtained through COGRAD. In
this case, the obtained graph might contain some
errors. This is because the CP graphG may change
over time, as explained in Section IV-B; and the
changes inG causes that during a period of time
a node’s view ofG either misses new edges that
has appeared or still keeps obsolete edges that has
disappeared.

As we saw in Section V, a nodei located at vertex
u chooses the next hop for a messagem with the
destination atw as the next vertex on the shortest
pathu → w in its view of the CP graph. We have
not specified which next-hop is chosen if several
shortest paths, and thus several possible next-hops,
exist. In this case, we use the age of edges obtained
by COGRAD in the edge discovery part to choose
between these possible next-hops. We choose the
next-hop with the smallest age of its incoming edge
from u, i.e., the vertexv whose entry((u, v), t) is
most recent.

We discuss two other conditions that can arise in
IH due to errors either in the underlying graph dis-
covery algorithm or the locating of the destination.
The first situation arises when nodei makes the
next-hop decision for a message, but cannot find a
shortest path tow. This can happen when ini’s view
of the graphGi, (i) w is not known, or (ii) a path
u → w does not exist inGi. The second situation
arises when the destination location (obtained by the
last encounter tables as described in Section V) is
the current node’s locationu, but the destination is
elsewhere.

We resolve these situations as follows. The node
keeps the message with settingm.ttl = nh, and
waits until it moves to another vertexv. There, it
then tries again to find a next hop. If it does not
succeed it decrementsm.ttl, and if it succeeds it
setsm.ttl = nh.

There are still some rare situations in which
the IH algorithm does not succeed in delivering

a message to the destination. These are: (i) when
none of the message copies reach the intended next
hop within thenh traversed hops, (ii) when a CP
disappears, but a node still keeps obsolete edges
of this CP in the node’s view ofG, (iii) when a
CP changes its label due to the imperfection of the
labeling algorithm and does not learn edges with the
new label yet but keeps obsolete edges with the old
label, and (iv) if a node can not determine a next
hop for a message because of the reasons explained
above within thenh traversed hops. In order to keep
IH fairly simple and since the performance of our
algorithm is only slightly worsen due to these rare
situations as shown in Section VI, we do not try to
make IH robust to them.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of
the IH algorithm in combination with the COGRAD
algorithm. For this purpose, we developed a custom
simulator implementing the CP graph-based mobil-
ity model, and the IH and COGRAD algorithms.

We compare our IH+COGRAD algorithm with
ER [15] and PROPHET [16]. We also compare
our algorithm with the scheme where a source
transmits a message only to the destination (no
routing algorithm is used). We denote this scheme as
“no R”. In addition, we evaluate how our algorithm
depends on the various parameters.

A. Simulation Set-up
The nodes’ mobility model is the CP graph-based

model (described in Section III-B). More precisely,
we let N = c|V | nodes perform independent ran-
dom walks on a graph, withc > 0 a parameter
controlling the mean number of nodes per vertex.
Note that the random walk is the most challenging
mobility process for our purposes, for the following
reason. When a node performs a random walk, its
future movements are independent of the entire past.
In other words, even if a node accumulates statistics
about its past movements, this will not help predict
the future. As such, all the nodes located at a vertex
v at a given timet are statistically equivalent, and
no information about the past (e.g., keeping track
of when a node has last seen the destination, as in
PROPHET) can be used to predict where a node
will go in the future.

The location of a node is either a vertexv ∈ V
(which implies that the node can communicate with
all other nodes currently located at the same vertex
v), or an edgee = (u, v) ∈ E (which implies that
the node is en route from islandu to islandv, and
is not able to communicate with any other node).
Each node spends an exponentially distributed time

15

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

1

Delivery rate

Number of vertices |V|

IH, grid
IH, regular
ER, grid
PROPHET, grid
ER, regular
PROPHET, regular

0 10 20 30 40 50 60 70 80 90
10

−1

10
0

10
1

10
2

Delay

Number of vertices |V|

IH, grid
IH, regular
ER, grid
PROPHET, grid
ER, regular
PROPHET, regular
noR, grid
noR, regular

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140
Number of transmissions

Number of vertices |V|

IH, grid
IH, regular
ER, grid
PROPHET, grid
ER, regular
PROPHET, regular

Fig. 18. The grid and the random regular graph; as a function of the number of vertices|V |; (c = 15, h = 2, ne = 5, Tage = 100(TV +TE),
nh = 3). (a) Delivery rate, (b) delay, (c) number of transmissions.

4 6 8 10 12 14 16 18 20 22
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Delivery rate

c

IH, diverse
ER, diverse
PROPHET, diverse

4 6 8 10 12 14 16 18 20 22
10

−1

10
0

10
1

10
2

Delay

c

IH, diverse
ER, diverse
PROPHET, diverse
noR, diverse

4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160
Number of transmissions

c

IH, diverse
ER, diverse
PROPHET, diverse

Fig. 19. The diverse degree graph; as a function of the mean number of nodes per vertexc; (h = 15, ne = 5, Tage = 100(TV + TE),
nh = 3). (a) Delivery rate, (b) delay, (c) number of transmissions.

0 50 100 150 200 250
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Delivery rate

T
age

IH, grid
IH, regular

0 50 100 150 200 250

2.5

3

3.5

4
Delay

T
age

IH, grid
IH, regular

0 50 100 150 200 250
8

9

10

11

12

13

14

15
Number of transmissions

T
age

IH, grid
IH, regular

Fig. 20. The grid9× 9 and the random regular graph with|V | = 81 andr = 4; as a function of the COGRAD parameterTage; (c = 15,
h = 2, ne = 5, nh = 3). (a) Delivery rate, (b) delay, (c) number of transmissions.

16

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Delivery rate

h

IH, diverse, nh=1
IH, diverse, nh=3
IH, diverse, nh=5
IH, diverse, nh=7
IH, diverse, nh=9

0 5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5

5.5

6
Delay

h

IH, diverse, nh=1
IH, diverse, nh=3
IH, diverse, nh=5
IH, diverse, nh=7
IH, diverse, nh=9

0 5 10 15 20 25 30
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
Number of transmissions

h

IH, diverse, nh=1
IH, diverse, nh=3
IH, diverse, nh=5
IH, diverse, nh=7
IH, diverse, nh=9

Fig. 21. The diverse degree graph; as a function of the COOGRAD parameterh and the IH parameternh; (c = 15, h = 2, ne = 5,
nh = 3). (a) Delivery rate, (b) delay, (c) number of transmissions.

with mean TV at a vertex, and an exponentially
distributed timeTE at an edge, where we setTV =
10TE. All the delay results we report, as well as all
time scales, are normalized by settingTV +TE = 1,
i.e., we normalize to unity the average speed at
which a node advances from vertex to vertex.

We present simulation results for various syn-
thetic CP graphs:

• the2-dimensionalk×k grid, where we varyk
from 3 to 9, i.e., |V | = 9, . . . , 81,

• the regular random graph - a random graph
where each vertex has the same degreer, with
r = 4 and with different number of vertices
|V | = 9, . . . , 81,

• a diverse degree graph - a random graph with
|V | = 100, where we divide vertices into ten
groups with ten vertices of the same degree
in each group and where we vary degrees of
vertices from1 to 10.

More the challenging CP graphs for our algorithm
are those with the vertices having the diverse de-
grees. The reason is that in graphs where vertices
have approximately equal degrees, the mean number
of nodes per vertex is approximately equal toc for
all vertices. Because of this, ifc is large enough
then all vertices will be well populated with nodes,
and thus they will be stable CPs, which is easier
for our IH algorithm to perform well. Hence, in our
simulation results we include both types of graphs,
where the diverse degree graph belongs to the more
challenging type.

So far, the only assumption we make about the
set of nodes within a same CP is that each node
can reach other nodes (either because they are in
direct radio range of each other, or because they
can form a connected ad hoc network). However, for
the purpose of simulations we assume for simplicity
that nodes within a CP are directly connected. This
assumption is favorable for both our algorithms
and for the epidemic-based algorithms ([15],[16])
we compare with, because it makes it possible
to transmit a message to all nodes at a CP in a

single broadcast. If nodes at a CP were not directly
connected, then the broadcast function would have
to be replaced by a flooding primitive.

Each simulation we report is preceded by a
warm-up phase that is needed to populate the last
encounter tables (LETs). The warm-up phase ter-
minates if 80% of the node pairs have encountered
each other at least once; note that this is conserva-
tive in that the LE tables are asymptotically fully
populated.

Other fixed parameters in our simulations are:
c1 = 3 and c2 = 2 in IH (defined in Section V),
and the maximum number of transmissions of a
message allowed that one node performs in ER and
PROPHET is set to1000.

B. Performance Metrics

We use the following metrics:
• delivery rate - the number of messages deliv-

ered divided by the total number of messages
sent by sources

• delay - the normalized delay for the delivered
messages

• number of transmissions per message- how
many times a message is transmitted until there
are no more copies of this message in the
network.

We compute these metrics by averaging over
a number of randomly chosen source-destination
pairs, where for each pair a source sends a single
message to its destination. In simulation results we
show the mean values of these metrics with 95%
confidence intervals.

Note that the number of transmissions per mes-
sage includes only the transmissions of actual mes-
sages, not the control messages generated by IH and
COGRAD. We justify this as follows. First, in the
IH algorithm, control messages result only when a
traffic message is to be transmitted. Therefore, the
IH control overhead should be considered relative
to the overhead to transmit messages. Usually, data

17

messages tend to be orders of magnitude larger than
control messages. This is in compliance with the
proposed architecture for delay tolerant networks in
[4]. Therefore, the IH overhead per data message
can be neglected. Second, in the COGRAD vertex
labeling algorithm, control overhead accrues when a
node discovers its neighborhood setBi(t), and this
type of control overhead is also present in ER and
PROPHET. Third, in the COGRAD edge discovery
algorithm, control overhead accrues when a node
arrives at a vertex and broadcasts a small number of
edges. In comparison, ER and PROPHET exchange
a summary vector and predictability vectors respec-
tively, whenever a node meets a new node, which in
our setting means the broadcast of these vectors per
each node’s arrival at a vertex. Therefore, the control
overhead in our scheme is comparable to that in ER
or PROPHET, and small compared to data messages
- except when the network is very lightly loaded.
Hence, we consider only traffic messages in our
simulation results.

C. Simulation Results - Comparison with ER and
PROPHET

Here, we compare our IH+COGRAD algorithm
with ER and PROPHET. We discuss the tuning
parameters of our algorithm in Section VI-D.

We show in Figure 18 the performance metrics
for 1) the grid topology and 2) the regular random
graph topology, as a function of the number of
vertices|V |, for fixed c = 15.

Figure 18(a) shows the delivery rate. We no-
tice that the delivery rate of the flooding-based
approaches (ER, PROPHET) is essentially 100%.
The delivery rate of IH is slightly lower, but remains
very close to 1. We discussed the reasons for this
slight drop-off in Section V-C.

Figure 18(b) shows the end-to-end delivery de-
lay. Although the delay of IH is higher than that
of flooding-based approaches (around 1.5 times
higher), the figure suggests that it is only a small
constant factor higher than ER/PROPHET as a
function of network size.

Figure 18(c) shows clearly the main advantage
of our scheme: it requires a significantly lower
overhead per message than ER/PROPHET.

We show in Figure 19 the performance metrics
for the diverse-degree graph, as a function of the
parameterc to explore the sensitivity of IH to
small values ofc. We see in Figure 19(a) that our
algorithm achieves a high delivery rate (above 90%)
even for a fairly small value ofc = 10.

Figures 19(b) and 19(c) confirm our finding that
IH+COGRAD achieves a very favorable tradeoff,
with a delay close to that of flooding-based ap-
proaches that are essentially the lowest possible

delay, but with much lower transmission over-
head, which implies that a network operating under
IH+COGRAD has a capacity gain of more than
an order of magnitude over ER/PROPHET for the
scenarios considered here.

This favorable tradeoff is possible because our
scheme tightly controls the copies of a message,
by not making new copies of a message that
strays from the shortest path towards the destina-
tion. In flooding-based approaches, messages dif-
fuse throughout the network; in particular, it is
difficult in these approaches to ensure that all copies
of a message get discarded after one copy of the
message has been delivered to the destination. This
problem does not arise in IH.

D. Simulation Results - Dependence on the Param-
eters of Our Algorithm

Let us recall the control parameters of our algo-
rithm. In COGRAD in vertex labeling, there is the
parameterh, the threshold of the number of nodes
when a new CP is formed. In COGRAD in edge
discovery, there is the parameterne, the number
of edges that each node gossips upon its arrival at
a vertex, and there is the parameterTage, the age
threshold fixed for all nodes upon which an edge
is removed from the CP graph. In IH, there is the
parameternh, the maximum number of hops (i.e.
traversed vertices) that a message can live before it
reaches the desired next hop.

In Figure 20 we show the dependence onTage,
and in Figure 21 we show the dependence onnh

andh and in both cases we setne = 5.
From all reported simulation results we see that

a fairly smallne = 5 gives satisfactory results (e.g.,
see Figure 18).

We see in Figure 21 that the increasing ofnh

makes better all considered performance metrics of
IH+COGRAD. However, the largernh makes the
memory consumption grow; thus, we limit ourselves
to nh = 3.

There are stillTage and h left to be determined.
We set firstTage independently ofh, and then look
at the dependence onh with already tunedTage. We
achieve this by looking at the dependence onTage

in the cases of the CP graph with vertices with non-
diverse degrees for largec (the grid and the regular
graph forc = 15, in Figure 20). Here, all vertices
are well populated with nodes on average, which
makes them stable CPs even withh = 2, hence in
these casesh is not important.

We see in Figure 20 thatTage need to be larger
than some value but after this value the performance
metrics are not sensitive for the broad range of
values of Tage. Of course, for very large values

18

of Tage, the performance will be degraded because
there will be more obsolete edges that are gossiped,
thus wasting transmission resources. Therefore, it
is important to properly set-up the lower bound for
Tage.

Finally, we look at the dependence onh for other
already tuned parameters. We look at the case where
the CP graph is the diverse degree graph forc =
15 in Figure 21. Here, some vertices (those with
low degree) will be poorly populated with nodes,
and hence ifh = 2 they will be unstable CPs. We
expect that here the parameterh plays a significant
role by avoiding that unstable CPs be formed. Our
simulation results shown in Figure 21 confirm this.

The remained question is how nodes can estimate
the parametersTage and h. We saw in Section IV-
A.1 that if a node can estimateτs (the average
required life time of a label) then it is easy to
find h. We argue that one rough but good enough
estimate for bothTage and τs is the mixing time
of the random walk on the graph (we denote it
as Tmix). This time is the time neeeded for the
random walk to approach its stationary distribution.
This means that after this time a node’s position
is independent of its starting position. Hence, if
we set upTage = τs = Tmix we expect that
this time is long enough to ensure that the nodes
remove only the obsolete edges from the CP graph
and that the CPs are enough stable. According to
[24], Tmix is of the order of1/log(1/x), where
x is the second largest eigenvalue in modulus.
The calculations showed a good match with the
simulation results. For example, for the grid9x9
the calculatedTmix ≈ 29.2(TV + TE), which gives
h ≈ 15 (ns = τsλ = τsc (TV + TE) ≈ 400, then
the result forh follows from Figure 14, Section IV-
A.1). According to the simulation results shown in
Figure 20 these values gives good results.

Comparison with IH+COGRAD reported in
[9]. The IH+COGRAD algorithm reported in [9] is
a subclass of the IH+COGRAD algorithm reported
here and is obtained by setting parametersnh = 1
andh = 2. Figure 21 shows that settingnh > 1 and
h > 2 gives a considerable improvement in the case
of the diverse degree CP graph where some CPs
are not stable. Thus, our algorithm reported here
is much more robust to the more realistic mobility
models where some CPs might be unstable.

VII. D ISCUSSION ANDCONCLUSION

We have argued in this paper that node distri-
butions that are heterogeneous in space and rel-
atively stable over time provide an opportunity
for mobility-assisted forwarding in partitioned net-
works, because the underlying topology of concen-
tration points (CPs) and the flows of nodes between

the resulting islands of connectivity can be learned
and used to make progress towards the destination
without flooding the network with too many copies
of a message.

We have shown that in the presence of stable CPs,
our approach significantly outperforms approaches
where copies of messages are made without the
benefit of an underlying topology. Our approach
achieves end-to-end delays of the same order as
aggressive flooding-based approaches, but with up
to an order of magnitude fewer transmissions per
message. This benefit comes from the ability to de-
cide, at every vertex, whether a particular copy of a
message has made progress towards the destination
or not; we can realize this benefiteven if the mobility
process is not predictable (random walk), andeven
if the CP graph is not known a-priori (thanks to
COGRAD).

To do this, we had to take a significant detour,
and first develop a scheme to discover this topology.
We have shown that under the assumptions of our
mobility model, it is - somewhat surprisingly -
possible to achieve this by processing the changing
set of neighbors of each node, without relying on
any explicit signal from the environment or from
dedicated infrastructure.

Once we have inferred the CP graph, we can
try to forward messages along the shortest path of
islands towards the destination. Although we can-
not, of course, control the movement of individual
nodes, we can nevertheless make progress towards
the destination by making a few copies, and letting
only those copies that go in the right direction
survive.

For this to work, a message has to be able to
locate the destination in the CP graph; for this,
we have adopted the idea of last encounter routing
described in [23], but here locations are vertex labels
rather than geographic coordinates. This allows a
message to have an estimate of its destination’s cur-
rent location; the precision of this estimate tends to
improve as the message approaches the destination.

Our simulation results show that our approach
significantly outperforms schemes that do not ex-
plicitly exploit topological information. Of course,
this advantage depends on the presence of a stable
topology of concentration points; otherwise, it is
probably hard to achieve significantly better perfor-
mance than schemes such as ER and PROPHET.
However, we believe that heterogeneous and stable
node distributions tend to be the norm rather than
the exception, and we hope to establish this concept
through further study of a diverse and representative
set of mobility traces. The key point we make in
this paper is that stable heterogeneity is beneficial,
as it provides structural clues that can be exploited

19

by routing and mobility-assisted forwarding algo-
rithms.

ACKNOWLEDGMENT

The authors would like to thank Henri Dubois-
Ferrière, Daniel R. Figueiredo, Maciej Kurant, Hung
Nguyen, and Dominique Tschopp for valuable feed-
back and discussions on this paper. We also thank
Holly Cogliati for help in improving the manuscript.
We are indebted to the MPT Radio Taxi company
in Warsaw, Poland, for making the GPS database
available to us. We also like to thank to the Ex-
ploratorium - the museum of science, art and human
perception for making the San Francisco taxi traces
publicly available3.

The work presented in this paper has been sup-
ported (in part) by the National Competence Center
in Research on Mobile Information and Communi-
cation Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under
grant number 5006-67322.

REFERENCES

[1] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S.Peh, and
D. Rubenstein, “Energy-efficient computing for wildlife track-
ing: Design tradeoffs and early experiences with zebranet,” in
Proc. ASPLOS-X 02, San Jose, CA, October 2002.

[2] “UMassDieselNet: A Bus-based Disruption Tolerant Network,”
http://prisms.cs.umass.edu/diesel/.

[3] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and
C. Diot, “Pocket Switched Networks and Human Mobility in
Conference Environments,” inWDTN ’05: Proceeding of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking.
New York, NY, USA: ACM Press, 2005, pp. 244–251.

[4] K. Fall, “A delay-tolerant network architecture for challenged
internets,” inProc. SIGCOMM ’03, August 2003.

[5] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying
approach for data delivery in sparse mobile ad hoc networks,”
in Proc. ACM Mobihoc ’04, Tokyo Japan, May 2004.

[6] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant
networking,” inProc. SIGCOMM ’04, August/September 2004.

[7] T. Camp, J. Boleng, , and V. Davies, “A Survey of Mobility
Models for Ad Hoc Network Research,”Wireless Communica-
tion & Mobile Computing (WCMC): Special issue on Mobile
Ad Hoc Networking: Research, Trends and Applications, vol. 2,
no. 5, pp. 483–502, 2002.

[8] D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,”Mobile Computing (Tomasz Imielinski and
Hank Korth, eds.), pp. 153–181, 1996.

[9] N. Sarafijanovic-Djukic, M. Piórkowski, and M. Grossglauser,
“Efficient Mobility-Assisted Forwarding in Partitioned Net-
works,” in IEEE SECON 2006, Proceedings of the 3rd IEEE
Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, 2006.

[10] J. Kang, B. Steward, W. Welbourne, and G. Borriello, “Ex-
tracting a Places from Traces of Locations,” inWMASH’04:
Proceeding of the 2nd ACM international workshop on Wireless
Mobile Applications and Services on WLAN Hotspots, 2004.

[11] W. Hsu, K. Merchant, H. Shu, C. Hsu, and A. Helmy,
“Preference-based Mobility Model and the Case for Congestion
Relief in WLANs using Ad Hoc Networks,” inVTC2004-Fall:
Proceeding of the 60th IEEE VTC, 2004.

3http://www.cabspotting.org

[12] D. Tang and M. Baker, “Analysis of a Metropolitan-Area
Wireless Network,”Wireless Networks, vol. 9, pp. 107–120,
2002.

[13] C. Tuduce and T. Gross, “A Mobility Model Based on WLAN
Traces and its Validation,” inProceeding of the 24th IEEE
INFOCOM 2005, 2005.

[14] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model
from real user traces,” inProceeding of the 25th IEEE INFO-
COM 2006, 2006.

[15] A. Vahdat and D. Becker, “Epidemic routing for partially
connected ad hoc networks technical report cs-200006,” Duke
University, Tech. Rep., April 2000.

[16] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing
in intermittently connected networks,”Mobile Computing and
Communications Review, July 2003.

[17] X. Chen and A. L. Murphy, “Enabling disconnected transitive
communication in mobile adhoc networks,” inProc. Workshop
on Principles of Mobile Computing ’01, 2001.

[18] M. Musolesi, S. Hailes, and C. Mascolo, “Adaptive routing
for intermittently connected mobile ad hoc networks,” inProc.
IEEE 6th International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WOWMOM’05), June 2005.

[19] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “Mddv:
A mobility-centric data dissemination algorithm for vehicular
networks,” in Proc. ACM Workshop on Vehicular Ad Hoc
Networks (VANET), October 2004.

[20] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Sprayand
Wait: an efficient routing scheme for intermittently connected
mobile networks,” inProc. Workshop on delay tolerant net-
working and related networks (WDTN-05), August 2005.

[21] S. Theodoridis,Pattern Recognition. Elsevier, 2003.
[22] F. Roijers, M. Mandjes, and J. van den BergA., “Analysisof

congestion periods of an m/m/inf-queue, report pna-e0606,issn
1386-3711,” Centrum voor Wiskunde en Informatica (CWI),
Netherlands, Tech. Rep., March 2006.

[23] M. Grossglauser and M. Vetterli, “Locating Mobile Nodes with
EASE: Learning Efficient Routes from Encounter Histories
Alone,” IEEE/ACM Trans. on Networking, vol. 14, no. 3, June
2006.

[24] M. Chen, “Mixing time of random walks on graphs, Master
Thesis,” Mathematics Department, University of York, August
2004, supervisor: Keith Briggs.

