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Abstract— In this paper, we analyze the lifetime of clustered
sensor networks with decentralized binary detection undera
physical layer quality of service (QoS) constraint, given by the
maximum tolerable probability of decision error at the access
point (AP). In order to properly model the network behavior,
we consider four different distributions (exponential, uniform,
Rayleigh, and lognormal) for the single sensors’ lifetime.We
show the benefits, in terms of longer network lifetime, ofadaptive
reclustering. On the other hand, absence of reclustering leads to
a shorter network lifetime, and we show the impact of various
clustering configurations under different QoS conditions. Our
results show that the organization of sensors in a few big clusters
is the winning strategy to maximize the network lifetime.

I. I NTRODUCTION

Distributed detection has been an active research field for a
long time [1]. The increasing interest for sensor networks has
spurred a significant scientific activity in distributed detection
techniques [2]. In the last years, an increasing number of
civilian applications have been developed, especially in en-
vironmental monitoring [3], [4].

Several communication-theoretic-oriented approaches have
been proposed to study decentralized detection [5], but most
of them are based on the assumption ofideal communication
links between the sensors and the access point (AP). However,
in a realistic communication scenario, these links are likely to
be noisy [6]. In [7], the authors follow a Bayesian approach
for the minimization of the probability of decision error.
In [8], the presence of noisy communication links, modeled
as binary symmetric channels (BSCs), is considered and a
few techniques are proposed to make the system more robust
against the noise.

The problem of sensor network lifetime has also been
studied extensively. In [9], the authors provide upper bounds
on the lifetime of a sensor network and show specific sensor
network scenarios where the derived bounds can actually be
achieved. In [10], the authors use the lifetime maximization as
the main criterion for the design of sensor networks with data
gathering. In [11], the sensor network lifetime is interpreted as
the time after which the first sensor in the network disconnects
and a mathematical derivation of it is provided. Finally, in[12]
the authors consider a realistic network of sensors equipped
with TinyOS, an event-based operating system for networked
sensor motes. In this scenario, the network lifetime is evaluated

as a function of the average distance of the sensors from the
central data collector.

In this paper, we consider a scenario where sensors are
clusteredand there are local fusion centers (FCs) associated
with the clusters. All sensors observe a common binary
phenomenon. This can be considered as an accurate model for
realistic scenarios where sensors may form groups, depending
on how they are placed and on the environmental character-
istics. Each of the local FCs makes a decision based on the
data collected from its sensors, and sends its decision to the
final AP, which makes the final decision [13]. In [13], it is
shown thatuniform clusteringleads to minimum performance
degradation, in terms of probability of decision error, with
respect to the case without clustering. In this paper, we analyze
the lifetime of the proposed sensor network scenario with
uniform clustering, considering a quality of service (QoS)
condition given by the maximum tolerable probability of
decision error. The analysis is carried out in two cases: (i)ideal
reclustering, where the sensors, after each single sensor death,
reconfigure themselves in uniform clusters; and (ii)absence
of reclustering, where the initial cluster configuration remains
fixed, regardless of the sequence of sensors’ deaths. We show
that in the absence of reclustering, the longest lifetime is
guaranteed by an initial configuration characterized by the
presence of a few big clusters.

The structure of this paper is the following. In Section II,
communication-theoretic preliminaries on sensor networks
with decentralized binary detection are given. In Section III,
we propose a simple approach to evaluate the network lifetime
under a physical layer-oriented QoS condition. The implica-
tions of the obtained results are discussed in Section IV, and
concluding remarks are given in Section V.

II. COMMUNICATION -THEORETIC PRELIMINARIES

We consider a network scenario whereN sensors observe a
common binary phenomenon. They are clustered intonc < N
groups, and each of them can communicate with only one local
FC. The FCs collect data from the sensors in the corresponding
cluster and make local decisions on the status of the binary
phenomenon. At this point, each local FC transmits its decision
to the AP, which makes a final decision on the status of the
phenomenon.



The status of the common binary phenomenon under obser-
vation is characterized as follows:

H =

{
H0 with probability p0

H1 with probability 1− p0

wherep0 , P(H = H0). The observed signal at thei-th sensor
can be expressed as

r i = cE +ni i = 1, . . . ,N

where

cE ,

{
0 if H = H0

s if H = H1.

Assuming that the noise samples{ni} are independent with
the same Gaussian distributionN (0,σ2), thecommonsignal-
to-noise ratio (SNR) at the sensors can be defined as follows:

SNRsensor=
[E{cE|H1}−E{cE|H0}]2

σ2 =
s2

σ2 .

Each sensor makes a decision comparing the observationr i

with a threshold valueτi and computes a local decisionui =
U(r i − τi), whereU(·) is the unit step function. In order to
optimize the system performance, the thresholdτi at the i-th
sensor needs to be properly chosen. In this paper, we use a
common threshold valueτ for all sensors but, in general, this
strategy might not be the best. While in a scenario with no
clustering and ideal communication links between the sensors
and the AP the relation betweenτ and s is well known [7],
in the presence of clusters the decision thresholdτ needs to
be optimized in order to minimize the probability of decision
error. We underline that this optimization is carried out inall
results presented in the following.

In an ideal scenario, theN sensors observe the common
binary phenomenonH and send their decisions{ui} to thenc

FCs. Each of thenc clusters containsdc sensors, withN =
nc · dc. The j-th FC, j = 1, . . . ,nc, performs an information
fusion, and computes a local decision according the following
majority-like rule [7]:

Ĥ j = Γ
(

u( j)
1 , . . . ,u( j)

dc

)
=

{
0 if ∑dc

m=1u( j)
m < k

1 if ∑dc
m=1u( j)

m ≥ k
(1)

wherek is the threshold at the FCs.1

The decisions generated by the FCs are sent to the AP,
which makes the following final decision:

Ĥ = Θ
(

Ĥ1, . . . ,Ĥnc

)
=

{
H0 if ∑nc

m=1 Ĥm < kf

H1 if ∑nc
m=1 Ĥm ≥ kf

(2)

wherekf is the AP threshold. Using a combinatorial approach
(based on the use of repeated trials formula [14]), one can
write the probability of decision error as [13]

Pe = p0bin(kf ,nc,nc, i,bin(k,dc,dc, j,1−Φ(τ)))

+(1− p0)bin(0,kf −1,nc, i,bin(k,dc,dc, j,1−Φ(τ −s))))

(3)

1The thresholdk is the same for all the FCs because the clusters are
supposed to have the same dimension. An extension to the caseof non-uniform
clustering is provided in [13].

where Φ(x) ,
∫ x
−∞

1√
2π exp(−y2/2)dy and bin(a,b,n,z) ,

∑b
i=a

(n
i

)
zi(1− z)(n−i), 0 ≤ z≤ 1. It is possible to show that

the probability of decision error (3) reduces to that derived
in [8] if nc = dc = 1, i.e., there is no clustering. The proposed
approach can be straightforwardly extended to decentralized
detection schemes with a generic number of decision levels,
i.e., schemes characterized by the presence of more than one
layer of FCs between the sensors and the AP [15].

In general, one can assume that the communication links are
noisy. In [8], a noisy link is modeled as a BSC withcross-
over probability p. In particular, we assume noisy links only
between the sensors and the FCs. The higher-level links in the
network, i.e., those between the FCs and the AP, are assumed
ideal. In fact, in a realistic scenario, the network designer is
likely to be able to control the placement of the FCs in the
environment to be monitored. Therefore, the links between
FCs and AP can be considered more reliable. Note that in order
to model a realisticwireless communication link (affected,
for example, by Rayleigh fading), a BSC might not be the
best choice. However, we point out that the simple framework
proposed in this paper can be extended to account for more
realistic communication constraints.

In order to extend the previous analytical approach to a
scenario with noisy links, one can simply observe that only
the terms 1−Φ(τ) and 1−Φ(τ −s) in (3) have to be properly
modified, with respect to an ideal scenario, in order to take
into account the presence of noise [8]. More precisely, these
terms have to be replaced, respectively, by

Pc0 , [1−Φ(τ)](1− p)+ Φ(τ)p

Pc1 , [1−Φ(τ −s)](1− p)+ Φ(τ−s)p.

More details can be found in [8]. In the following, we will
investigate the network behavior only in the case of ideal
communication links, since the focus of this paper is on
the impact of clustering on the network lifetime. However,
the extension of our results to noisy communication links
is straightforward. In fact, the noise in the communication
links causes a performance degradation, i.e., the probability
of decision error becomes higher [8]. Therefore, the network
lifetime will reduce since the QoS condition can be satisfied
for a shorter period (as will be explained more clearly in
Section III).

In Fig. 1, the probability of decision error is shown, as
a function of the sensor SNR, in three possible scenarios
with N = 16 sensors: (i) absence of clustering; (ii) uniform
clustering; and (iii) non-uniform clustering. Both analytical
(lines) and simulation (symbols) results are shown. As one can
observe, there is excellent agreement between them. For non-
uniform clustering, the derivation of the probability of decision
error is similar to that outlined in this section. However, since
the dimensions of the clusters are different, the derivation
of the probability of decision error requires the use of a
generalized version of the repeated trials formula. All the
topologies with uniform clustering, i.e., 8-8 (2 clusters with
8 sensors each), 4-4-4-4 (4 clusters with 4 sensors each), and
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Fig. 1. Probability of decision error, as a function of the sensor SNR, in
a scenario withN = 16 sensors and equal a priori costs of the phenomenon
(p0 = p1 = 1/2). Three different topologies are considered: (i) absenceof
clustering, (ii) uniform clustering, and (iii) non-uniform clustering (in this
case, the specific configurations are indicated explicitly). Lines are associated
with analytical results, whereas symbols are associated with simulation results.

2-2-2-2-2-2-2-2 (8 clusters with 2 sensors each), lead to the
same performance curve. Therefore, one can conclude that
the performance does not depend, as long as clustering is
uniform, on the particular subdivision of the sensors amongthe
clusters. For comparison, the curves associated with absence of
clustering and with non-uniform clustering are also shown.It
is clear that the higher is the non-uniformity degree, the worse
is the performance. On the other hand, uniform clustering
leads to the minimum loss with respect to the performance
in the absence of clustering. This loss is the lowest possible.
In the remainder of this paper, we will consider only scenarios
with uniform clustering. Based on the following derivationand
the results in Fig. 1, the reader can predict that the presence
of non-uniform clustering will lead to a significant network
lifetime reduction.

In Fig. 2, the probability of decision error is shown, as a
function of the sensor SNR, for different values of the number
of sensorsN in a scenario with uniform clustering and equal a
priori costs of the phenomenon (p0 = p1 = 1/2). In particular,
the considered values ofN are: (i) N = 16, (ii) N = 20, (iii)
N = 32, (iv) N = 40, and (v)N = 64. One can observe that
only one curve is plotted for every value ofN, as we have
previously shown that the performance does not depend on
the number of clusters (for a givenN), as long as clustering
is uniform. Obviously, the performance improves (i.e., the
probability of decision error decreases) when the number of
sensors in the network increases. The results in Fig. 2 will
be used in Section III to compute the sensor network lifetime
under a QoS condition on the maximum acceptable probability
of decision error.
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Fig. 2. Probability of decision error, as a function of the sensor SNR, in a
scenario with uniform clustering and equal a priori costs ofthe common binary
phenomenon (p0 = p1 = 1/2). Different values of the number of sensors are
shown.

III. SENSORNETWORK L IFETIME UNDER A PHYSICAL

LAYER QOS CONDITION

In order to evaluate the sensor network lifetime, one needs
first to define when the network has to be considered “alive.”
We assume that the network is “alive” until a given QoS
condition is satisfied. Since the network performance is char-
acterized in terms of probability of decision error, the chosen
QoS condition is the following:

Pe ≤ P∗
e (4)

where P∗
e is the maximum tolerable probability of decision

error. When a sensor in the network dies (e.g., its battery
exhausts), the probability of decision error increases since a
lower number of sensors is alive (see, for instance, Fig. 2).
Moreover, the presence of a specific clustering configuration
might accelerate the process of network death. More precisely,
the network dies when the desired QoS condition (4) is no
longer satisfied, as a consequence of the death of acritical
sensor. Therefore, the network lifetime corresponds to the
lifetime of this critical sensor. Obviously, the criticality of a
sensor depends on the particular sequence of sensors’ deaths.

Based on the considerations in the previous paragraph, in
order to estimate thenetwork lifetime one needs to consider
a reasonable model for thesensor lifetime. We denote by
F(t) the cumulative density function (CDF) of the sensors’
lifetime and we consider the following four distributions as



representative for a sensor lifetime:

Exponential: F(t) =
[
1−e−t/µ]

U(t)

Uniform: F(t) =






0 if t < 0
t

tmax
if 0 ≤ t ≤ tmax

1 if t > tmax

Rayleigh: F(t) =
[
1−e−t2/2σ2

ray

]
U(t)

Lognormal: F(t) =



1
2

+
1
2

Erf



 log(t)− ζ√
2σ2

log







U(t)

(5)
where Erf(x) , 2√

π
∫ x
−∞ exp(−y2)dy is the error function and

the time t is measured in arbitrary units ([aU]). We have
chosen the distributions in (5) as good models for the sensor
lifetime. In fact, a realistic sensor should have a characteristic
average value, whereas longer or shorter lifetimes should be
less likely. Distributions like those proposed in (5), withthe
exception of the uniform distribution (which is, however, an
interesting distribution), comply with these characteristics. In
order to obtain a “fair” comparison between different sensor
lifetime distributions, we impose that theaverage sensor
lifetime is the same for all the proposed distributions in (5).
Without loss of generality, we fix the average value of the
exponential distribution, i.e.,µ , and we impose that the other
lifetime distributions have the same average value. After a
few manipulations, one obtains that the parameters in the
remaining distributions in (5) need to be set as follows:

tmax = 2µ

σray =

√
2µ2

π
(6)

ζ +
σ2

log

2
= log(µ).

In particular, for a lognormal distribution (associated with the
last condition in (6)) there are two free parameters:ζ andσlog.
Therefore, one can set arbitrarily one of the two parameters,
deriving the other parameter consequently. In the following,
various possibilities will be considered.

A. Analysis with Ideal Reclustering

As mentioned in Section II, we are interested in analyzing
the network behavior when the QoS condition (4) is satisfied.
In this subsection, we consider the case ofideal reclustering,
i.e., we assume that the network dynamically reconfigures
its topology, immediately after a sensor death, in order to
recreate a uniform configuration. The analysis presented inthis
paper does not take into account the time for reclusterization.
This time depends on the specific strategy chosen in order to
reconfigure correctly the connections between the sensors and
the FCs,2 and between the FCs and the AP. We are currently
investigating this aspect.

Given a maximum tolerable probability of decision error
P∗

e , one can determine the lowest number of sensors, denoted

2We point out that a FC could be an “enhanced” sensor.
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Fig. 3. CDF of the network lifetime, as a function of time, in ascenario
with N = 32 sensors, uniform clustering,ideal reclustering, and SNRsensor= 5
dB. The QoS condition is set toP∗

e = 10−3. All the distributions in (5) are
considered. Lines are associated with analysis, whereas symbols are associated
with simulations.

as Nmin, required to satisfy the desired QoS condition. For
instance, considering Fig. 2 and fixing a maximum tolerable
value P∗

e , one can observe that, for decreasing number of
sensors, at some point the actual probability of decision error
Pe becomes higher thanP∗

e . In other words, the probability
of decision error is lower thanP∗

e if at least Nmin sensors are
alive or, equivalently, untilN−Nmin+1 sensors die. Therefore,
denoting asTnet the network lifetime, one can write:

P(Tnet≤ t) = P

{
at leastN−Nmin+1
sensors haveTsensor< t

}

where Tsensor is the sensor lifetime (this random variable
has the same distribution for all sensors). Since the sensors
lifetimes are supposed independent, using the repeated trials
formula, one obtains

P(Tnet≤ t) =
N

∑
i=N−Nmin+1

(
N

N−Nmin+1

)
Pi

die(1−Pdie)
N−i

where Pdie , P(Tsensor≤ t) is the probability that a sensor
lifetime Tsensor is lower than or equal tot, i.e., the CDF of
Tsensor.

In Fig. 3, the CDF of the network lifetime is shown, as a
function of time, in a scenario withN = 32 sensors grouped in
uniform clusters and in the presence of ideal reclusterization.
The sensor SNR is set to 5 dB and the maximum tolerable
probability of decision error isP∗

e = 10−3. In particular, we
fix the average value of the exponential distribution toµ = 1
and, consequently, we derive the values for the parameters
of the other distributions according to (6), obtainingtmax = 2
(uniform distribution) andσray = 0.8 (Rayleigh distribution).
For the lognormal distribution, instead, we use two possible
values forσlog (10 and 1/8, respectively) and, consequently,
two values forζ (−50 and−0.008, respectively). We point out
that a lognormal distribution allows to model, through proper
choice of the parametersζ andσlog, a large variety of realistic
sensor lifetime distributions. In Fig. 3, both analytical (lines)



and simulation (symbols) results are shown. As one can note,
there is excellent agreement between them.

B. Absence of Reclustering

In Section III-A, we have analyzed the network evolution
in an ideal scenario where the topology is dynamically recon-
figured in response to a sensor failure (e.g., because of the
depletion of its battery). While the previous scenario assumes
ideal reclusterization, in general it might happen that the
initial cluster configuration is fixed. In this case, the following
question is relevant: is there an optimum initial topology which
leads to longest network lifetime? In order to answer this
question, we will analyze the network evolution in scenarios
where there is no cluster reconfiguration. As in Section III-A,
the network is considered dead when the QoS condition (4) is
no longer satisfied.

In the absence of ideal reclustering, an analytical perfor-
mance evaluation is not feasible, i.e., there does not exista
closed-form expression for the CDF of the network lifetime.
In fact, the CDF depends on the particular network evolution,
i.e., it depends on how the sensors die among the clusters in
the network. Therefore, each sequence of sensors’ deaths is
characterized by a specific lifetime, and one needs to resort
to simulations in order to extrapolate an average statistical
characterization. The simulations are performed according to
the following steps:

1. generate the lifetimes of allN sensors according to the
chosen distribution and assign randomly the sensors to
the clusters;

2. order the sensors’ lifetimes for increasing values;
3. update the network topology after a sensor death;
4. compute the probability of decision error corresponding

to the surviving topology determined at the previous
point: if the QoS condition (4) is satisfied, then go back
to 3., otherwise go to 5.;

5. the lifetime of the last sensor which died is the network
lifetime.

In Fig. 4, the CDF of the network lifetime is shown, as a
function of time, in a scenario withN = 32 sensors grouped,
respectively, in 2, 4, and 8 clusters. The sensor SNR is set
at 5 dB and the maximum tolerable probability of decision
error isP∗

e = 10−3. The sensors’ lifetimes are modeled with an
exponential distribution (similar considerations can be carried
out for the other distributions in (5)). For comparison, the
curve associated with ideal reclustering is also shown. Onecan
observe that the higher is the number of clusters, the worse is
the performance, i.e., the higher is the probability of network
death. Moreover, the curve associated with 2 clusters is very
close to that relative to ideal reclustering. In fact, in a scenario
with only 2 clusters, the average number of sensors which die
in each cluster is approximately the same and, consequently,
the topology remains approximatively uniform.3

3From the results in Fig. 4, it seems that the scenario with absence of
reclustering and 2 clusters is better than that with ideal reclustering. However,
this behavior is due to the fact that the simulations were notsufficiently long.
Longer simulations are currently running to generate more accurate results.
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In Fig. 5, the CDF of the network lifetime is shown, as a
function of time, in a scenario withN = 64 sensors, uniform
clustering, and considering, respectively, 2 clusters (solid lines)
and 4 clusters (dashed lines). The operating conditions are
the same as in Fig. 4, and we consider three values for the
maximum tolerable probability of decision error:P∗

e = 10−2,
P∗

e = 10−3, andP∗
e = 10−4, respectively. One can observe that,

similarly to Fig. 4, the higher is the number of clusters in the
network, the shorter is the network lifetime. Moreover, the
more stringent is the QoS condition (i.e., the lower isP∗

e ), the
lower is the network lifetime. This is to be expected, since if
P∗

e is very low, then a relatively small number of sensors need
to die in order to make the entire network die.

IV. D ISCUSSION

In Table I, the network lifetime corresponding to a CDF
equal to 0.9 (i.e., to a probability of outage of 90%) is shown,



TABLE I

NETWORK LIFETIME FOR OUTAGE PROBABILITY EQUAL TO90% IN A SCENARIO WITH N = 64 NODES AND SNRsensor= 5 DB. THE QOS CONDITIONS IN

FIG. 5 ARE CONSIDERED.

P∗
e Ideal No reclustering No reclustering No reclustering

reclustering (2 clusters) (4 clusters) (8 clusters)

10−2 2.1 2.1 2.0 1.68

10−3 1.3 1.3 1.2 1.012

10−4 0.78 0.78 0.74 0.625

assuming an exponential sensor lifetime, for various clustering
configurations and various values of the maximum tolerable
probability of decision error. The number of sensors isN = 64.
For comparison, the network lifetime with ideal reclustering
is also shown. From the results in Table I, the following
observations can be carried out.

• For a low number of clusters (2 or 4), the lifetime reduc-
tion, with respect to a scenario with ideal reclustering,
is negligible. This is to be expected from the results in
Fig. 4 and Fig. 5, and is due to the fact that the sensors die
more or less uniformly in all clusters. When the number
of clusters increases beyond 4, the network lifetime starts
reducing appreciably. Therefore, our results show that in
the absence of ideal reclusteringthe winning strategy
to prolong the network lifetime is toform a few large
clusters.

• The impact of the QoS condition is very strong. In fact,
when the QoS condition becomes more stringent (i.e,
P∗

e decreases), the network lifetime decreases, since a
lower number of sensor deaths is sufficient to violate
this condition. On the other hand, if the constraint is less
stringent, then a larger number of sensors have to die in
order to violate the QoS condition.

• The impact of the number of nodes on the network
lifetime has not been directly analyzed in this paper. How-
ever, since the performance improves when the number of
sensors increases (as shown in Fig. 2), one can conclude
that, for a fixed QoS condition, a network with a larger
number of sensors will satisfy the QoS condition for
a longer time and, therefore, the network lifetime will
increase. Equivalently, one can impose a stronger QoS
condition (a lower value ofP∗

e ), still guaranteeing the
same network lifetime.

V. CONCLUDING REMARKS

In this paper, we have presented a simple framework to
analyze thenetwork lifetimein a clustered sensor network
subject to a physical layer-oriented QoS condition, given by
the maximum tolerable probability of decision error at the AP.
First, we have derived a model for thesensor lifetimeusing a
few distributions which are representative for a realisticsensor
network. In the presence of ideal reclustering, the network
lifetime is the longest possible. On the other hand, in the
presence of a fixed clustered configuration, our results show
that the number of clusters has a strong impact on the network

lifetime. More precisely, the network lifetime is maximized if
there are a few large clusters (at most 4). In all cases, the
QoS condition has a strong impact on the network lifetime:
the more stringent this condition is, the shorter is the network
lifetime. It remains to be investigated what is the “cost”
(in terms of energy consumption and delay) of the use of
reclustering techniques.

REFERENCES

[1] J. N. Tsitsiklis, Adv. Statist. Signal Process., vol. 2, chapter Decentral-
ized detection, pp. 297–344, Greenwich, CT: JAI Press, 1993, Eds.:
H. V. Poor and J. B. Thomas.

[2] A. R. Reibman and L. W. Nolte, “Detection with distributed sensors,”
IEEE Trans. Aerosp. Electron. Syst., pp. 501–510, December 1981.

[3] C. Y. Chong and S. P. Kumar, “Sensor Networks: Evolution,Challanges,
and Opportunities,”Proc. IEEE, vol. 91, no. 8, pp. 1247–1256, August
2003.

[4] S. N. Simic and S. Sastry, “Distributed environmental monitorning using
random sensor networks,” inProc. 2-nd Int. Work. on Inform. Processing
in Sensor Networks, Palo Alto, CA, USA, April 2003, pp. 582–592.

[5] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors–Part I: Fundamentals,”Proc. IEEE, vol. 85, no. 1, pp. 54–63,
January 1997.

[6] T. S. Rappaport,Wireless Communications. Principles & Pratice, 2nd
Edition., Prentice-Hall, Uper Saddle River, NJ, USA, 2002.

[7] W. Shi, T. W. Sun, and R. D. Wesel, “Quasi-convexity and optimal
binary fusion for distributed detection with identical sensors in gener-
alized gaussian noise,”IEEE Trans. Inform. Theory, vol. 47, no. 1, pp.
446–450, January 2001.

[8] G. Ferrari and R. Pagliari, “Decentralized detection insensor networks
with noisy communication links,” inProc. Tyrrhenian Int. Workshop on
Digital Communications(TIWDC’05), Sorrento, Italy, July 2005.

[9] M. Bhardwaj, T. Garnett, and A. P. Chandrakasan, “Upper bounds on
the lifetime of sensor networks,” inProc. IEEE International Conf.
on Commun.(ICC), Amsterdam, the Netherlands, June 2001, vol. 119,
pp. 785–790.

[10] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum life-
time data gathering and aggregation in wireless sensor networks,”
Tech. Rep., University of Maryland, Baltimore, 2002, available at
www.csee.umbc.edu/ kalpakis/.

[11] V. Rai and R. N. Mahapatra, “Lifetime modeling of a sensor network,”
in Proc. Design, Automation and Test in Europe 2006(DATE’05), Messe
Munich, Germany, March 2003, vol. 1, pp. 202–203.

[12] M. Ergen S. Coleri and T. J. Koo, “Lifetime analysis of a sensor network
with hybrid automata modelling,” inProc. First Int. Workshop on
Wireless Sensor Networks and Applications 2002(WSNA’02), Atlanta,
USA, September 2002, pp. 98–104.
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