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Abstract— In this paper, we analyze the lifetime of clustered as a function of the average distance of the sensors from the
sensor networks with decentralized binary detection undera central data collector.

physical layer quality of service (QoS) constraint, given g the | yhis naner, we consider a scenario where sensors are
maximum tolerable probability of decision error at the access !

point (AP). In order to properly model the network behavior, ~clusteredand there are local fusion centers (FCs) associated
we consider four different distributions (exponential, uriform, ~With the clusters. All sensors observe a common binary
Rayleigh, and lognormal) for the single sensors’ lifetime.We phenomenon. This can be considered as an accurate model for
show the benefits, in terms of longer network lifetime, oldaptive  realistic scenarios where sensors may form groups, depgndi
reclustering. On the other hand, absence of reclustering leads to o o\ they are placed and on the environmental character-
a shorter network lifetime, and we show the impact of various . . ..
clustering configurations under different QoS conditions.Our  iStics. Each of the local FCs makes a decision based on the

results show that the organization of sensors in a few big chiers data collected from its sensors, and sends its decisioneto th

is the winning strategy to maximize the network lifetime. final AP, which makes the final decision [13]. In [13], it is
shown thatuniform clusteringeads to minimum performance
I. INTRODUCTION degradation, in terms of probability of decision error, hwit

respect to the case without clustering. In this paper, wé/aea

Distributed detection has been an active research field fofi |ifetime of the proposed sensor network scenario with
long time [1]. The increasing interest for sensor networ&s hyniform clustering, considering a quality of service (QoS)
Spurred a Signiﬁcant SCientifiC aCtiVity in diStributed (EiEﬂon Condition given by the maximum to'erab'e probabmty of
techniques [2]. In the last years, an increasing number @kcision error. The analysis is carried out in two casesd¢gl
civilian applications have been developed, especiallynin ereclustering where the sensors, after each single sensor death,
vironmental monitoring [3], [4]. reconfigure themselves in uniform clusters; and #ijsence

Several communication-theoretic-oriented approachee haf reclustering where the initial cluster configuration remains
been proposed to study decentralized detection [5], but méiged, regardless of the sequence of sensors’ deaths. We show
of them are based on the assumptioridgfal communication that in the absence of reclustering, the longest lifetime is
links between the sensors and the access point (AP). Howeygfaranteed by an initial configuration characterized by the
in a realistic communication scenario, these links ardyike presence of a few big clusters
be noisy [6]. In [7], the authors follow a Bayesian approach The structure of this paper is the following. In Section I,
for the minimization of the probability of decision error.communication-theoretic preliminaries on sensor network
In [8], the presence of noisy communication links, modeleglith decentralized binary detection are given. In Section |
as binary symmetric channels (BSCs), is considered andya propose a simple approach to evaluate the network ligetim
few techniques are proposed to make the system more rolysdier a physical layer-oriented QoS condition. The implica
against the noise. tions of the obtained results are discussed in Section I, an

The problem of sensor network lifetime has also beQﬁ)ncluding remarks are given in Section V.
studied extensively. In [9], the authors provide upper latsun
on the lifetime of a sensor network and show specific sensor || COMMUNICATION -THEORETIC PRELIMINARIES
network scenarios where the derived bounds can actually be
achieved. In [10], the authors use the lifetime maximizats We consider a network scenario whédesensors observe a
the main criterion for the design of sensor networks witradatommon binary phenomenonhey are clustered into; < N
gathering. In [11], the sensor network lifetime is intetpokas groups, and each of them can communicate with only one local
the time after which the first sensor in the network discotged-C. The FCs collect data from the sensors in the correspgndin
and a mathematical derivation of it is provided. Finally[i2] cluster and make local decisions on the status of the binary
the authors consider a realistic network of sensors eqdipgghenomenon. At this point, each local FC transmits its d@tis
with TinyOS, an event-based operating system for networkéa the AP, which makes a final decision on the status of the
sensor motes. In this scenario, the network lifetime iswatad phenomenon.



The status of the common binary phenomenon under obsehere ®(x) = [* \/Lz_nexp(—yz/Z) dy and bir(a,b,n,z) £

vation is characterized as follows: 5P, (MZ(1— 2", 0<z<1. It is possible to show that
H— Ho with probability pg the probability of decision error (3) reduces to that detive
" | Hi with probability 1— pg in [8] if nc=d:=1, i.e., there is no clustering. The proposed

approach can be straightforwardly extended to decengihliz
detection schemes with a generic number of decision levels,
i.e., schemes characterized by the presence of more than one

wherepg = P(H = Hp). The observed signal at tli¢h sensor
can be expressed as

ri=cg+n i=1....N layer of FCs between the sensors and the AP [15].
where In general, one can assume that the communication links are
A [ 0 ifH=Ho noisy. In [8], a noisy link is modeled as a BSC witttoss-
Ce= { s if H=Hj. over probability p. In particular, we assume noisy links only

) ) ) _ between the sensors and the FCs. The higher-level linksin th
Assuming that the noise sampl¢si} are independent with neqyork, i.e., those between the FCs and the AP, are assumed
the same Gaussian distributioff (0, o?), thecommorsignal- iqeq. In fact, in a realistic scenario, the network desigse
to-noise ratio (SNR) at the sensors can be defined as followﬁély to be able to control the placement of the FCs in the

SN [E{cg|H1} — E{ce/Ho}]? & environment to be monitored. Therefore, the links between
Reensor= o2 ~ o2 FCs and AP can be considered more reliable. Note that in order

Each sensor makes a decision comparing the observatiof® model a realistioNir_eIess cqmmunication Ii_nk (affected,
with a threshold valua; and computes a local decision= for €xample, by Rayleigh fading), a BSC might not be the
U(ri — 1), whereU(-) is the unit step function. In order to best ch0|c§. quever, we point out that the simple framework
optimize the system performance, the threshpldt thei-th propo_sed in this paper can be _extended to account for more
sensor needs to be properly chosen. In this paper, we usg@listic communication constraints. _
common threshold value for all sensors but, in general, this !N order to extend the previous analytical approach to a
strategy might not be the best. While in a scenario with rgenario with naisy links, one can simply observe that only
clustering and ideal communication links between the sensé€ terms I- ®(7) and 1— ®(7 —s) in (3) have to be properly
and the AP the relation betweanands is well known [7], modified, with respect to an ideal scenario, in order to take
in the presence of clusters the decision thresholteeds to iNto account the presence of noise. [8]. More precisely,ehes
be optimized in order to minimize the probability of decisio terms have to be replaced, respectively, by
error. We underline that this optimization is carried outalh
results presented in the following. Peo (1= ®@](1-p)+*(1)p

In an ideal scenario, th&l sensors observe the common P, [1-®(t—9)](1-p)+P(T—9)p.
binary phenomenohl and send their decisior{); } to thenc
FCs. Each of the; clusters containgl. sensors, withN =
Nc-de. The j-th FC, j =1,...,n., performs an information
fusion, and computes a local decision according the foliowi
majority-like rule [7]:

L
Y

More details can be found in [8]. In the following, we will
investigate the network behavior only in the case of ideal
communication links, since the focus of this paper is on
the impact of clustering on the network lifetime. However,
the extension of our results to noisy communication links
~ i) i _ | o fif zﬂ‘,;lu%P <k is straightforward. In fact, the noise in the communication
Hj=T (Ul ""7udc) ) 1 st o>k (1) links causes a performance degradation, i.e., the pratyabil
Ly U’ = of decision error becomes higher [8]. Therefore, the ndtwor

wherek is the threshold at the FCs. lifetime will reduce since the QoS condition can be satisfied
The decisions generated by the FCs are sent to the Adt a shorter period (as will be explained more clearly in
which makes the following final decision: Section IlI).

R R R Ho if $™ Fin < ki In Fig. 1, the probability of decision error is shown, as
H :@(Hl,...,HnC) z{ b if ﬁlﬁ -k (2) a function of the sensor SNR, in three possible scenarios
1 Ymeg Am 2 K with N = 16 sensors: (i) absence of clustering; (ii) uniform
wherek; is the AP threshold. Using a combinatorial approactiustering; and (i) non-uniform clustering. Both anadyt
(based on the use of repeated trials formula [14]), one c@imes) and simulation (symbols) results are shown. As @me ¢
write the probability of decision error as [13] observe, there is excellent agreement between them. Fer non
P = pobin(ke,ne,ne,i,bin(k, de, de, j, 1— (1)) unifor_m glu;tering, the der_ivatio_n of _the pr(_)bability ofai_ha'on
, o , error is similar to that outlined in this section. Howevénce
+(1— po)bin(0,ks — 1,ng,i, bin(k, de, de, j, 1 = P(T-9))))  the dimensions of the clusters are different, the derivatio
(3) of the probability of decision error requires the use of a
1The thresholdk is the same for all the FCs because the clusters a&enerahzed version of the repeated trials formula. All the

supposed to have the same dimension. An extension to thetase-uniform ODOIOg'eS with uniform C|USter|ng’ "e'_’ 8-8 (2 clustergthw
clustering is provided in [13]. 8 sensors each), 4-4-4-4 (4 clusters with 4 sensors eadh), an
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Fig. 2. Probability of decision error, as a function of thesm SNR, in a
scenario with uniform clustering and equal a priori costthefcommon binary

_ - o ) ~ phenomenongp = p1 = 1/2). Different values of the number of sensors are
Fig. 1. Probability of decision error, as a function of thexs& SNR, in  gshown.

a scenario withN = 16 sensors and equal a priori costs of the phenomenon
(po = p1 = 1/2). Three different topologies are considered: (i) abseofce
clustering, (ii) uniform clustering, and (iii) non-unifor clustering (in this
case, the specific configurations are indicated explicitlyjes are associated
with analytical results, whereas symbols are associatédsivnhulation results.

I1l. SENSORNETWORK LIFETIME UNDER A PHYSICAL
LAYER QOS CONDITION

2-2-2-2-2-2-2-2 (8 clusters with 2 sensors each), lead ¢o th

same performance curve. Therefore, one can conclude that, order to evaluate the sensor network lifetime, one needs

the performance does not depend, as long as clustering;is; o define when the network has to be considered “alive.”
uniform, on the particular subdivision of the sensors ambeg \we assume that the network is “alive” until a given QoS

clusters. For comparison, the curves associated with 8bsEn ¢, ition is satisfied. Since the network performance is-cha

clustering and with non-uniform clustering are also sholin. 5terized in terms of probability of decision error, the st10
is clear that the higher is the non-uniformity degree, theseo QoS condition is the following:

is the performance. On the other hand, uniform clustering

leads to the minimum loss with respect to the performance

in the absence of clustering. This loss is the lowest passibl

In the remainder of this paper, we will consider only scevsri P <P (4)
with uniform clustering. Based on the following derivatiand

the results in Fig. 1, the reader can predict that the presenc

of non-uniform clustering will lead to a significant network

lifetime reduction. where P} is the maximum tolerable probability of decision

In Fig. 2, the probability of decision error is shown, as grror. When a sensor in the network dies (e.g., its battery

function of the sensor SNR, for different values of the numbeXhaUStS)’ the probability of decision error increasesesa

of sensors\ in a scenario with uniform clustering and equal & . number of sensors is alive (see, for instance, Fig. 2),
T g andeq %/Ioreover, the presence of a specific clustering configunatio
priori costs of the phenomenopy= p1 = 1/2). In particular,

. AN R ... ' might accelerate the process of network death. More pilggcise
micgoznsggrﬁdivzgjesncgi (%;T\'I 9) GI\L_Olr?e ((IzglnNo_bszcgr,\/((amt)hatthe network dies when the desired QoS condition (4) is no
o L o longer satisfied, as a consequence of the death @itigal
only one curve is plotted for every value bf, as we have

reviously shown that the performance does not depend sennsor Therefore, the network lifetime corresponds to the
P y Peri PeNd Blime of this critical sensor. Obviously, the criticgliof a
the number of clusters (for a giveM), as long as clustering

. . . : : sensor depends on the particular sequence of sensorssdeath
is uniform. Obviously, the performance improves (i.e., the P P d

probability of decision error decreases) when the number ofBased on the considerations in the previous paragraph, in
sensors in the network increases. The results in Fig. 2 wilider to estimate thaetworklifetime one needs to consider
be used in Section Ill to compute the sensor network lifetinge reasonable model for thgensorlifetime. We denote by
under a QoS condition on the maximum acceptable probabilfyt) the cumulative density function (CDF) of the sensors’
of decision error. lifetime and we consider the following four distributions a



representative for a sensor lifetime: ' [Exponential—, 2 <><> 2t ;
Exponential:  F(t) = [1—e VK] U(t) i " /
0.8 ;/Lognormal & : :
- : ~ Uniform| !
0 ift<O g=18 2 j
t ‘ ’
Uniform: Fit)y=¢ — if0<t<t 0.6 / Q\- |
( ) tmax . e P(T <t I Rayleig +
1 |f t > tmax ne 04 I <> I
iy _|1_ —tz/Zarz} Al i
Rayleigh: F(t) = [1 e | U(t) ! o Lognormal/" !
i =10 .
1 1__(log(t)— 02| © !
Lognormal:  F(t) = | 5+ 5Erf LZZ u(t) i & 4
I .
Y, 20!09 B * ; T
02 4 8 1
t [aU]

where Erfx) £ %Tffw exp(—y?)dy is the error function and

the timet is measured in arbitrary units ([aU]). We haverig. 3. CDF of the network lifetime, as a function of time, inseenario
chosen the distributions in (5) as good models for the sengdf N =32 sensors, uniform clusteringleal reclusteringand SNRensor= 5
B. The QoS condition is set t8 = 10~3. All the distributions in (5) are

lifetime. In fact, a realistic sensor should haYe a charstie considered. Lines are associated with analysis, wherealsaly are associated
average value, whereas longer or shorter lifetimes shoeld Jath simulations.
less likely. Distributions like those proposed in (5), withe

exception of the uniform distribution (which is, howeven a ) _ _ . -
interesting distribution), comply with these charactizs In - as N™", required to satisfy the desired QoS condition. For

order to obtain a “fair” comparison between different sens#stance, considering Fig. 2 and fixing a maximum tolerable
lifetime distributions, we impose that thaverage sensor Value g, one can observe that, for decreasing number of

lifetime is the same for all the proposed distributions in (5€nsors, at some point the actual probability of decisioorer
Without loss of generality, we fix the average value of thBe becomes higher thaR;. In other words, the probability
exponential distribution, i.ey, and we impose that the otherof decision error is lower thaRg if at least N' sensors are
lifetime distributions have the same average value. After adive or, equivalently, untiN —N™"+ 1 sensors die. Therefore,
few manipulations, one obtains that the parameters in tf@noting aslne: the network lifetime, one can write:
remaining distributions in (5) need to be set as follows: at leastN — N™n 4 1

sensors hava@sensor< t

tmax = 2“
o _ ZLZ ©6) where Tsensor is the sensor lifetime (this random variable
e T has the same distribution for all sensors). Since the sensor
alf)g lifetimes are supposed independent, using the repeatdd tri
— = log(u). i
(+ > 9 formula, one obtains
In particular, for a lognormal distribution (associatedhnihe N N i N
last condition in (6)) there are two free parametérand gjqg. P(Thet<t) = <N _ Nmin 4 1) Pliie (1 — Puie)

Therefore, one can set arbitrarily one of the two parameters i=N-Nm"+1

der.iving the pt_he_r par.ameter co.nsequently. In the follawin,here Pyic 2 P(Tsensor< t) is the probability that a sensor
various possibilities will be considered. lifetime TsensoriS lower than or equal to, i.e., the CDF of

A. Analysis with Ideal Reclustering Tsensor o

As mentioned in Section Il, we are interested in analyzin@ In _F'g' ?,_the CDF of the_ net_vxr/ﬂ?ﬂ(:jlgetlme Is shown, §§ a
the network behavior when the QoS condition (4) is satisfie _qctlon ortime, in a scenario With = SENsors grouped in
In this subsection, we consider the casddfal reclustering uniform clusters and in the presence of ideal reclustédmat

i.e., we assume that the network dynamically reconfigurgg1e sensor SNR is set to 5 dB and the maximum tolerable

its topology, immediately after a sensor death, in order ?fo?]ab'“ty of deCIISIOH ferLor % = 10. Ién p%rtlc_:ular, V\ie
recreate a uniform configuration. The analysis presentédsn Ix the average value of the exponential distributiorye=

paper does not take into account the time for reclustecnati and, consequ_ent_ly, we derive t_he values for t_h(_a parameters
the other distributions according to (6), obtainifigy = 2

This time depends on the specific strategy chosen in orderolfo, SN . e
reconfigure correctly the connections between the sensairs éumform distribution) andoray = 0.8 (Rayleigh distribution).

the EC<2 and between the ECs and the AP. We are currenfi¢! the lognormal distribution, instead, we use two possibl
’ ' alues forojeg (10 and ¥8, respectively) and, consequently,

investigating this aspect. . .
gaing P fwo values for (—50 and—0.008, respectively). We point out

Given a maximum tolerable probability of decision erro S
t a lognormal distribution allows to model, through pFop

Pz, one can determine the lowest number of sensors, denotedt , -
choice of the parametefsanddieg, a large variety of realistic

2\We point out that a FC could be an “enhanced” sensor. sensor lifetime distributions. In Fig. 3, both analyticlhgs)



and simulation (symbols) results are shown. As one can note, . 7 HOoTEES
there is excellent agreement between them. #'
08 !
B. Absence of Reclustering |
In Section llI-A, we have analyzed the network evolution 06 ,' — Ideal reclustering

in an ideal scenario where the topology is dynamically recoq;,(T <) ! O -02 uniform clusters
figured in response to a sensor failure (e.g., because of the™ i 4 uniform clusters
depletion of its battery). While the previous scenario asssi 04 ! %8 uniform clusters
ideal reclusterization, in general it might happen that the !
initial cluster configuration is fixed. In this case, the éwling 02 |
guestion is relevant: is there an optimum initial topolodyiet ,' y

A

leads to longest network lifetime? In order to answer this 0
; ; PR ; 0~ - 0.2 0.4 0.6 0.8 1
guestion, we will analyze the network evolution in scensrio t [au]
where there is no cluster reconfiguration. As in SectiorAlll-
the network is considered dead when the QoS condition (4)F§. 4. CDF of the network lifetime, as a function of time, ilseenario with
no Ionger satisfied N = 32 sensors, uniform clustering (with, respectively, 2, @ & clusters),
o . . andabsence of reclustering he sensor SNR is set to 5 dB and the maximum

In the absence of ideal reclustering, an analytical perfasierable probability of decision error B = 10-3. For comparison, the curve

mance evaluation is not feasible, i.e., there does not existelative to ideal reclustering is also shown. The distitoutof the sensors’

closed-form expression for the CDF of the network lifetimé"cime is exponential.
In fact, the CDF depends on the particular network evolytion 1
i.e., it depends on how the sensors die among the clusters in ,/ ﬁ /

. 7/
the network. Therefore, each sequence of sensors’ deaths is % /, |
characterized by a specific lifetime, and one needs to resort Ortétggbeilit
to simulations in order to extrapolate an average stadistic P Y

characterization. The simulations are performed accgrtin 0.6 - ~
the following steps: P(T <1 .= 10
1. generate the lifetimes of aNl sensors according to the 0.4
chosen distribution and assign randomly the sensors to
the clusters; 02

2. order the sensors’ lifetimes for increasing values;
. update the network topology after a sensor death;
4. compute the probability of decision error corresponding 0
s . . 0 0.5 1 15 2 25
to the surviving topology determined at the previous
point: if the QoS condition (4) is satisfied, then go back
Fig. 5. CDF of the network lifetime, as a function of time, is@nario with

to 3., otherwise go to 5.; .
64 sensors, SNRnsor= 5 dB, andabsence of reclusteringhree values

5. the lifetime of the last sensor which died is the netWO'JlJ\élr the maximum tolerable probability of decision error aensidered: (i)
P: =102, (ii) Py =103, and (iii) P: = 10~*. Solid lines correspond to an

lifetime.
; T ; initial topology with 2 clusters, whereas dashed lines aspeiated with an
In Fig. 4, the CDF of the network lifetime is shown, as %mal topology formed by 4 clusters.

function of time, in a scenario withl = 32 sensors grouped,
respectively, in 2, 4, and 8 clusters. The sensor SNR is se{n Fig. 5, the CDF of the network lifetime is shown, as a

at 5 dB and the maximum tolerable probability of decisiofunction of time, in a scenario withN = 64 sensors, uniform
error iSPg =1073. The sensors’ lifetimes are modeled with af@|ustering, and Considering, respective|y, 2 C|usterw§0es)
exponential distribution (similar considerations can beried and 4 clusters (dashed lines). The operating conditions are
out for the other distributions in (5)). For comparison, thghe same as in Fig. 4, and we consider three values for the
curve associated with ideal reclustering is also shown.€ne maximum tolerable probability of decision errae; = 1072,

observe that the higher is the number of clusters, the wexrseg::‘iék =103, andP; = 10%, respectively. One can observe that,

the performance, i.e., the higher is the probability of reetw similarly to Fig. 4, the higher is the number of clusters ie th
death. Moreover, the curve associated with 2 clusters i Vefetwork, the shorter is the network lifetime. Moreover, the
close to that relative to ideal reclustering. In fact, in arsrio more stringent is the QoS condition (i_e_, the |owePJ$, the
with only 2 clusters, the average number of sensors which déver is the network lifetime. This is to be expected, sirfce i
in each cluster is approximately the same and, consequentlyis very low, then a relatively small number of sensors need
the topology remains approximatively unifofm. to die in order to make the entire network die.

w

SFrom the results in Fig. 4, it seems that the scenario witlerates of IV. DISCUSSION
reclustering and 2 clusters is better than that with ideaustering. However, e .
J g In Table I, the network lifetime corresponding to a CDF

this behavior is due to the fact that the simulations weresnéfciently long. ) - X
Longer simulations are currently running to generate mereirte results. equal to 0.9 (i.e., to a probability of outage of 90%) is shpwn



TABLE |

NETWORK LIFETIME FOR OUTAGE PROBABILITY EQUAL TO90%IN A SCENARIO WITH N = 64 NODES AND SNRsensor= 5 DB. THE QOS CONDITIONS IN
FIG. 5 ARE CONSIDERED

P Ideal No reclustering| No reclustering| No reclustering
reclustering (2 clusters) (4 clusters) (8 clusters)
107 2.1 2.1 2.0 1.68
103 1.3 1.3 1.2 1.012
107 0.78 0.78 0.74 0.625

assuming an exponential sensor lifetime, for various ehirsg

lifetime. More precisely, the network lifetime is maximiz&

configurations and various values of the maximum toleraltleere are a few large clusters (at most 4). In all cases, the
probability of decision error. The number of sensorlis 64. QoS condition has a strong impact on the network lifetime:
For comparison, the network lifetime with ideal reclustgri the more stringent this condition is, the shorter is the netw

is also shown. From the results in Table I, the followingifetime. It remains to be investigated what is the “cost”

observations can be carried out.

(in terms of energy consumption and delay) of the use of

« For a low number of clusters (2 or 4), the lifetime redudeclustering techniques.

tion, with respect to a scenario with ideal reclustering,
is negligible. This is to be expected from the results i I
Fig. 4 and Fig. 5, and is due to the fact that the sensors d e]
more or less uniformly in all clusters. When the number
of clusters increases beyond 4, the network lifetime startg]
reducing appreciably. Therefore, our results show that ify
the absence of ideal reclusterinthe winning strategy
to prolong the network lifetime is tdorm a few large
clusters

The impact of the QoS condition is very strong. In fact,
when the QoS condition becomes more stringent (i.€?!
P; decreases), the network lifetime decreases, since a
lower number of sensor deaths is sufficient to violatde]
this condition. On the other hand, if the constraint is Ies;z]
stringent, then a larger number of sensors have to die
order to violate the QoS condition.

The impact of the number of nodes on the networ
lifetime has not been directly analyzed in this paper. How-
ever, since the performance improves when the number of
sensors increases (as shown in Fig. 2), one can conclulé
that, for a fixed QoS condition, a network with a larger
number of sensors will satisfy the QoS condition for

a longer time and, therefore, the network lifetime will10l
increase. Equivalently, one can impose a stronger QoS
condition (a lower value of%), still guaranteeing the
same network lifetime.

(4

8]

(11]

V. CONCLUDING REMARKS [12]

In this paper, we have presented a simple framework to
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