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Abstract— Mobile wireless ad hoc and sensor networks buffered at intermediate nodes to wait for the avail-
can be permanently partitioned in many interesting sce- ability of the next link towards the destination. The
33”03- This i”"\lp”es thh"’}t i“Sta?]ta”eouj e”d'to'e”db_lrou_tGS probiem of finding a route over time amounts to

o not exist. Nevertheless, when nodes are mobile, it isg : :
possible to forward messages to their destinations through finding a sequence of mobile nodes th.at plhyS|caIIy
mobility. carry the message towards the destination. This

In these many interesting settings we observe that spa- @pproach has been referred to rasbility-assisted
tial node distributions are very heterogeneous and possessforwarding, or also asstore-carry-forward [4], [5].
concentration points of high node density. The locations of Finding such routes through space and time is ob-
these concentration points and the flow of nodes betweenyjously a complex problem in general and depends

them tend to be stable over time. This motivated us peayily on the joint statistics of link availability [6].
to propose a novel mobility model, where nodes move

they are likely to encounter other nodes, while connectivit e : kb
is very limited outside these islands. network partitions arise because the distribution of

Our goal is to exploit such a stable topology of concen- N0d€S in space is heterogeneous. Specifically, we
tration points by developing algorithms that allow nodes assume that the network possesses concentration
to collaborate in order to discover this topology and to points (CPs), i.e., regions where the node density
use it for efficient mobility forwarding. We achieve this is much higher than on average, and where nodes
without any external signals to nodes, such as geographichaye therefore a much better chance of being con-
positions or fixed beacons; instead, we rely only on the :
evolution of the set of neighbors of each node. nected to other nodes than on average. We be“e.ve

We propose an algorithm for this collaborative graph  that many real networks possess such concentration
discovery problem and show that the inferred topology POINts, even though most network models assume

can greatly improve the efficiency of mobility forwarding. homogeneous node distributions for convenience
Using the proposed mobility model we show through and tractability [7], [8].

simulations that our approach achieves end-to-end delays

comparable to those of epidemic approaches and requires Furthermore, we argue that the CPs, and the
a significantly lower transmission overhead. average flows of nodes between CPs, typically re-

Index Terms— Delay-tolerant networks; Store and for- Main stable over relatively long time-scales. This is
ward networks; Mobile communication systems; Routing because they depend on features of the natural or
protocols; Simulation and modeling; Mobility modeling.  constructed environment, which change over time-
scales much longer than the delivery time of mes-

|. INTRODUCTION sages.

N many applications of wireless ad hoc and sen-Our goal is to develop for mobility-assisted for-

sor networks, the network is frequently or permavarding efficient schemes that take explicit advan-
nently partitioned, i.e., end-to-end routes betweéage of the presence of stable concentration points.
some pairs of nodes do not exist. Such scenarits achieve this goal, we make three distinct, but
include large-scale emergency and military deplogtrongly related contributions: (i) we introduce a
ments without fallback infrastructures, environmemnobility model that explicitly embodies CPs, and
tal monitoring [1], transportation networks [2], selfwe justify it through an analysis of two large
organized “pocket-switched” networks [3]. Thesmobility traces; (i) we describe how a collection
networks may be partitioned because of subcritical mobile nodes can infer the CP topology without
node density, channel fluctuations (shadowing aady explicit signals from the environment, such as
fading) and node mobility. GPS coordinates or beaconing signals; and (iii) we

Although instantaneous end-to-end routes do notdescribe the Island Hopping (IH) algorithm that
always exist a message can nevertheless be delivdmediards messages through mobility. Finally, we
over time, where the message has to be temporaslynmarize these three contributions.



A. Mobility Model with Stable Concentration Points  this in two phases: vertex labeling and edge discov-
(CPs) ery.

Our first contribution is a new mobility model that Vertetx Lalb%hr;g._ The goal of f[g's t;_:}hasef Is 10 H
embodies the presence of stable CPs. This modeP tera ef ?/ athei "e.'li a unique tl t()aln Imer, Otf eac
pessimistic, in the sense that we assume that no & E)iho h g will remain ja te foverh |met,
are only able to communicate with other nodes &t ou?h tnotes move 'tr.' an thou odeac ver ?IX
the same CP; outside these islands of connectiv p{Jodset tﬁ at a gl\éeg Ime the noles fl]f”e?h.y
they are not able to communicate. We therefore vieg-a.c l\? € saﬁne d.agﬂ?e on ah‘f" e ?r IS
the network as a gragfi(V, &), where the vertex set YCriex. Now another node arrives at this vertex.

Node: has not received, from the environment, any
Xoﬁspg‘sr%%tts)ilzligdzss’ gg&?:ne%%e%gpresents explicit clue that it has moved, and the other nodes

Note that the only assumption we make abo ve not received a clue that they have not moved.
e comnecity of e Set of nodes wilin @ SanfloUe", 100 5 Se1 of helorbors has ehanged
is that they form a connected subgraph, i.g; : i
that each nodg can reach other nodesg. prall t t has only seen the addition:off hese nodes can
nodes are within radio range of each other, th erefore decide jointly that it is likely that node

this is straightforward; if not, then a message se Srer%?\éegéc%r;])?stthhee ?;Fgeerl 2]9 ?hei: \tlg\t/gxnot; node

between two nodes at a same CP may have (i'his process associates labels with vertices. The
traverse multiple intermediate hops. Our routing ando s remain stable even though the set of nodes
graph discovery algorithms rely on simple broadca a vertex changes all the time. Although errors
primitives within a CP. They can be implemente )

. an occur in this process (e.g., if a vertex becomes
mgr;og%rér%)r/rs]lscal-layer broadcast, or through floo ompletely empty for a while), this does not affect

Results from Large Mobility Traces. We pro- thciup?grjg{g?nce of the routing algorithm if this
vide some evidence from two distinct Iarge-sca% Edge DiscéveryOnce we have associated a label
data sets to justify the validity of our mobility ith each vertex, a node discovers the edges of the
mo%?)llt We analyzt?] a trace tﬁf the dmO\{ﬁme.rtlts ?P graph as it moves from vertex to vertex. We
VVagrsavsxgo?gﬁcrj aanéegf:rggg tagies”gvelr a ?ngln¥ho Iso let nodes exchange edges they have discovered
ST . ; .~ through a gossip protocol. This ensures that each
period in the city of San Francisco, USA. We fin de learns the entire graph, even though it may
that for both agglomerations there are some areggiy visit part of the graph.' Also, this ensures

where the expected number of cars within rad : .
range of each other is much higher than elsewhek(%l\?;l%u;%aéfgr'r%fg)r?s t;&gé?dbgjt_that have become

Furthermore, we find that for both agglomerations
these areas are stable over time, in the sense that an

area.that sees a high density of cars on a particu@r Mobility-Assisted Forwarding in the CP Model
day is likely to see a high density on another day Our third contribution is a novel mobility-assisted

as well. This justifies our assumption of a Stabll%rwarding algorithm called Island Hopping (IH)
topology of CPs in two realistic scenarios. This algorithm explicitly exploits knowledge of the
CP graph. It forwards a message through a sequence
. : of CPs to its destination. Each CP represents an
B. Collaborative Graph Discovery (COGRAD) opportunity to pass the message to other nodes.
Our second contribution is a distributed algorithm The key question is how to pass a message from
that allows the nodes to collaboratively discovesne CP to the next CP through nodes whose future
the CP graphjn the absence of any signal from movements are random and unpredictable. If the
the environment, such as GPS coordinates or fixetliture movements of nodes were known, we could
beacons. This is important, because it would Ipass the message to a single node that would move
unrealistic to assume that the graph of CPs and tinethe right direction, i.e., to a CP closer to the
flows of mobile nodes between CPs is known aestination inG(V, E'). However, given that future
priori. Instead, we assume that the only informatiamovements are unpredictable, the IH algorithm
that nodes have available is the set of other nodeskes a small number of copies of a message at
that they can reach (either directly or over multipleach CP, in the hope that at least one copy will
hops), which can be discovered in a straightforwardove to the intended next CP and the other copies
manner (hello messages, flooding, etc.) will be discarded. The process repeats at the next
In a nutshell, the COGRAD algorithm achieve€P, until the message reaches its destination. The




key challenges are to (i) not lose the messageduce and Gross in [13] studied the character-
completely, and (ii) to avoid that an unnecessarilgtics of mobile WLAN users and they proposed
large number of copies are generated. a framework for extracting mobility characteristics.
Although they do not propose a mobility model that
To summarize, we argue that stable concentr@aptures spatial distribution of CPs, they do however
tion points are prevalent and that they can hwovide a powerful validation methodology of the
exploited for efficient mobility-assisted forwardingrealistic mobility models. In [14] Kim et al. provide
We present evidence to this effect, and a mob# framework for extracting mobility characteristics
ity model embodying CPs, in Section lll. In Secfrom mobile traces of WLAN users. They propose a
tion 1V, we describecollaborative graph discovery mobility model that focuses on movements between
(COGRAD), a distributed algorithm that infers thepopular regions so-callelabt-spot regions - popular
CP graph from each node’s dynamic neighborhoal@stinations at which mobile users spend most of
set. This allows the routing algorithm to operatthe time.
without any explicit clue to nodes about their loca- Our approach refers to CPs as to specific regions
tion and movement. In Section V, we then descrilibat are not necessarily preferred destinations. We
the routing algorithm for mobility-assisted forwardenvision CPs as places that provide mobile users
ing in the presence of stable CPs. For simplicity afith a high opportunity to encounter other mobiles.
presentation, we describe this algorithm assumiMpreover, we also propose a new method for in-
that the CP graph, and node positions on the grapérring CPs that is based exclusively on the time
are known. In Section VI, we show extensive simwevolution of the connecitivity of nodes without any
lation results on synthetic graphs. We show that oadditional information about their location.
IH algorithm in conjunction with COGRAD results Routing in partitioned networks has been investi-
in a scheme that achieves delays of the order gdited in two scenarios: (i) when the dynamics of
much more aggressive flooding-based schemes aodnectivity between nodes is known in advance
requires a much smaller number of copies of eadl6]), and (ii) when it is unpredictable ([5], [15],
message. We conclude the paper in Section VII. [16], [17], [18], [19]). The latter can be further clas-
In our earlier paper [9], we describe our maisified as controlled mobility and random mobility.
ideas of this work, also present here. The noveltiesder controlled mobility [5], node trajectories can
in this paper are: (i) we validate our mobility modebe controlled and adapted. Forwarding algorithms
in another large scale data trace, (i) we preseior random mobility are usually based on some
a new method for inferring CPs from large scal®mrm of flooding. For example, in epidemic routing
mobility traces by using only information about th€éER) [15], when two nodes meet, they exchange all
nodes’ connectivity and (iii) we improve both thenessages that only one of them has a copy of. In this
COGRAD algorithm and the IH algorithm. The imway, a message is essentially flooded to all nodes,
proved algorithms are now more robust to realistighich ensures that it will reach the destination.
mobility settings where the CPs might be unstabléhis flooding can be constrained by taking into
and where the connectivity is not as sharply divideatcount the mobility history of nodes, e.g., patterns
into CPs and non-CPs as in our mobility model. of encounters of nodes, but also other parameters,
such as the energy left at the node. PROPHET
[16] is based on ER, where message exchanges
between nodes take into account a probability that
Most mobility models give rise to homogeneoua node will meet the destination of a message in
node distributions over a two-dimensional area [Ahe future. This requires the exchange of vectors of
These models lack an important feature of realistestimated probabilities. In DTC [17] a node carrying
mobility patterns, the fact that nodes often clustar message checks periodically whether to transfer
around preferred areas [10]. Hsu et al. [11] propotiee message. The message is transferred if in the
a realistic Weighted Way Point (WWP) mobilityset of nodes (possible via multihop) connected to
model that incorporates the fact that destinatiotisis node there is a node “closer” to the destination.
are not uniformly selected from the simulation areéCloseness” depends on mobility history, system
The authors designed the WWP model as a timgarameters, and future mobility (if available). A
varying Markov model, fitted to data from a surveynathematical framework for calculating this "close-
on the USC campus. Tang and Baker in [12] analypess” based on utility functions is given in [18]. In
mobile traces with 24773 radios in a metropolitatMDDV [19], forwarding decisions in a vehicular
area network. They observe a significant clusterimgtwork are made based on knowledge of the road
of radios in some areas, e.g., a financial distriahap, where nodes are equipped with GPS receivers.
however, they do not attempt to model user mobilitin the Spray and Wait algorithm by Spyropoulos et

I[I. RELATED WORK



al. [20], the number of transmissions of a messagdocation update (timestamp, identifier, geograph-
is constrained by letting only a fixed numbér ical coordinates) to a central server. In the case of
of copies of a message to be “"sprayed” into titbe Warsaw data set the updates are infrequent -
network. Then these copies "wait” until they medghe median time interval between two consecutive
the destination. The authors show that the parameétsration updates generated by an arbitrary cab is
L controls the tradeoff between end-to-end delapproximately 500 seconds. In the case of the San
and overhead. Francisco data set the updates are more frequent -
Our approach considers random unpredictalilee median time interval between two consecutive
mobility and distinguishes itself in that we explicitiocation updates generated by an arbitrary cab is
infer and use spatial information of node mobility approximately 70 seconds.
to limit flooding. u

[Il. AMOBILITY MODEL FORPARTITIONED : ’
NETWORKS p

In this section, we introduce a mobility model for
partitioned networks. In particular, we focus on one
feature that appears to be quite ubiquitous in real
mobility processesconcentration points (CPs), i.e.,
regions where mobile nodes have a much higher
chance of encountering other nodes than elsewhere.

Examples of CPs include:

« People in urban environments: workplace, i
restaurants, public transportation (train stations,
airports), movie theaters, etc. Fig. 1. The spatial distribution of location updates for WNarsaw

« Wildlife monitoring: Watering holes, C|earings,data set (825 taxis over 92 days). Each cell, representedobsek is
oases. etc coloured according to thé(k, 1) averaged over the entire period. The

. . . darker the cell(k, ) the higher the normalized populatigitk, ).
« Office buildings: cafeterias, conference rooms, (k.1 g populatigf(k, 1)

water coolers, hallways, etc.

« Road traffic: intersections, parking lots, gas
stations, traffic lights, etc.

« Military: bases, camps, forts, ports, etc.

We argue that the presence and ubiquity of such
concentration points has profound implications for
the design of efficient means for dealing with andg. 2.  The spatial distribution of location updates for tBan
exploiting mobility_ Francisco data set (665 taxis over 39 days). Each cell, septed

In order to find an evidence for CPs we ana|y2ty a pixel, is coloured according to th&k, ) averaged over the

two |arge_sca|e data sets of mobile traces of two tasatirei periO((j. T)he darker the cqlk,l) the higher the normalized
gopu ation f(k, 1).

fleets in two large cities in Poland and in USA. W . .
also propose and evaluate a method for extractiﬁ%:r o confirm the existence of stable CPs we apply
CPs from fine-grained mobile traces. following heuristic. First, we superimpose on
the area of Warsaw and of San Francisco agglom-
erations a grid of cells of equal size. Then, for each
A. The Sability of Concentration Points in a Mo- day d and each cellk,!) we find thenormalized
bility Trace population - f(k,[;d), interpreted as the empirical
Here we analyze the mobility traces of taxi ca obability that a random update falls into the cell
from two cities (Warsaw, Polahdand San Fran- (k;1) on dayd (cf. Figure 1 and 2). Our analysis
cisco, USA). The Warsaw data set contains GPE0WS the following: - .
coordinates of 825 taxis collected over 92 days jn 1) The Spatial Distribution is Heavy Tailed:
the Warsaw agglomeration area. The San Francidcgures 3(a) and 3(b) show the empirical comple-
data set contains GPS coordinates of 665 taxentary cumulative distribution function (CCDF) of
collected over 39 days in the Bay area. In both cased, [; @) for the two data sets - from Warsaw and

each taxi is equipped with a GPS receiver and serff@M San Francisco respectively. Both distributions
ave heavy tails, which implies that some cells in

Ihtt p: / / wwe. t axi mpt . com pl both cities have population density much above the
http: // ww yel | owcabsf. com average.




2) The Spatial Distribution is Stable Over Time: the paper in Section IV-A to derive the distributed
Figures 3(a) and 3(b) insets show a scatter plakorithm for vertex labeling of the collaborative
of f(k,l;d) for one randomly chosen pair of daygraph discovery method.

(dy,ds). In both cases we observe significant cluster- As we explained in Section I, CPs represent
ing along the diagonal, which means that the spatragions where node density is higher than average
distribution on different days tends to be stronglgnd is stable over time. In order to find such
correlated. Furthermore, we observe that the maegions one could apply one of the well-known
densely populated cells (upper-right quadrant) teddta clustering algorithms, e.g-means clustering
to be particularly close to the diagonal, which iR21] - for every time instant one can find such
a good visual confirmation of our hypothesis. Weegions and then identify which of them last for
observe the same behaviour for other pairs of dagslong time. However, we take another approach
- we identify connected components that last for
a long time. Here we rely on an intuition that in
B. Model Based on a CP Graph highly populated regions nodes should form stable

Given the above observations, we now define @annectivity islands.
idealized mobility model that embodies CPs. The Let us first formally define theonnectivity graph
network topology is given by a directed connectefdrmed by nodes. We assume that a mobile nbde
graph G(V, ) whose vertex set’ represents theis connected to nodg if the distancer;; between
CPs, and whose edges describe the possiblethem is less than the connectivity range We
movements of nodes between CPs. We call thissume that. is fixed and can be interpreted as
graph a CP graph. There arenodes that move onthe maximal radius allowed by power constraints.
this graph. At every time, every nodei is either The mobile nodes and the corresponding wireless
located at one CP, or is en-route between two Chisks define theconnectivity graph H (N, R), where
u andv. We denote the current position of node N(H) is the vertex set - the set of mobile nodes and
by X;(t). We assume that time is continuous.  R(H) is the edge set - the set of radio links between

We assume that nodes located at the same @dbile nodes, i.e.R(H) = {e = (i,5)|ri; < 7.}
can communicate with each other (either directly @e define a clusterd,, as a connected compo-
through multi-hop), whereas nodes at different Cent of 7. We also define a set of all clusters
cannot. We callB;(t) the set of neighbors of node that decompose the connectivity graph as follows:
at timet, where if nodei is at a CP theB;(¢) isthe C(H) = {H,, Hy---,H,,}, where H = |J'_" H,.
set of nodes located at the same CR @scluding  As nodes are mobile, the connectivity graphs
i) and if nodei is en-route between two CPs theghange dynamically over time. Thus, we define a
B;(t) = {i} (cf. Figure 4). CP as a connected component that lasts long enough

T in the time-sequence of consecutive connectivity
graphs. If we take a snapshot of the connectivity
graph at timet it might be very different form the
one taken at time- = t—At¢. We can easily identify
clusters at every time instarit but how do we
decide which clusters correspond to which clusters
from the previous time instance = t — At?
To answer this question, we study the differences
Fig. 4. Nodes move on a grapi#(V, £), which describes the between sets of clusters defined for consecutive
network topology in terms of its CPs and the ways nodes caremo¥onnectivity graphs, i.e.0(H(t7)), C(H(t)). In
between them. our approach we want that a cluster at time
corresponds only to one cluster at time, i.e. a
. . cluster at time shares the same identity as a cluster
C. Inferring the CPs from Mobility Traces at timet¢—. Obviously it is possible that a cluster at

In section IlI-A we have revealed that in the redime ¢ corresponds to none of the clusters at time
world the distribution of mobile nodes is heterot—, e.g. nodes that were alone at tintie form a
geneus and stable. Here our goal is to infer fromew cluster at time - then this cluster obtains new
mobile traces the stable high-density areas, whedentity.
the islands of connectivity are likely to appear. We first show two examples that explain two rules
The main idea behind our method is to focus ome use to decide which clusters from consecutive
connected components, that represent these islatiae instances correspond to each other, and then
of connectivity, and to see if they are stable oveve give the algorithm formally. First, assume a
time. The lesson we learn here is used further gtenario shown in Figure 5 and concentrate only on




Empirical CCDF of median normalized taxi population for the Warsaw data set Empirical CCDF of median normalized taxi population for the San Francisco data set
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Fig. 3. Empirical CCDF off(k,;d) for the entire period for three levels of discretization faro data sets (a) Warsaw and (b) San
Francisco. Insets in (a) and in (b) shows the scatter plgt(&f/; d) on two random days - each point on the plot corresponds to sitglen
in a cell (k,1) for different days.

cluster H,(t~). At time ¢, nodes from this cluster SN o o
are distributed over three clustersf,(t), H(t), 7 ' T~

and Hs(t). So, which of these three clusters should HMQ_\
correspond to clustet(t~)? We take it to be the T e

one that shares the maximum number of nodes with HM( -7

H,(t™); in our case it isH,(t). This is our first rule. R 3

More formally we can say: t | t

Rule 1: A cluster H”(t ) can pass its label to Fig. 6. The second rule used in the CCL algorithm that allows

a CIUSteer<t> if t.he ”Umber of nOdeSH”<t_> to decide which clusters from two consecutive connectigtgphs
shares withf,,(t) is maximum compared to allcorrespond to each other. The dashed arrcwmect those clusters,

other clusters at time. from time ¢~ that satisfy the 1st rule, with th&/; cluster at timer.
- BE) o me ) & The solid arrowconnects cluster from timet ™, which satisfies both
5 > B | <\,j . rules, with the cluster at timg i.e., clusterH(t) inherits the label
e L PoSe from cluster H, (¢ 7).
i , Hy(t)

able to do this formally, we introduce the concept
of cluster labeling. This means assigning an unique
identifier y (we call it a label) to every cluster
Fig. 5. The first rule used in the CCL algorithm that allows ézide /1 (1), 1.€., y = Y (H,,(t)), in such a way that the
which clusters from two consecutive connectivity graphsespond two corresponding clusters at the consecutive time
to each other. The large black dots represent nodes thatpaeref moments have the same label. Hence, the cluster
cluster Hy at timet™. labeling means first giving an initial label to a newly
Next, if we apply our first rule to a scenari formed cluster (we assign to such a cluster a random
shown in Figure 6ythen all three clusters at ti rLabel drawn from the very large set of integers), and
1 H(t), Ha(t) 'anng(t‘) correspond to ongmﬁ_nhﬂndlndg ft_hedck())rresp(t)ndenf:e betvlve_endcltésters,
: ’ o which are defined by our two rules explained above.
gluosrfgfg}éﬂeaé;?;gt' B(;acausebV\t/e want lto thaveWe call our labeling method as the Centralized
pondence between CIUSIETS, Mifgiar Labelling (CCL) algorithm (cf. Algorithm
assume thatf, (t) corresponds to the one cluster af\ e e thel (11, (¢)) to denote a set of applicant
;[Ilvrlrt]l‘? tH t(??t if,hg[]ersggger?fﬁﬂu(??umgrigfonﬁd sters from timet~ that (according to our first
secon dl rUle. More formally we2 can'say' rule) can pass their label t,,(t). We also use the
Rule 2. A cluster H,,(t) can inherit the label Z(H”<t ) Hn(1)) = INUHA(E7)) O N ()] 10
" am . enote a function that given a cluster from current
from a clusterH,(¢”) if the majority of the nodes (jme instant and a cluster from the previous instant
from clusterH,,(t) come from cluster,,(¢7). finds the number of shared nodes.
Only if the above two rules are satisfied for a pair
of clusters from two consecutive time instances theorithm 1: The CCL Algorithm - Input:  H(t™), Y (H(t7)),
we say that these clusters correspond to each otHgf): Output: Y (H(1))
We want to track this correspondence of clusters For eachH.,(t) € H(t)
in order to find out how long clusters live. To be2 [*First rule*/

Hy(t7) ) “__?___T__-->: 3 Ho



A(Hp(t)) = {Hn(t7) : Hp(t) = over the data clustering algorithms. Because of that
= argmaxy, e M Hn(t™), Ho(t))} there is no information whatsoever about location of
the CPs. However, given the evidence presented in
section llI-A, we believe that stable clusters should
appear at certain fixed locations. We examine this

—
~+
~—

If A(H,(t)) =0
Y (H,.(t)) = random

o~ o U A

Else hypothesis in the following subsection.
/*Second rule*/
Ha(t7) =
= a(rgn)laXHo(tf)eA(Hm(t))n(Hu(tf),Hm(t)) D. CPs in San Francisco
_ We use the CCL algorithm to infer CPs from
io En dyliH’"(t))’Y(H”(t ) the fine-grained San Francisco trace. In order to
1Y) = Y (H @)UY (Ha(t) construct a time sequence of connectivity graphs we
12 End For need to know the location of each taxi at every time
instant. Unfortunately, the GPS devices installed in
o t . i+ cabs are not synchronized. Luckily, the data set is
) Hy(t") fine-grained enough to allow us to interpolate the
. S o “ Yu position of every taxi given two consecutive location
Boe) 2 updates. We assume that the vehicle’s speed be-
i) ! tween two consecutive location updates is constant.
e — Y We assume that if a calisappears (due to the

GPS receiver being shut down) for some time and
thenre-appears again in proximity, it did not move
C(H(th) between these two consecutive location updates.
Here we specify the metrics we use to analyze

Fig. 7. An example of the execution of the CCL algorithm. Thgequences of corresponding clusters:
black balls represent clusters. The size of each ball qoorets . di . f labeled clust f
to the number of nodes that form a cluster. The lines reptesen ® p- Mmedian size ol a labeled cluster irom a

migration of nodes between clusters - the solid line metiestabel sequence of corresponding clusters
of Y(H,,(t7)) is passed to cluster H,,(¢) since both rules apply. o Ts = taeath — toiren: lifetime of a label

The dashed line meansodes from a cluster H,,(t™) are part of a i _
cluster H,(t). In this example the CCL algorithm finds three distinc In order to extract CPs from collection of con

- - hectivity graphs, by applying the CCL algorithm
_ _ — + — 1 ’
??Sf(tii)y: ;(Efg'f;)“:)if@Iﬁﬁf{)ﬁ(gﬁd;fiﬂ;&ﬁgg%g _ we use the part of the San Francisco traces -
Y (Ha(t)) = Y (Hs(th)). approximately 500 taxis over 24 hour period. The

In Figure 7, we show in a more abstract Wﬁgonnectlwty graphs are generated evexy = 10
an example of the execution of the CCL algorith ’econds forconnectlwtyff]:lnge:?)oometers
where the clusters are denoted as balls of different : -

size depending on the clusters’ size. We can see
here which clusters can pass their label to which
clusters (our first rule) and which label is accepted
(our second rule). In the example shown on Figure
7 we can identify three CPs, i.e, v and w that

are labeled with three distinct labelg;, v, andy,,
respectively.

In the sequence of corresponding clusters:
{Hon(toirtn)s - - - » Hn(taearn) . Where ty;.;, corre-
sponds to the time when a sequence of corre-
sponding clusters was first observed and,, - )
to the disappearance of this sequence, all clusters " " o o
have the same unique label. Thus each sequence |
of corresponding clusters is uniquely identified biig. 8. cCorrelation between the lifetime of a labeland the median
a label. We expect CPs to be stable over timge of a labeled cluster from a sequence of correspondimgtert
and have a large size, thus we seek labels that loglog scale.
last for a long time and are owned by a large We use the scatterplot in loglog scale shown in
(on average) number of nodes. Note that the CQigure 8 to check how the lifetime of a label is
algorithm does not use nodes’ positions - it useslated to its median size. The visual inspection
only the connectivity graph, which is one advantagdlows us to draw a conclusion that there are at

=
=
3

sm
:

p [number of nodes in cluster]

10’




least two types of labels - (i) those that are highly
populated and live a long time and (ii) those that
are owned by a small number of nodes and live a
short time. The former ones are the best candidates
for real CPs. We used two threshold values, one
for the lifetime and second for the size of the
label: 1800 seconds and 10 nodes respectively, to
determine which labels may correspond to CPs. We
found 19 such labels. However, these 19 labels do
not specify 19 distinct CPs. This is because the
same connectivity island may re-appear at different
time of the day, which cannot be captured by the
CCL algorithm. In order to better understand theg. 9. Four CPs in San Francisco identified by the CCL alborit
characteristics of these stable labels and to find Merkers represent taxis that belong to CPs. Different tyjjesarkers
how many CPs they correspond to, we perforgqrrespond to different CPsriangles - the aquatic park/shopping
three additional tests. First, we check if a labeleignien bals - the downiown areacrosses - fhe taxi company
- - - . - remisessquares - the alrport. € Color or eaCh marker represents
Cluster appears in the same area during its !'fetl emberssgf a corresponcri)ing CP at different time momentg.

We superimpose on the map of San Francisco the

locations of nodes that own the same label for three IV. COLLABORATIVE GRAPH DISCOVERY
different snapshots. We visualize this on Figure 9 (COGRAD)

where the taxis that own the same label (marked\a now specify hoveollaborative graph discov-
with thte ds#me E[yge of a tma;rke(rj).ﬁcovetr th? SAMPy (COGRAD) infers the CP graph in a distributed
fﬂea at di erel? |n_1|_eh_|ns ar}_s (di ere_nt (';t(') orsih ay, from changes in neighborhood sets without any
. Ie s(?mef mar er)t._ 3 IS contlrglms our inturtion her signal from the environment. Note that a single
ISlands Of connectivity are Stable In space as Wey,qe \would obviously be unable to find out anything

Second, we check the location of the nodes t :
own distinct labels. We identify four such Ioczr-&gom the network topology; a COGRAD protocol

tions - namely the aquatic park/shopping center, tE necessarily collaborative. More formally, the goal

. . ¥ COGRAD is:
downtown area, the taxi company premises and the

airport (cf. Figure 9). Third, we check how many * for every node to learn the CP graphV, £);
different labels correéspond to the same CP. It turns® fOr €very nodei to know its current position
out that the CP located in the downtown area is -\:(f) atall imest. .

represented by ten distinct labels, the taxi companyAs we have mentioned in Section |, COGRAD
premises - by five distinct labels, the airport - bgchieves this by having the nodes run two algo-
three distinct labels and the aquatic park by orighms: vertex labeling and edge discovery. The
label only. Although the number of CPs for thigertex labeling algorithm decides for each node if
particular mobility trace is small, the results of outhis node is currently at a vertex (CP) or en-route

analysis justify the presence of CPs in the real worRgtween two vertices; in the former case, it also
and our CP graph mobility model. identifies the CP through a label. The output of

this algorithm is then used as input into the edge

One should keep in mind that the mobility patterfliscovery algorithm. The edge discovery algorithm
of taxis is very specific and may not give sufficier@stimates the edge sétof the CP graph. We next
evidence of other CPs located for example nearBfscribe these two algorithms.
sport centers, gas stations, movie theaters etc. Thus
we believe that given a large set of mobile traces fqr Vertex Labdi
the same area, which contains GPS location updates & 'ng
of different types of vehicles, it should provide us Every nodei maintains a variabl&’;(t), which is
with more CPs. We also believe that CPs miglitherY;(t) = ¢ if node i thinks that it is en-route
be much easier observed at a larger scale, e.g. hetween CPs at timeor Y;(¢) = y if node thinks
at the San Francisco agglomeration scale only, hibat it is at the CP with labej. In the former case
at the whole Bay area scale. Note also that thisvg say that nodé does not have any label, whereas
the first attempt to identify CPs where a connectaal the latter case we say that nodeas labely. The
component is chosen to give the evidence for tigeal of a vertex labeling algorithm is therefore that
CP existence. The presented results show that thigery nodei decides ony;(¢) at every timet.
choice might be too extreme for determining if a We assume that the only information available to
CP exists or not. node: at timet is:



« B;(t) - the set of neighbors of nodé at arandom number). Let us now see how theOB
time ¢, i.e., the set of nodes in the connecteghaintained. Assume that nodes move and that after
component (cluster) where nodes; time At the change in neighborhood is noticed in

. Y;(t7) for everyj € B;(t) - the values of labels several clusters. The idea is that only the one cluster
of all nodes in the cluster where nodds at with more than half nodes from CjPcan be labeled
the time instant before time(denoted ag~). asy. In this way we ensure that only one cluster can

It is impossible that nodeknows this information inherit labely. If there are several possible labels

at every continous time. Instead, we assume thafor a cluster then the majority label will be accepted
there is a generic neighbor discovery protocol thly all nodes in the cluster.

periodically everyAt gives this information to node | ot us now show in a concrete example how

2 \évhereAtAis a short period of time. Thug;” IS he |abeling algorithm works. Figure 10 shows a

In fact? — At. . . o . network at timet~ that has three clusters of which
Now, after we defined which information |s.ava|I-On|y one is a CP and it has lab&bh. The number

able to node;, let us see how node determines 4 gve the node is a label if the node has it. Figure

its new labelY;(¢t) at timet. If B;(t) = B;(t") i i
(the neighborhood set of nodedid not change) tloloshpolgvcs;he network at timebefore the labeling

then node: keeps its label (i.e.Y;(t) = Y;(t7)).

If B;(t) # B;(t~) (the neighborhood set of node Cpll:

1 changed) then nodéerecomputes its label. From S @
the data ofY;(t™), j € B;(t) nodei first computes /15 15,
the set of tupled.;(t) = {(y, ¥(t),¥(t7))}, where D 15 @ 9 ‘
bY(t) is the number of nodes iB;(t) that had label L ® ) s @ ! @

at timet¢~ andv¥(¢~) is the total number of nodes -~ ® 15

that had labely at time¢~. If none of nodes in . ®

B;(t) have a label thet;(¢t) = (). Then, node runs
a Decentralized Cluster Labeling (DCL) algorithm

(Cf- Algorithm 2) with the ir'pUt (B(t)v L(t)) =~ Fig. 10. At timet~: three clusters, one is a CP with label 15,
(B;(t), L;(t)) to get the outpul’;(t) = Y (t). Note 45 =s.
that all nodes in a cluster must have the same label,

because all nodes in this cluster obtain the same 15
information from the neighbor discovery protocol. 15 <1@5 @
Algorithm 2: The DCL Algorithm - Input: ©) @ s | 15 |
(B(t), L(t)), Output: Y (). A @ 15 | L ®

1 Y({t)=¢ @

2 While L(t) # @

3 z = argmax, b¥(t)

4 If b*(t) > b*(t7)/2 then

5 Y((t)) >: . (/* r)1éde_s lose label */ Fig. 11. At timet, before labeling.

6 Break /*stop while loop */ Let us study how for example nodés4 and

4 Else o determine their new labels at tinte The informa-

8 L(t) = L(t) \ (2,0%(1),b°(t 7)) tion that node) obtains from the neighbor discovery

9 End if protocol is:

10 End while By(t) = {9},

11 If Y(t) = ¢ and|B(t)| > h then Lo(t) = 0, (1)

12 };@ = fandom /* nodes assign new IaLbejl'he information that nodé obtains is:

13 End if Bu(t) = {1,3,4,6,7}, @)

Ly(t) = (15,4,6),

Note that the DCL algorithm is directly inspired . : L
by the CCL algorithm described in Section ill-c&"d the information that node obtains is:

The DCL algorithm 2 is based on two ideas. The Bg(t) =1{2,5,8}, 3)
first is how a CP is formed, and the second is how Lg(t) = (15,2,6).

the CP is maintained. A CP is formed when there

are more thark nodes in a cluster with no assigned Note that By(t™) = {9}, Bs(t7) =

label. The new CP gets a unique new labde.g., {1,2,3,4,5,6} and Bg(t~) = {7,8}. Because
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Bo(t) = Bo(t7), Bu(t) # Bs(t~) and number of nodes in the cluster fluctuates, the cluster
Bg(t) # Bs(t~) only nodes4 and9 run Algorithm is a CP with a label for some time, then it loses the
2. label and is not a CP for some time, then it generates
The DCL algorithm in node: b5(¢) > b'5(¢t~)/2 a new label, and so on. We show this in Figure 13,
(becauseb™(t) = 4, b*(t~) = 6) and therefore where we denote &&-p the time the cluster is a CP
Y,(t) = 15. The DCL algorithm in nod&: »*5(¢) < and7,,,_cp the time the cluster is not a CP. Our
b (t7)/2 (becauseh™®(t) = 2, b'>(t~) = 6) and goalis to findh such that a new label for this cluster
thereforeYs(t) = ¢. Figure 12 shows new deterdis generated rarely. More formally, we want to find

mined labels at time. the minimum#h such thatE[Tep + Thon—cp] > Ts,
CP15 wherer, is a value that controls the desired stability
o = S @ of the CP.
e RN ,’// 15 %4)5 \\\\ ‘,'/ \\ ’T('P 3 TnonfC'P T('P I;zonf(fP
O @ 15 \ CP:35 § CP:57

‘l\ @ 19 ‘ @ S 0 o =y
15 ® N E’I w w
@ - of nodes i i t

Fig. 13. Evolution of the labeling process of a cluster.

Fig. 12. At timet, after labeling.

We model the cluster as an//M/oco-queue,

Difference with the Vertex Labeling Algorithm here nod i ding t Poisson br
given in [9]. The vertex labeling in [9] relies on two V€€ NOGES arrive according 1o a FoISSon process
ith arrival rate A\ and every node stays for an

simplified assumptions. One is that the connectlvﬁ%ponemiany distributed time with mean L. The

of nodes outside of CPs is very poor such th‘r?ltr-rflean number of nodes at the cluster is denoted by
node can not communicate with anyone else if i — \/p.. Let the Markov proces; € {0,1,2... .}

is traveling between CPs. The other is that eve note the number of nodes at the cluster at ime
node knows its neighborhood set at any continuotl§ u u

time ¢ and hence the neighborhood in two different T0 further simplify the analysis, we assume that a

times can not differ for more than one node. TheeriodAt is short with respect tg~ , so that only

improved vertex labeling in this paper relaxes the§&€ node can leave the cluster during the periad

assumptions. We achieve this by changing bot§-: between the two consecutive executions of the

the way a CP is formed and the way the CP |abeling algorithm. This means that the cluster may

maintained. In [9] two nodes are sufficient to fornose its label only whenV, = 1.

a CP, thus there we hawe= 2, whereas here we set Let

h to a higher value. Moreover, in [9] a node can lose . n -

a label ognly if it becomes isolateo[l, ]vvhereas here the ~ DPp(@) :=inf{t >0: Ny = p[No = ¢}

node can lose a label both if the majority of nodegenote the first passage time of statérom state

in its cluster left and if the node becomes isolateg, Then, the value of interest for us is an expected
1) Determining h: Next, we discuss how tovalue of D := Tep + Thon—cp = Di(h) + Dp(1).

determine the parametér of the vertex labeling Therefore, we search for the minimuinsuch that

algorithm. A largerh results in more stable CPsE[D] > 7, for every value ofA and ..

but also in a smaller number of formed CPs. As we Using the following results [22]:

have seen in Section I, for IH it is desirable that

CPs be stable. However, if the number of CPs is 1 k'
smaller then IH may be less efficient because it loses E[Di(h)] = ZX > =/
opportunities to forward messages. For IH we want =1 7 ok
to have as many stable CPs as possible. Therefore, Bl kg
we want to find the minimunh. that ensures the E[Dn(1)] = _Z — 7k,
stability of a label. A

To simplify our analysis, we look at the evolution .
of single ciuster and we model it by a simplde find: -
queuing model. We assume that nodes arrive and E[D] = e’ k!
leave this cluster according to a random process \ Pt oF

and we assume that arriving nodes do not have any
labels. We apply the labeling algorithm describeldet us express, = ns/\, wheren, is a constant
above on this single cluster. Depending on how tlieat we can tune depending on the desired stability
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Stability of CPs depending on h

of CPs. Thus, we need to find the minimunsuch 10'
that

h—1

k!
Fi(p) = e” Z g > n, for everyp. ol
k=1

Because it is impossible to find this analyti- =
cally, we plot F},(p) for the fixed values ofi =
10,12, ...,20 (c.f. Figure 14). We see that,(p) has 0%
one minimum. Thus if we sefi to a certain value,
then the minimum off},(p) over all p, denoted as
Fjmm, is the constank; we can certainly achieve " ‘ ‘
for all p. We find £ numerically by findingp for 5 o 15 2
which dFy(p)/dp = 0 and plugging it intoF;,(p).
We show the dependence """ = n, on the _ - _
values ofh in Figuee 15. Depeﬁding on the desire§® 1> Minimum value of7[D] as a function of.
stability of CPs, we specify the parameter and
then we findh using this figure.

In Figure 15 we see that an increasehofeads
to an exponential increase dfy"". This means
that the time during which a CP is stable gro

then this node will never discover some parts of

the graph, which can result in poor forwarding

decisions. Second, even if a node moves over the
ntire graph, the discovery process would be rather

exponentially with an increase &f which is good ow, and the transient time (until every node knows

news. Thus, for IH to work well, we expect that gnost of the CP graph) would be excessively long.

fairly small value ofh, will be able both to make CPs, e therefore would like to accelerate the dissem-
stable enough and to form a large enough numHBAtion of edge information to allow every node to

of CPs in the network. earn the entire graph. One approach is for nodes to
o Dependence of E[D] on p for the different values of h EX(?hange Iabeled edges through a gOSS|p prOtOCO|
10 T This allows nodes to learn the entire CP graph more
A ~he quickly.
ol o)) Note however that the CP graph may change

\ -+ -h=20 over time. This is either because nodes change their
K moving patterns and new CPs appear or the existing
ones disappear, or because a CP changes its label
due to the labeling process as explained in Section
IV. For example, if the label of a CR changes
from y, to y.,, then all edges with labej, become
obsolete. We use an aging mechanism to eliminate
such obsolete edges.

16 More precisely, in our gossiping scheme, node
i's view of the CP graph(z;, is represented by the

, , . set of pairs(e, t,s), wheret,, is the time when

Fig. 14. Dependence af[D] on p for different fixed values of.. edgee was directly observed. Nodehas edge: in

G, either if it has directly observed, or if it has

receivede through gossiping from other nodes.

B. Edge Discovery Every node, upon arrival at a vertex, gossips
As a node moves on the graph, it observes theconstant numben, of randomly chosen entries
label of every CP it visits, as described in thee, t,s) from its view of the graphG; to all nodes
previous section. If a node moves directly from CBt this vertex. Node updatesG; either when it
u with label y, to CP v with label y,, then this directly observes an edge, or when it receives a
indicates the existence of a labeled edge, v,), gossip message from another node. When node
and we say that the nodierectly observesthis edge. directly observes edge at timet, it adds(e, t) to
To discover the edge séf, it would be possible G; and deletes the old entry far from G; if it
for each node to rely only on its own observatiorexists. When nodeéreceives an observatida, ¢ ;)
of the edges it traverses. However, this approatiirough gossiping for which it already has an entry,
has the following drawbacks. First, if node mobilityt retains the more recent of the two. If it does not
is such that a node does not visit the entire gragiave an entry foe, then it adds(e, t,s) to G;.
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As we said, in addition to the process of learningmoves to a new vertex # v it decrementsn.ttl.
edges, a node uses an aging mechanism to remb\ale i discardsm when m.ttl = 0. If node i
an edge from the graph if the edge grows too oldappens to move to the desired next hgpthen
More precisely, a node removes enfeyt,,;) from nodei keepsn and sends: to other nodes in vertex
its graph at timet,;,s + 1,4, WhereT,, is a fixed wv.

constant for all nodes. This process continues until the message reaches
node D at vertexw.
V. ISLAND HOPPING (IH) In Figure 16(a), node at vertex1 originates a

. , . ) messagen to node D at vertex4. Node S makes

Island Hopping (IH) is a mobility-assisted forseveral copies ofn with m.next_hop := 2 and

warding algorithm in which a node makes decisions /; — 1 (because of simplicity we set, = 1
about when to pass a copy of a message to othelhjs example). Figure 16(b) shows what happens
nodes and when to discard it, by using the knowlghen these copies move to neighboring vertices.

edge of: . - The node with the copy that moves to vertex
1) the CP graph, and its own position in thahakes new copies ofi with m.next_hop = 4;
graph, and whereas the node with the copy that moves to vertex

2) the destination’s position in the CP graph. 3 discardsm becausen.next_hop # 2 and hence
The three design goals are to minimize the number.ttl = 0.
of copies made of a message, to minimize the end-2) At Least One Copy Moves to the Next-hop
to-end delay, and to maximize the delivery rate. CP: If none of the copies of message move to

In this section we describe our IH scheme under.next_hop, then all these copies af will be even-
the assumption that a node has knowledge of the @RIly discarded, andn will be lost. To boost the
graphG and its own position ir' at all times. Infer- probability that at least one copy of progresses
ring this knowledge in scenarios where nodes hat@vards the next-hop vertex, we introduce a “one-
external signals from the environment (such as GP8p” acknowledgment (ACK) scheme. The goal of
coordinates or signals from fixed beacons) is easlbis scheme is to piggyback one-hop delivery in-
than in the case where no such external informatié@rmation about message through nodes moving
exists. In Section 1V, we showed how nodes could the reverse direction, and to generate additional
infer this knowledge without such external signals.opies if needed.

Assume that there exist copies of at vertexu

. . . with m.next_hop = v. Nodes at vertex. should be

A. Message Progression Towards a Fixed Destina-  jrformed when a copy ofn has reached. When
tion a node withm arrives atwv, it broadcasts this fact

In this subsection, we show the main ideas of Ikb all nodes at. If one of these nodes then moves
under the further simplifying assumption that nodes w, it broadcasts an ACK forn. All nodes atu
know the position inG' of a message’s destinationcan then discardn. But if a node atu holding m
In the next subsection, we then show how nodes caas not received an ACK by the time where only a
locate the destination. small numbew; of copies ofm are left, it generates

Our IH scheme uses the following three ideaadditional copies ofn. This process repeats for at
which we illustrate in Figure 16. mostc, times.

1) Routing a Message through a Sequence of In Figure 16(b), a node witlh moves from vertex
CPs. Assume that a node, currently located at 1 to vertex2, where it generates new copies and
vertexu € V, has a message: with destination broadcasts to all nodes the identityf In Figure
node D located at vertexv € V. The key is for 16(d), one of these nodes arrives at verieand
nodei to decide which vertex should be the next broadcasts an ACK fom. Then all copies ofn at
hop in V' for messagen in order to make progressvertex2 are discarded.
towards the destination. This desired next hofs 3) Only One Copy Survives to the Next-hop CP:
stored in the message in the fieldnext_hop. We If more than one copy ofn with m.next_hop = v
choose this next hop as a neighboring vertex onmoves into vertex, then new copies ofn can be
the shortest path between verticesand w in the generated at several times. This could lead to an
CP graph. exponential increase of the number of copies. We

The next move of nodé is in general not yet include a mechanism to suppress additional rounds
known. We allow node; to keepm for several of copying. If nodei moves tov, it makes new
hops until it reaches the desired next hop. For thispies only if none of the nodes currently.ahave
purpose, there is a fielgh.ttl set to the maximum seen an earlier copy of. arrive atv.
allowed number of hops,,. Thus, every time node Figure 16(c) shows what happens when a second
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next CP, whereas in the algorithm [9] we allow

if m.next_hop = 2, the copy is discarded, becauseopies to live only one hopnf = 1) until they

m has already been at vertéx

(b) Node with a copy ofn moves to another vertex.
5 5
m.next_hop

3

1
message
was here

(c) Node with a copy ofm moves to a vertex where: has
already been observed.

(d) One-hop acknowledgment.

Fig. 16. Island hopping - example.

move to the next intended CP. This makes IH more
robust to the changes in the CP graph. To see this,
look at a scenario shown in Figure 17 where an
edge 56 — 95 becomes obsolete. Assume that the
node shown in verte%6 still thinks that this edge
exists. Then, this node might choose verféxas
the next hop for a message. If the node discards
m immediately when it moves to a vertex that is not
the intended next hop, then would be lost. But,

if the node still keepsn for several hopsr(;, > 1),
thenm would have a chance of reaching the desired
vertex 95.

m.next_hop = 95

(b)

Fig. 17. CP graph: (a) the view of the red node (b) real.

B. Dynamically Locating Destination through Last
Encounter Routing

So far, we have assumed that the location of
the destination is fixed and known to the message,
which is unrealistic. To discover the location of
the destination of a message, we cannot resort to
the classical methods such as flooding, because the
network is partitioned.

To solve this problem, we borrow an approach
from [23] called Last Encounter Routing (LER),
where a node maintains a Last Encounter Table
(LET), with an entry for every other node. An entry
consists of the time and location of its last encounter
with the node. In [23], the location of the node is
its geographic location. We adapt this to our setting,
where the location of the last encounter is a vertex:
each node remembers for all other nodes the time

Small dots - nodes without a copy ef; large dots - nodes with a and the label of the CP where they were last time

copy of m; empty dots at a vertex - nodes without a copynaf but
that know thatn was at this vertex.

Difference with the Island Hopping Algorithm

collocated.
The LETs are used by a message to continually
obtain more recent information about the location

given in [9]. In the IH algorithm given here weOf the destination, as follows. Assume again that

allow copies of a message to live for a fixed numb@ node: at a vertexu has a message: destined
of hops @h > 1) until they move to the intendedfor a nodeD. As we saw Iin Section V-A, node

i needs to determine the next-hop vertex for
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Before doing so, nodeé searches all nodes at a message to the destination. These are: (i) when
for the most recent LET entry for nod®. This none of the message copies reach the intended next
location is then used as an estimate of the positibop within then, traversed hops, (i) when a CP
of node D to determine the next-hop vertex unlesdisappears, but a node still keeps obsolete edges
the node already has more recent information. Thé this CP in the node’s view o€z, (iii) when a
message remembers this estimate in a fieltk. As CP changes its label due to the imperfection of the
the message gets closer, it tends to find more reckatieling algorithm and does not learn edges with the
information, “zeroing in” on the destination. new label yet but keeps obsolete edges with the old
label, and (iv) if a node can not determine a next
. hop for a message because of the reasons explained
C. Operation of IH and COGRAD above within theu, traversed hops. In order to keep
So far, we have described the IH algorithm d$i fairly simple and since the performance of our
operating on top of an oracle that reveals to eveajgorithm is only slightly worsen due to these rare
node the CP grapliz and the node’s position onsituations as shown in Section VI, we do not try to
G. We now describe how IH operates on top ahake IH robust to them.
COGRAD, where the CP grapH, and each node’s
position onG, are obtained through COGRAD. In V]. PERFORMANCE EVALUATION

this case, the obtained graph might contain some, his section, we evaluate the performance of
errors. This is because the CP grapimay change y,q | ajgorithm in combination with the COGRAD

oxer time_,nCa;s explaintehd tir:j Section IV-_Ba a?dt. the gorithm. For this purpose, we developed a custom
changes Intz Causes hat during a period of UM&gr, y1ator implementing the CP graph-based mobil-
a node’s view ofG either misses new edges thal1 model, and the IH and COGRAD algorithms
has appeared or still keeps obsolete edges that e cor’npare our IH+COGRAD algorithm with

disappeared. ER [15] and PROPHET [16]. We also com
. . . pare
As we saw in Section V, a noddocated at vertex our algorithm with the scheme where a source

u chooses the next hop for a messagewith the -2nsmits a message only to the destination (no

de;skt]ination atw.tas the n:?)t(rt] Veé'lfx on rt]h?Nshﬁrte uting algorithm is used). We denote this scheme as
pathu — w In IS view ol the L= grapn. We Nave.,, p= |y addition, we evaluate how our algorithm
not specified which next-hop is chosen if severgh ands on the various parameters.

shortest paths, and thus several possible next-hopsl?
exist. In this case, we use the age of edges obtained ,
by COGRAD in the edge discovery part to choog® Smulation Set-up
between these possible next-hops. We choose th&he nodes’ mobility model is the CP graph-based
next-hop with the smallest age of its incoming edgaodel (described in Section 111-B). More precisely,
from v, i.e., the vertexo whose entry((u,v),t) is we let N = ¢|V| nodes perform independent ran-
most recent. dom walks on a graph, witle > 0 a parameter
We discuss two other conditions that can arise gontrolling the mean number of nodes per vertex.
IH due to errors either in the underlying graph diNote that the random walk is the most challenging
covery algorithm or the locating of the destinatiommobility process for our purposes, for the following
The first situation arises when nodemakes the reason. When a node performs a random walk, its
next-hop decision for a message, but cannot findwture movements are independent of the entire past.
shortest path ta. This can happen when ifs view In other words, even if a node accumulates statistics
of the graphG;, (i) w is not known, or (ii) a path about its past movements, this will not help predict
u — w does not exist in7;. The second situationthe future. As such, all the nodes located at a vertex
arises when the destination location (obtained by theat a given timet are statistically equivalent, and
last encounter tables as described in Section V)re information about the past (e.g., keeping track
the current node’s location, but the destination is of when a node has last seen the destination, as in
elsewhere. PROPHET) can be used to predict where a node
We resolve these situations as follows. The nodell go in the future.
keeps the message with settingitl = nj,, and  The location of a node is either a vertexc V'
waits until it moves to another vertex There, it (which implies that the node can communicate with
then tries again to find a next hop. If it does ndadll other nodes currently located at the same vertex
succeed it decrements.tt/, and if it succeeds it v), or an edges = (u,v) € E (which implies that
setsm.ttl = ny,. the node is en route from islandto islandv, and
There are still some rare situations in whicks not able to communicate with any other node).
the IH algorithm does not succeed in deliveringach node spends an exponentially distributed time
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with meanTy at a vertex, and an exponentiallysingle broadcast. If nodes at a CP were not directly

distributed timeT; at an edge, where we sé}, = connected, then the broadcast function would have

10T%. All the delay results we report, as well as alio be replaced by a flooding primitive.

time scales, are normalized by settihg+ 1% = 1, Each simulation we report is preceded by a

i.e., we normalize to unity the average speed awhrm-up phase that is needed to populate the last

which a node advances from vertex to vertex. encounter tables (LETs). The warm-up phase ter-
We present simulation results for various symminates if 80% of the node pairs have encountered

thetic CP graphs: each other at least once; note that this is conserva-
. the2-dimensional: x & grid, where we vary; tive in that the LE tables are asymptotically fully
from31t09,ie,|V|=9,...,81, populated.

. the regular random graph - a random graph Other fixed parameters in our simulations are:
where each vertex has the same degregith ¢ = 3 andc; = 2 in IH (defined in Section V),
r = 4 and with different number of verticesand the maximum number of transmissions of a
V| =9,...,81, message allowed that one node performs in ER and
. a diverse degree graph - a random graph witROPHET is set td000.
|V| = 100, where we divide vertices into ten
groups with ten vertices of the same degre§ Performance Metrics

in each group and where we vary degrees of ) .
vertices from1 to 10. We use the following metrics:

More the challenging CP graphs for our algorithm « delivery rate - the number of messages deliv-
are those with the vertices having the diverse de- ered divided by the total number of messages
grees. The reason is that in graphs where vertices Sent by sources _
have approximately equal degrees, the mean number delay - the normalized delay for the delivered
of nodes per vertex is approximately equalctéor messages o
all vertices. Because of this, if is large enough « number of transmissions per message how
then all vertices will be well populated with nodes, ~many times a message is transmitted until there
and thus they will be stable CPs, which is easier are no more copies of this message in the
for our IH algorithm to perform well. Hence, in our network.
simulation results we include both types of graphs, We compute these metrics by averaging over
where the diverse degree graph belongs to the marenumber of randomly chosen source-destination
challenging type. pairs, where for each pair a source sends a single

So far, the only assumption we make about theessage to its destination. In simulation results we
set of nodes within a same CP is that each nodeow the mean values of these metrics with 95%
can reach other nodes (either because they arecamfidence intervals.
direct radio range of each other, or because theyNote that the number of transmissions per mes-
can form a connected ad hoc network). However, feage includes only the transmissions of actual mes-
the purpose of simulations we assume for simplicisages, not the control messages generated by IH and
that nodes within a CP are directly connected. TH@OGRAD. We justify this as follows. First, in the
assumption is favorable for both our algorithmid algorithm, control messages result only when a
and for the epidemic-based algorithms ([15],[16}yaffic message is to be transmitted. Therefore, the
we compare with, because it makes it possiblel control overhead should be considered relative
to transmit a message to all nodes at a CP int@athe overhead to transmit messages. Usually, data
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messages tend to be orders of magnitude larger tliebay, but with much lower transmission over-
control messages. This is in compliance with theead, which implies that a network operating under
proposed architecture for delay tolerant networks IR+COGRAD has a capacity gain of more than
[4]. Therefore, the IH overhead per data message order of magnitude over ER/PROPHET for the
can be neglected. Second, in the COGRAD vertegenarios considered here.
labeling algorithm, control overhead accrues when aThis favorable tradeoff is possible because our
node discovers its neighborhood 4&i¢), and this scheme tightly controls the copies of a message,
type of control overhead is also present in ER ary not making new copies of a message that
PROPHET. Third, in the COGRAD edge discovergtrays from the shortest path towards the destina-
algorithm, control overhead accrues when a notlen. In flooding-based approaches, messages dif-
arrives at a vertex and broadcasts a small numberfase throughout the network; in particular, it is
edges. In comparison, ER and PROPHET exchamngjéficult in these approaches to ensure that all copies
a summary vector and predictability vectors respesf a message get discarded after one copy of the
tively, whenever a node meets a new node, whichnmessage has been delivered to the destination. This
our setting means the broadcast of these vectors pevblem does not arise in IH.
each node’s arrival at a vertex. Therefore, the control
overhead in our scheme is comparable to that in .
or PROPHET, and small compared to data messag Smulation Results - Dependence on the Param-
- except when the network is very lightly loadedters of Our Algorithm
Hence, we consider only traffic messages in ourLet us recall the control parameters of our algo-
simulation results. rithm. In COGRAD in vertex labeling, there is the
parameter, the threshold of the number of nodes
C. Smulation Results - Comparison with ER and when a new CP is formed. In COGRAD in edge
PROPHET discovery, there is the parameter, the number

Here, we compare our IH+COGRAD aIgoritthf edges that each node gossips upon its arrival at
with ER and PROPHET. We discuss the tuning vertex, and there is the paramefy., the age
parameters of our algorithm in Section VI-D. t reshold fixed for all nodes upon which anedge

We show in Figure 18 the performance metrid§ removed from the CP graph. In IH, there is the
for 1) the grid topology and 2) the regular randorfarameter,, the maximum number of hops (i.e.
graph topology, as a function of the number draversed vertices) that a message can live before it
vertices|V/|, for fixed ¢ = 15. reaches the desired next hop.

Figure 18(a) shows the delivery rate. We no- In Figure 20 we show the dependence By,
tice that the delivery rate of the flooding-base@nd in Figure 21 we show the dependencergn
approaches (ER, PROPHET) is essentially 100¢91d/ and in both cases we set = 5.

The delivery rate of IH is slightly lower, but remains From all reported simulation results we see that
very close to 1. We discussed the reasons for tiidairly smalln. =5 gives satisfactory results (e.g.,
slight drop-off in Section V-C. see Figure 18). . _

Figure 18(b) shows the end-to-end delivery de- We see in Figure 21 that the increasing of
lay. Although the delay of IH is higher than thatakes better all considered performance metrics of
of flooding-based approaches (around 1.5 tim#d$+COGRAD. However, the largen, makes the
higher), the figure suggests that it is only a smaiemory consumption grow; thus, we limit ourselves
constant factor higher than ER/PROPHET as t@n, = 3.
function of network size. There are stilll,,. and h left to be determined.

Figure 18(c) shows clearly the main advantaglfe set firstT, . independently of:, and then look
of our scheme: it requires a significantly loweat the dependence dnwith already tuned’,,.. We
overhead per message than ER/PROPHET. achieve this by looking at the dependencelop.

We show in Figure 19 the performance metrids the cases of the CP graph with vertices with non-
for the diverse-degree graph, as a function of tltdverse degrees for large(the grid and the regular
parameterc to explore the sensitivity of IH to graph forc = 15, in Figure 20). Here, all vertices
small values ofc. We see in Figure 19(a) that ouare well populated with nodes on average, which
algorithm achieves a high delivery rate (above 90%)akes them stable CPs even with= 2, hence in
even for a fairly small value of = 10. these cases is not important.

Figures 19(b) and 19(c) confirm our finding that We see in Figure 20 thaf,,. need to be larger
IH+COGRAD achieves a very favorable tradeofthan some value but after this value the performance
with a delay close to that of flooding-based apwetrics are not sensitive for the broad range of
proaches that are essentially the lowest possibiues of 7,,. Of course, for very large values
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of T,,., the performance will be degraded becausee resulting islands of connectivity can be learned
there will be more obsolete edges that are gossipadd used to make progress towards the destination
thus wasting transmission resources. Thereforewitthout flooding the network with too many copies
is important to properly set-up the lower bound foof a message.
Thge- We have shown that in the presence of stable CPs,
Finally, we look at the dependence brfor other our approach significantly outperforms approaches
already tuned parameters. We look at the case wherigere copies of messages are made without the
the CP graph is the diverse degree graphdot benefit of an underlying topology. Our approach
15 in Figure 21. Here, some vertices (those withchieves end-to-end delays of the same order as
low degree) will be poorly populated with nodesaggressive flooding-based approaches, but with up
and hence ifh = 2 they will be unstable CPs. Weto an order of magnitude fewer transmissions per
expect that here the parameteplays a significant message. This benefit comes from the ability to de-
role by avoiding that unstable CPs be formed. Ouide, at every vertex, whether a particular copy of a
simulation results shown in Figure 21 confirm thisnessage has made progress towards the destination
The remained question is how nodes can estimatenot; we can realize this benediten if the mobility
the parameterd,, andh. We saw in Section IV- process is not predictable (random walk), andaven
A.l that if a node can estimate, (the average if the CP graph is not known a-priori (thanks to
required life time of a label) then it is easy t@COGRAD).
find h. We argue that one rough but good enoughTo do this, we had to take a significant detour,
estimate for bothl,, and 7, is the mixing time and first develop a scheme to discover this topology.
of the random walk on the graph (we denote We have shown that under the assumptions of our
as T,,). This time is the time neeeded for thenobility model, it is - somewhat surprisingly -
random walk to approach its stationary distributiopossible to achieve this by processing the changing
This means that after this time a node’s positiagset of neighbors of each node, without relying on
is independent of its starting position. Hence, #ny explicit signal from the environment or from
we set upT,,. = 7, = T, We expect that dedicated infrastructure.
this time is long enough to ensure that the nodesOnce we have inferred the CP graph, we can
remove only the obsolete edges from the CP grapi to forward messages along the shortest path of
and that the CPs are enough stable. Accordingiftands towards the destination. Although we can-
[24], T, is of the order ofl/log(1/x), where not, of course, control the movement of individual
x is the second largest eigenvalue in modulusodes, we can nevertheless make progress towards
The calculations showed a good match with thte destination by making a few copies, and letting
simulation results. For example, for the grid9 only those copies that go in the right direction
the calculatedl},,;, ~ 29.2(Ty + Tg), which gives survive.
h ~ 15 (ny = 7.\ = 75¢ (Tv + Tx) =~ 400, then  For this to work, a message has to be able to
the result forh follows from Figure 14, Section IV- locate the destination in the CP graph; for this,
A.1). According to the simulation results shown igve have adopted the idea of last encounter routing
Figure 20 these values gives good results. described in [23], but here locations are vertex labels
Comparison with IH+COGRAD reported in  rather than geographic coordinates. This allows a
[9]. The IH+COGRAD algorithm reported in [9] ismessage to have an estimate of its destination’s cur-
a subclass of the IH+COGRAD algorithm reportegent location; the precision of this estimate tends to
here and is obtained by setting parameters= 1 improve as the message approaches the destination.
andh = 2. Figure 21 shows that setting, > 1 and  Our simulation results show that our approach
h > 2 gives a considerable improvement in the caggynificantly outperforms schemes that do not ex-
of the diverse degree CP graph where some CHiRitly exploit topological information. Of course,

are not stable. Thus, our algorithm reported hefigis advantage depends on the presence of a stable
is much more robust to the more realistic mobilityopology of concentration points; otherwise, it is

models where some CPs might be unstable. probably hard to achieve significantly better perfor-
mance than schemes such as ER and PROPHET.
VII. DiscussiON ANDCONCLUSION However, we believe that heterogeneous and stable

We have argued in this paper that node distmode distributions tend to be the norm rather than
butions that are heterogeneous in space and téle exception, and we hope to establish this concept
atively stable over time provide an opportunityhrough further study of a diverse and representative
for mobility-assisted forwarding in partitioned netset of mobility traces. The key point we make in
works, because the underlying topology of concethis paper is that stable heterogeneity is beneficial,
tration points (CPs) and the flows of nodes betweeas it provides structural clues that can be exploited



by routing and mobility-assisted forwarding algopi2]
rithms.
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