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Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The
critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage
maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to
provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number
of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks
is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage
maintenance (SCOM), which is scalable to sensor deployment density in terms of communication overhead (i.e., number of trans-
mitted and received beacons) and computational complexity (i.e., time and space complexity). In addition, SCOM achieves high
energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

Copyright © 2007 Jun Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The recent advances in microsensor and communication
technologies have increased the possibility of manufactur-
ing inexpensive small wireless sensors with simple sensing,
processing, and wireless communication capabilities. Lim-
ited by their size, small wireless sensors are equipped with
a restricted power source and storage capacity. For example,
the typical Crossbow MICA2 mote MPR400CB [1] has a low-
speed 16 MHz microcontroller equipped with only 128 KB
flash and 4 KB EEPROM. Powered by two AA batteries, it
has the maximal data rate of 38.4 KBaud and a transmission
range of about 150 m. Such small wireless sensors are usu-
ally deployed in an ad hoc manner to monitor a specified re-
gion of interest for various applications such as environment
monitoring, target tracking, and distributed data storage.

One fundamental problem faced by current sensor net-
work deployment is efficient provision of the required cover-
age. Specifically, given a target region, how can it guarantee
that every point in the region is covered by the required num-
ber of sensors, with the object of maximizing the lifetime of
the whole network? This problem is challenging due to the
limitation of wireless sensor capabilities as well as the ad-hoc
deployment properties of wireless sensor networks. One ef-

fective approach to extend sensor network lifetime is to have
sensors autonomously schedule their duty cycles according
to local information while satisfying global coverage require-
ments, which is referred to as coverage maintenance in the
literature. We envision future wireless sensor networks com-
posed of a vast number of small wireless sensors with very
limited processing capability and storage capacity in exceed-
ingly high density [2, 3]. Therefore, coverage maintenance
for future wireless sensor networks must be highly scalable to
sensor deployment density in terms of communication over-
head as well as computational complexity.

In this paper, we propose a novel coverage maintenance
scheme, scalable coverage maintenance (SCOM), in which
sensors decide their sensing states in a distributive man-
ner. SCOM works in two phases—the decision phase and
the optimization phase. In the decision phase, sensors start
in BOOTSTRAP state, and gradually make their decisions
to enter the ACTIVE or INACTIVE state according to lo-
cal information on coverage and energy. In the optimization
phase, redundant active sensors turn off while still guarantee-
ing the required coverage. The main contributions of SCOM
are (1) high scalability to sensor deployment density in terms
of communication overhead and computational complex-
ity, (2) a simple algorithm for a sensor to decide coverage
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redundancy by checking only a small number of locations,
(3) high energy efficiency to maintain the required coverage,
and (4) load balancing over sensors.

The rest of this paper is organized as follows. Section 2
specifies SCOM in detail. Theoretical analysis and simula-
tion results are presented in Sections 3 and 4, respectively.
Section 5 examines the existing work on sensor network cov-
erage. Section 6 concludes the paper.

2. SCALABLE COVERAGE MAINTENANCE (SCOM)

2.1. Assumptions

We assume that sensors are static and each sensor knows
its own location. Sensors can acquire the location of neigh-
bors through one-hop communication. Such assumptions
are reasonably taken by other researches (e.g., [4–6]) and
supported by the existing workes (e.g., [7–10]). We also as-
sume that sensors have synchronized timers (e.g., [11, 12])
and are aware of the amount of their own residual energy.
We further assume that communication range of sensors, de-
noted by CR, is at least twice the maximal sensing range, de-
noted by SR. This assumption is usually true for real sensors.
For example, HMC1002 magnetometer sensors have an SR
of approximately 5 m [13] while MICA2 MPR400CB motes
can transmit about 150 m [1]. Where CR is less than twice
SR, SCOM can work by propagating control beacons through
multiple hops.

2.2. Problem statement

Definition 1. A location is covered by a sensor if it is within
the SR of the sensor. A location is said to be K-covered if it is
within the SR of at least K sensors. A region is K-covered if
every location within the region is K-covered.

Note that according to Definition 1 the sensing perimeter
of a sensor is not covered by the sensor.

The number of sensors covering a location is regarded as
the coverage degree at that location. The problem is to select
a small number of sensors to maintain K-coverage of the tar-
get region while scheduling others to sleep, which is referred
to as coverage maintenance [14].

Definition 2. Coverage maintenance: given a set of sensors S
deployed in target region A and a natural number K , select
a subset S′ of S such that

∀υ ∈A |
⎧
⎨

⎩

CS′(υ) ≥ K , CS(υ) ≥ K ,

CS′(υ) = CS(υ), CS(υ) < K ,
(1)

where CS(υ) and CS′(υ) denote the coverage of location υ
provided by S and S′, respectively.

From Definition 2, we can see that the subset S′ should
provide at least K-coverage to a location if the location is K-
covered by the full set of sensors S and should maintain the
original coverage otherwise.

2.3. Scheme description

In SCOM, time is slotted into rounds. At the beginning of
each round, each sensor goes through the following two
phases.

(1) Decision phase: sensors start in BOOTSTRAP state,
and make the decisions to enter the ACTIVE or
INACTIVE state according to local information on
coverage and energy.

(2) Optimization phase: redundant active sensors turn off
while still guaranteeing the required coverage.

In the decision phase, each sensor is initially in BOOT-
STRAP state and has an empty active neighbor list. Before
making its decision, each sensor sets a back-off timer Tdecision

according to its residual energy,

Tdecision = α · (1− p) + ε, (2)

where p is the residual energy percentage level, α is a pos-
itive real number, and ε is a small random number uni-
formly distributed within (0, χ]. α and χ decide the sensitivity
of Tdecision to the percentage level of residual energy, that is,
larger α accentuates while larger χ de-emphasizes the differ-
ence of residual energy among sensors. How to set the val-
ues of α and χ is beyond the scope of this paper, and will
be part of our future work. When its timer expires, a sen-
sor decides its redundancy by checking whether its sensing
region is K-covered by the sensors in the active neighbor
list, and switches to ACTIVE or INACTIVE state accordingly.
Detailed description of the redundancy checking algorithm
is presented in Section 2.4. If a sensor decides to switch to
ACTIVE state, it broadcasts a TURNON beacon including its
ID, coordinates, and SR to the neighbors whose sensing re-
gions overlap with the sensor. Upon receiving the TURNON
beacon, a neighbor in BOOTSTRAP or ACTIVE state adds
the sender ID to the active neighbor list and stores the coor-
dinates and the SR of the sender. The decision phase lasts for
(α + χ) time units.

After the decision phase, there may exist redundant active
sensors because the sensors turning on later may cover the
sensing regions of the sensors that had already turned on and
create redundancy. To eliminate the redundancy, each active
sensor starts the optimization phase right after the decision
phase by setting a back-off timer Topt according to its residual
energy,

Topt = α · p + ε, (3)

where α, p, and ε have the same meaning as in (2). When a
sensor times out, it checks for redundancy based on its active
neighbor list and if redundant, switches to INACTIVE state
and broadcasts a TURNOFF beacon to its active neighbors.
Upon receiving the TURNOFF beacon, an active neighbor
removes the sender ID from its active neighbor list. The op-
timization phase also lasts for (α + χ) time units.

In the decision phase, according to (2), sensors with a
higher percentage level of residual energy have a shorter
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Figure 1: SCOM-redundancy eligibility rule.

back-off period Tdecision and thus time out earlier. Therefore,
sensors with a higher percentage level of residual energy have
more chance to switch to ACTIVE state. On the other hand,
in the optimization phase, according to (3), sensors with a
higher percentage level of residual energy have a longer back-
off period Topt and thus time out later. As a result, active sen-
sors with a higher percentage level of residual energy have
less chance to turn off. In this way, SCOM balances workload
over sensors by employing sensors with more residual energy
to provide coverage. It is clear that the precision of time syn-
chronization and residual energy estimation may impact the
performance of load balancing, but has no effect on guaran-
teeing required coverage.

2.4. Redundancy eligibility rule

The key operation of SCOM is to decide a sensor’s redun-
dancy given the location of the neighbors in the active neigh-
bor list. Obviously, a sensor is redundant if its sensing region
isK-covered by its neighbors. Here we propose a redundancy
eligibility rule, by which a sensor is able to decide whether its
sensing region isK-covered by its neighbors simply by check-
ing the coverage at a few locations within its sensing region.

We first assume that no two sensors are at the same loca-
tion, and later extend the proposed eligibility rule to handle
multiple sensors at the same location. We describe redun-
dancy eligibility rules for two cases: homogeneous SR (i.e.,
sensors have the same SR) and heterogeneous SR (i.e., sen-
sors may have different SRs).

2.4.1. Sensors with homogeneous SR

For clarity, we have defined a sensor’s critical point set.

Definition 3. Critical point set-sensor i’s critical point set Si
contains, for each neighbor n, (1) the intersection points be-
tween the sensing perimeters of n and other neighbors within

the sensing region of sensor i, or if such intersection points
do not exist, (2) one intersection point between the sensing
perimeters of n and sensor i.

For example, in Figure 1(a), Si contains three intersection
points between sensor i’s neighbors (i.e., x, y and z) and one
intersection point between a neighbor and sensor i (i.e., v).
Note that two tangent sensing perimeters are regarded to in-
tersect each other at the point of contact.

Theorem 1. In a homogeneous sensor network, given a natural
number K , (1) if Si is not empty, the sensing region of sensor i
is K-covered by its neighbors if and only if each critical point in
Si is K-covered by its neighbors; (2) if Si is empty, the sensing
region of sensor i is not K-covered by its neighbors.

Proof. (1) When Si is not empty, the sensing region of sen-
sor i is divided into subregions by the sensing perimeters
of neighbors. For example, in Figure 1(a), sensor i’s sens-
ing region is divided into eight sub-regions. Since a sen-
sor’s sensing perimeter is not covered by the sensor itself ac-
cording to Definition 1, the coverage of a sub-region is al-
ways higher than or equal to the coverage of adjacent criti-
cal points. For example, in Figure 1(a), the coverage of sub-
region 8 is higher than or equal to the coverage of adjacent
critical point x, y and z. Thus, the minimal coverage of sub-
regions is no less than the minimal coverage of critical points.
On the other hand, for each critical point, we can always find
an adjacent sub-region with the same coverage. For example,
in Figure 1(a), critical points x, y, and z have the same cover-
age as subregions 2, 5, and 7, respectively. Thus, the minimal
coverage of critical points is no less than the minimal cover-
age of sub-regions. Therefore, the minimal coverage of criti-
cal points equals the minimal coverage of sub-regions, which
means that if each critical point in Si is K-covered by sensor
i’s neighbors, the sensing region of sensor i is K-covered by
its neighbors, and vice versa. (2) An empty Si implies that the
sensing regions of sensor i and its neighbors do not overlap.
Thus, the sensing region of sensor i is not K-covered by its
neighbors.
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Figure 2: Theorem 1 cannot be applied for heterogeneous sensors.

2.4.2. Sensors with heterogeneous SR

When sensors have different SRs, Theorem 1 may not hold.
For example, in Figure 2, Si contains critical points x and y,
both of which are 1-covered by sensor i’s neighbors. How-
ever, the sensing region of sensor i is not 1-covered by its
neighbors. To accommodate heterogeneous sensors, we have
defined extended critical point set.

Definition 4. Extended critical point set-sensor i’s extended
critical point set ESi contains (1) the critical points in crit-
ical point set Si, and (2) a sampling point on each sensing
perimeter that is within sensor i’s sensing region and does
not intersect with any other sensing perimeter.

For example, in Figure 1(b), Si contains three critical
points, x, y and z. There are two sensing perimeters that are
contained in sensor i’s sensing region and that do not inter-
sect with other sensing perimeters. Thus, ESi also contains v
and w as the sampling points on the two sensing perimeters.
Therefore, ESi contains five critical points, x, y, z, w, and v.

Theorem 2. In a heterogeneous sensor network, given a nat-
ural number K , (1) if ESi is not empty, the sensing region of
sensor i is K-covered by its neighbors if and only if each critical
point in ESi is K-covered by its neighbors; (2) if ESi is empty,
the sensing region of sensor i is K-covered by neighboring sen-
sors if and only if a sampling point within the sensing region of
sensor i is K-covered by its neighbors.

Proof. (1) The proof is similar to Theorem 1. We can prove
that the minimal coverage of the critical points in ESi is equal
to the minimal coverage of the sub-regions, which means
that if each critical point in ESi is K-covered by sensor i’s
neighbors, the sensing region of sensor i is also K-covered
by its neighbors, and vice versa. (2) When sensors have het-
erogeneous SR, an empty extended critical point set does not
necessarily mean that the sensing region has no overlap with
others. For example, in Figure 1(b), ESn contains no critical
point, but sensor n’s sensing region is contained in the sens-
ing regions of its neighbors. In this case, the sensing region of
n is not divided into sub-regions. Thus, sensor n can decide
whether its sensing region is K-covered by checking the cov-
erage of any sampling point within its sensing region.

x

v

i

y z

u

Figure 3: Critical point set versus the existing algorithms.

For the description above, we assume that no two sensors
are at the same location. The redundancy eligibility rules de-
scribed in Theorems 1 and 2 can be easily extended to accom-
modate the special case of multiple sensors at the same loca-
tion. For sensors with homogeneous SR, if Si is not empty,
the coverage of the critical points on sensor i’s sensing perime-
ter (e.g., v in Figure 1(a)) is increased by the number of sen-
sors at the same location as sensor i; if Si is empty, the sens-
ing area of sensor i is covered by the number of sensors at the
same location as sensor i. In the case of heterogeneous SR, if
ESi is not empty, the coverage of the critical points on sensor
i’s sensing perimeter (e.g., z in Figure 1(b)) is increased by the
number of sensors at the same location and with the same SR
as sensor i; in the case of an empty ESi, we can still decide the
redundancy of sensor i by checking a sampling point within
its sensing region.

We note that a similar idea was proposed in Hall (1998)
[15, page 56] to study the problem of covering a sphere with
circular caps and later developed by [16, 17] for K-coverage
maintenance in sensor networks. In their algorithms, how-
ever, the set of points to be checked by each sensor includes
all the intersection points between the sensing perimeters
of any two neighbors or between a neighbor and the sen-
sor itself. Thus, their algorithms are required to check more
points, and as a result, incur more computation overhead.
For example, in Figure 3, critical point set Si only contains
point x, while the existing algorithms are required to com-
pute coverage at all the intersection points, x, y, z, u, and
v. Furthermore, the algorithms proposed in [15–17], assume
homogeneous caps or sensors and cannot be applied to het-
erogeneous sensors.

3. SCHEME ANALYSIS

In this section, we analyze and compare the scalability of
SCOM with the existing schemes proposed in [4, 6].

In the scheme proposed in [4] (hereinafter referred to as
the sponsored sector (SS) scheme), every sensor calculates its
eligibility to turn off. A sensor is eligible to turn off if its sens-
ing region is contained by the union of the sponsored sectors
offered by its active neighbors within SR. A back-off mecha-
nism is used to avoid blind points caused by simultaneous
decisions of multiple sensors. After the back-off period, a
sensor eligible to turn off broadcasts a TURNOFF beacon
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to the neighbors within SR. Upon receiving the TURNOFF
beacon, every neighbor removes the sensor from the neigh-
bor list so that the sensor will not be counted to decide the
eligibility of other sensors.

In the scheme proposed in [6] (referred to as the basic dif-
ferentiated surveillance (DS)), each sensor randomly gener-
ates a time-reference point and broadcasts it to the neighbors
within twice SR. The target region is covered with a virtual
square grid. A sensor decides the working schedule for each
grid point within the SR based on its own time-reference
point and the time-reference points of the neighbors cov-
ering the grid point. The final schedule of the sensor is the
union of the working schedules for all the grid points. The fi-
nal schedule can be optimized through exchanging schedule
information among neighboring sensors (referred to as 2nd
pass differentiated surveillance (DS)).

Let us investigate a sensor network composed of N ho-
mogeneous sensors with sensing range R uniformly deployed
in a square area of �× � (R� �). For each scheme, we exam-
ine the growth of communication overhead (i.e., the num-
ber of transmitted and received beacons) and computational
complexity (i.e., space and time complexity) as N →∞.

3.1. SCOM

Assume that there are M sensors turning on in the decision
phase and N ′(N ′ � M) active sensors in the final network.

Theorem 3. Given a limited required degree of coverageK , one
has

lim
N→∞

E(M) = O(1), (4)

where E(M) is the expected number of sensors that turn on in
the decision phase of SCOM.

Proof. Without losing generality, we investigate a sensor net-
work within a unit square area (i.e., � is set to 1).

Let us first consider the independent turning on process,
in which N sensors are uniformly deployed in BOOTSTRAP
state initially and then randomly and independently turn on
one by one until 1-coverage is fulfilled. It is clear that the
location of the sensors turning on follows a stationary two-
dimensional Poisson point process. Denote the density of the
Poisson point process and the vacancy (i.e., the region not 1-
covered) as λ and Vλ, respectively. It has been shown in Hall
(1988) [15, Theorem 3.11, page 180] that

0.05ζλ < P
(
Vλ > 0

)
< 3ζλ, (5)

where ζλ = min{1, (1 + πR2λ2)e−πR2λ}.
Obviously, the (n+ 1)th sensor turns on only when the n

sensors that are already on cannot cover the area. Thus, the
probability of requiring more than n active sensors can be
calculated as the probability of vacancy larger than 0 with n
active sensors, or

P(M > n) = P
(
Vn/�2 > 0

) = P
(
Vn > 0

)
. (6)

Therefore, we have

E(M) =
∞∑

n=1

n · P(M = n)

<
∞∑

n=1

n · P(M > n− 1)

=
∞∑

n=1

n · P(Vn−1 > 0
)

<
∞∑

n=1

n · 3ζn−1

<
∞∑

n=1

n · 3
(
1 + πR2(n− 1)2)e−πR

2(n−1).

(7)

We can easily prove the convergence of the series in (7)
with the ratio test

lim
n→∞

3(n+1)
(
1+πR2n2

)
e−πR2n

3n
(
1+πR2(n−1)2

)
e−πR2(n−1)

=e−πR2
<1. (8)

The convergence of the series indicates that E(M) to pro-
vide 1-coverage is bounded by an upper limit, or O(1) as
N →∞.

In [18] (the proof of Theorem 1), Zhang and Huo pre-
sented an upper bound of the probability that a region is not
K-covered. With the upper bound, we can prove that the ex-
pected number of sensors to provide K-coverage is also up-
per bounded by a limit, or O(1) as N →∞. Since the proof is
essentially the same as the 1-coverage case, we have omitted
it here.

We have shown that E(M) of the independent turning on
process is O(1) as N → ∞. The difference between the de-
cision phase of SCOM and the independent turning on pro-
cess is that, in the decision phase of SCOM, a sensor turns on
only when it is not redundant (instead of turning on inde-
pendently). It is clear that the decision phase of SCOM yields
fewer active sensors than the independent turning on pro-
cess. Therefore, E(M) of the decision phase of SCOM is also
O(1) as N →∞.

3.1.1. Communication overhead

(a) Number of transmitted beacons

In SCOM, sensors transmit TURNON beacons and
TURNOFF beacons in the decision phase and optimization
phase, respectively. It is clear that sensors transmit M
TURNON beacons in the decision phase and (M − N ′)
TURNOFF beacons in the optimization phase (note that N ′

is the number of active sensors after the optimization phase,
which is no larger than M). The total number of transmitted
beacons is (2M −N ′), or O(1) as N →∞.

(b) Number of received beacons

In the decision phase, only the sensors in BOOTSTRAP or
ACTIVE state need to receive TURNON beacons. The av-
erage number of neighbors in BOOTSTRAP or ACTIVE
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state of each sensor is upper bounded by Nπ(2R)2/�2 (in
SCOM neighbor sensors are within the range of 2R). Since
there are in total M TURNON beacons transmitted, the total
number of TURNON beacons received is upper bounded by
MNπ(2R)2/�2. In the optimization phase, only the sensors in
ACTIVE state accept TURNOFF beacons. Since the average
number of neighbors in ACTIVE state of each sensor is upper
bounded by Mπ(2R)2/�2 and there are (M −N ′) TURNOFF
beacons transmitted, the total number of TURNOFF beacons
received is upper bounded by Mπ(2R)2(M −N ′)/�2. The to-
tal number of TURNON and TURNOFF beacons received is
upper bounded by MNπ(2R)2/�2 +Mπ(2R)2(M−N ′)/�2, or
O(N) as N →∞.

3.1.2. Computational complexity

(a) Time complexity

In the decision phase, each sensor applies the redundancy eli-
gibility rule to decide redundancy. The critical point set com-
prises the intersection points between the sensing perime-
ters of the sensor and its active neighbors. The average num-
ber of active neighbors of each sensor is upper bounded by
Mπ(2R)2/�2. Thus, the number of critical points is upper
bounded by 2 · (Mπ(2R)2/�2)(1 + Mπ(2R)2/�2). For each
critical point, a sensor needs to check for each active neigh-
bor whether the critical point is covered. Thus, the num-
ber of basic computation steps to decide the redundancy is
2 · (Mπ(2R)2/�2)2(1 + Mπ(2R)2/�2), or O(1) as N → ∞. In
the optimization phase, each active sensor checks its redun-
dancy once, the number of basic computation steps of which
is also O(1). Thus, the time complexity is O(1) as N →∞.

(b) Space complexity

The memory size required for each sensor to execute SCOM
is mainly composed of (1) Mπ(2R)2/�2 entries for neighbors
in ACTIVE state and (2) 2 · (Mπ(2R)2/�2)(1 +Mπ(2R)2/�2)
entries for critical points. Thus, the space complexity is O(1)
as N →∞.

3.2. Sponsored sector scheme

Denote the number of active sensors in the resulting network
of SS as N ′. Similarly, we can derive that E(N ′) of SS is O(1)
when N →∞.

3.2.1. Communication overhead

(a) Number of transmitted beacons

Each sensor to turn off sends a TURNOFF beacon to inform
its neighbors. Obviously, the total number of TURNOFF
beacons transmitted is (N −N ′), or O(N) as N →∞.

(b) Number of received beacons

Only sensors that have not made their decisions need to re-
ceive TURNOFF beacons. In the best case, all the N ′ ac-
tive sensors make decisions before the other sensors, and

thus no beacon is received by these N ′ sensors. Therefore,
TURNOFF beacons are only exchanged among the (N −N ′)
sensors. For the ith sensor to turn off, the average num-
ber of received TURNOFF beacons is (i − 1)πR2/�2 (in SS
neighbor sensors are within the range of R). Thus, the total
number of TURNOFF beacons received by all the sensors is
∑N−N ′

i=1 ((i− 1)πR2/�2), or O(N2) as N →∞.

3.2.2. Computational complexity

(a) Time complexity

In SS, each sensor checks all the active neighbors to de-
cide its redundancy. Thus, the computational complexity is
in the order of the number of active neighbors. A lower
bound of the computational complexity can be derived by
merely counting the computation overhead of the (N − N ′)
inactive sensors in the resulting network. For the ith sen-
sor to turn off, the average number of active neighbors is
(N − i+ 1)(πR2/�2). Thus, the total computational complex-
ity of all the sensors is O(

∑N−N ′
i=1 ((N − i + 1)πR2/�2)), or

O(N2). Thus, the average time complexity per sensor is O(N)
as N →∞.

(b) Space complexity

The memory size required for each sensor is mainly com-
posed ofNπR2/�2 entries on average to store neighbor states.
Thus, the space complexity is O(N).

3.3. Basic differentiated surveillance

3.3.1. Communication overhead

It is noted in [6] that the time-reference point beacons can be
combined with the beacons to exchange coordinates among
neighbors. Thus, there is no extra communication overhead
in Basic DS.

3.3.2. Computational complexity

(a) Time complexity

As described in [6], there are averagely πR2/d2 grid points
within a sensor’s sensing region, where d is the unit grid
size. Each sensor decides the schedule for each grid point ac-
cording to neighbors’ time reference points. Given NπR2/�2

neighbors on average covering the same grid point, it takes
(NπR2/�2) log(NπR2/�2) basic computation steps to sort
time-reference points and another constant time C to decide
the sensor’s schedule for the grid point. Finally, the sched-
ules for all the grid points are combined to generate the in-
tegrated schedule for the sensor, which costs 2πR2/d2 basic
computation steps. Thus, the overall computational com-
plexity is (πR2/d2)((NπR2/�2) log(NπR2/�2) +C) + 2πR2/d2,
or O(N logN) as N →∞.



Jun Lu et al. 7

(b) Space complexity

As described in [6], the memory size required for each sen-
sor is mainly composed of (1)Nπ(2R)2/�2 entries on average
for a neighbor table, (2) NπR2/�2 memory units on average
for sorting time reference points and (3) 2πR2/d2 memory
units for schedules of grid points. The total space complexity
is O(N).

3.4. 2nd pass differentiated surveillance

3.4.1. Communication overhead

(a) Number of transmitted beacons

In 2nd pass DS, each sensor sends two beacons to inform
its original integrated schedule and optimized schedule to
neighbors. Thus, the total number of beacons transmitted is
O(N).

(b) Number of received beacons

First, each sensor receives the beacons for original integrated
schedules from its neighbors. The total number of received
beacons is N · (Nπ(2R)2/�2), or O(N2). Second, only sensors
that have not optimized need to receive the beacons for opti-
mized schedules. For the ith sensor to optimize, the average
number of the received beacons is (i−1)π(2R)2/�2. Thus, the
total number of received beacons for the optimized sched-
ule is

∑N
i=1((i− 1)π(2R)2/�2), or O(N2). Therefore, the total

number of received beacons is O(N2).

3.4.2. Computational complexity

(a) Time complexity

In 2nd pass DS, each sensor carries out the basic DS algo-
rithm and optimizes its schedule according to the schedules
of its neighbors, both of which can be done in O(N logN).
Thus, the time complexity is O(N logN).

(b) Space complexity

The memory capacity required for each sensor is mainly
composed of (1) Nπ(2R)2/�2 entries on average for a neigh-
bor table, (2) NπR2/�2 memory units on average for sort-
ing time reference points on average, (3) 2πR2/d2 memory
units on average for schedules for all the grid points and
(4) Nπ(2R)2/�2 entries on average for integrated schedules
of neighboring sensors. Thus, the space complexity is O(N).

Table 1 summarizes the scalability of different coverage
maintenance schemes to sensor deployment density (note
that given a fixed �, N actually represents sensor deploy-
ment density) in terms of total communication overhead
(i.e., number of transmitted and received beacons) and com-
putational complexity (i.e., time and space complexity). We
can see that SCOM outperforms other schemes except for the
communication overhead of basic DS. However, the achieve-
ment of Basic DS is at the cost of energy efficiency and adapt-
ability to sensor network dynamics such as sensor failures.

An integrated schedule generated by basic DS is a super set of
schedules for many grid points, and therefore may be more
than sufficient to provide the coverage guarantee. Moreover,
when executed in multiple rounds, basic DS is not able to
restore coverage from sensor failure because sensors are un-
aware of the failure of neighboring sensors. Although it is
possible to use heartbeat signals to check the state of neigh-
bors as described in [6], the communication overhead to
transmit and receive heartbeat signals isO(N) andO(N2), re-
spectively. In contrast, at the beginning of each round, since
only working sensors turn on and transmit TURNON bea-
cons, SCOM can easily restore the coverage by substituting
failed sensors with working ones.

Note that we assumed sensors with homogeneous SR in
the above analysis. The analysis results are also valid for het-
erogeneous sensor networks as long as the SR is within a lim-
ited range.

From the above analysis, we know that SCOM is scal-
able because it only turns on necessary sensors in the deci-
sion phase. We have shown that, given the required degree
of coverage, the number of sensors turning on in the deci-
sion phase is a limited value as sensor deployment density
approaches infinity. Since each sensor only communicates to
its active neighbors and only considers the active neighbors
to make its decision, the communication and computation
overhead per sensor remains limited with the increase of sen-
sor deployment density. A similar technique is adopted by
[17, 19, 20], but they do not provide specific analysis and
evaluation of scalability of their schemes.

In summary, communication overhead and computa-
tional complexity per sensor are limited as the sensor deploy-
ment density approaches infinity, which makes SCOM favor-
able for dense sensor networks composed of simple sensors
equipped with a slow processor and small storage.

4. SIMULATION STUDY

In this section, we compare the performance of SCOM with
SS, DS, and 2nd pass DS schemes through simulations.

4.1. Simulation setup

The simulations are carried out over a square region of
100 m× 100 m with wrap around in both dimensions. Thus,
the results are representative of an infinite system, and there-
fore apply to typical large-scale sensor networks. Sensors are
uniformly deployed in the square region.

In SCOM, α and χ of (2) and (3) are set to 10.0 and 1.0,
respectively. We simulated both homogeneous and hetero-
geneous sensor networks. For homogeneous networks, SR is
fixed at 10 m. For heterogeneous networks, a sensor’s SR is
uniformly chosen from three possible values: 5 m, 10 m, and
15 m.

4.2. Simulation results

The simulation results are shown for communication over-
head, computational complexity, energy efficiency, and load
balancing.
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Table 1: Communication overhead and computational complexity.

Scheme
Total communication overhead Computational complexity

Transmitted beacons Received beacons Time complexity Space complexity

SCOM O(1) O(N) O(1) O(1)

SS O(N) O(N2) O(N) O(N)

Basic DS 0 0 O(N logN) O(N)

2nd pass DS O(N) O(N2) O(N logN) O(N)

4.2.1. Communication overhead

Figures 4 and 5 show the communication overhead of dif-
ferent schemes to provide 1-coverage for sensor networks
with homogeneous SR and heterogeneous SR, respectively.
Figure 4 illustrates the total number of beacons transmit-
ted and received in homogeneous sensor networks. Basic
DS is not shown because it incurs no extra communica-
tion overhead by piggybacking the beacons to exchange
time-reference points to the location exchanging beacons (as
shown in Table 1, the number of transmitted and received
beacons of basic DS is 0). Figure 4(a) depicts the total num-
ber of transmitted beacons with various sensor deployment
densities. We can observe that the number of transmitted
beacons of SCOM remains stable while that of the other two
schemes grows linearly with the increase of sensor deploy-
ment density. We also see that the growth rate of SS is lower
than that of 2nd pass DS because in SS only redundant sen-
sors need to send beacons while every sensor transmits two
beacons in 2nd pass DS. The simulation results confirm the
analysis results in Table 1. Figure 4(b) shows that the num-
ber of received beacons of SCOM increases linearly with sen-
sor deployment density, while that of 2nd pass DS grows
quadratically. More detailed analysis reveals that the growth
rate of SS is also quadratic, although much lower than 2nd
pass DS. This observation also agrees with Table 1. Figure 5
describes the number of transmitted and received beacons in
heterogeneous sensor networks. Our observations are similar
to Figure 4; SCOM is more scalable than SS and 2nd pass DS
in terms of communication overhead.

4.2.2. Computational complexity

The analysis in Section 3 reveals that the computational com-
plexity is decided by the number of neighbors. Thus, we use
the average number of neighbors of each sensor to mea-
sure the computational complexity. The results are shown in
Figure 6 for 1-coverage. Since the average numbers of neigh-
bors in the two phases (i.e., the decision phase and opti-
mization phase) of SCOM are different, we show the av-
erage number of active neighbors in both phases. Because
2nd pass DS always has more computation overhead than
Basic DS, we only show the results of basic DS. Figure 6(a)
depicts the average number of active neighbors in homoge-
neous networks. We can see that the average number of ac-
tive neighbors of both phases of SCOM remains constant,
whereas that of SS and basic DS rises linearly with the growth

of sensor deployment density, which means that the com-
putation overhead per sensor of SCOM remains stable (i.e.,
O(1)) while that of SS and basic DS increases with network
deployment density. We also see that SS has fewer neighbors
than basic DS because SS only considers neighbors within the
range of SR. Again, this observation conforms to the analy-
sis results in Table 1. As shown in Figure 6(b), we obtained
similar results for heterogeneous sensor networks.

4.2.3. Energy efficiency

Figure 7 illustrates the energy consumption of monitoring
to provide coverage for homogeneous sensor networks. The
energy consumption is measured in units, which means the
amount of energy consumed by an active sensor for a unit of
time. In [21], a theoretical lower bound of the active sensor
density to achieve 1-coverage is provided as 2/

√
27SR2, and

is calculated in Figure 7(a) as a baseline for comparison. We
can see that SCOM consumes less energy than the other three
schemes. For example, the energy consumption of SCOM is
about 16% less than that of 2nd Pass DS, which is the best
among the other schemes. This is because SCOM uses ac-
tual SR while DS schemes use smaller conservative SR in or-
der to avoid small sensing holes. From Figure 7(a), we also
observe that SCOM consumes about 75% more energy than
the theoretical lower bound. Figure 7(b) illustrates the en-
ergy consumption to provide differentiated degree of cover-
age (i.e., K-coverage), for which the sensor deployment den-
sity is fixed at 8 sensors/SR2. Since [6] does not specify how
to use 2nd pass DS to provide K-coverage, 2nd pass DS is
not shown. We can see that SCOM significantly outperforms
both basic DS and SS. The large discrepancy between SCOM
and basic DS is due to the fact that a sensor’s integrated
schedule generated by basic DS is a super set of its schedules
for many grid points, and therefore is more than sufficient
to provide the coverage guarantee. Moreover, we notice that,
with the increase of the required degree of coverage, the en-
ergy consumption of SCOM grows slower than that of basic
DS and SS, and only slightly faster than the theoretical lower
bound. The energy efficiency of different schemes in hetero-
geneous sensor networks is shown in Figure 8. Again, SCOM
conserves more energy than other schemes.

4.2.4. Load balancing

As described in Section 2.3, by setting the back-off timers
according to sensor residual energy, SCOM can achieve
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Figure 4: Communication overhead (1-coverage, homogeneous SR = 10 m).
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Figure 5: Communication overhead (1-coverage, heterogeneous SR = 5/10/15 m).

load balancing by employing sensors with more percent-
age of residual energy to provide network coverage. Here
we compare SCOM with a modified version of SCOM (re-
ferred to as SCOM without load balancing). In SCOM with-
out load balancing, instead of setting timers according to the
amount of residual energy using (2) and (3), sensors simply

adopt random back-off timers. In the simulations, each sen-
sor starts with 100% energy and the energy consumption rate
is fixed at 10% per round. Figure 9(a) depicts the network
lifetime of maintaining 1-coverage, which is measured as the
time from the beginning of the deployment until the network
loses 1-coverage of the target region. We can see that SCOM
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Figure 6: Average number of active neighbors (1-coverage).
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Figure 7: Energy efficiency (homogeneous SR = 10 m).

considerably extends the lifetime of networks. Figure 9(b)
provides a closer look at the load balancing of SCOM by
showing how the standard deviation of residual energy in a
network of 800 sensors evolves. We can see that SCOM low-
ers the residual energy deviation significantly, which means
that SCOM better distributes workload among different sen-
sors.

The simulation results presented above confirm that
SCOM is highly scalable in terms of communication over-

head and computational complexity, while remaining effec-
tive to conserve energy and balance load among sensors.

5. RELATED WORK

Sensing coverage reflecting the quality of monitoring pro-
vided by a sensor network has been the focus of intense stud-
ies recently.
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Figure 8: Energy efficiency (heterogeneous SR = 5/10/15 m).
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Figure 9: SCOM load balancing (1-coverage).

Some of the research studies investigate sensor network
coverage from a theoretical perspective. For example, Zhang
and Huo [18] derived the asymptotic upper bound of the 1-
lifetime (i.e., the network lifetime to provide full coverage)
for an infinite monitored area and the upper bound of the α-
lifetime (i.e., the network lifetime to provide α-portion cov-
erage) for a finite monitoring area. The authors of [22] ana-
lyzed sensor network coverage of wireless sensor networks by
studying the relation between the number of neighbors and

the coverage redundancy. Liu and Towsley [23] investigated
the limits of sensor network coverage using different coverage
measures, that is, area coverage, node coverage fraction and
detectability. The critical conditions of sensor network con-
figuration for asymptotic coverage are investigated in [24].

There are many coverage maintenance schemes pro-
posed. For example, Tian and Georganas [4] presented a
node scheduling algorithm to turn off sensors whose sens-
ing areas are fully covered by the neighbors within sensing
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range. Randomized as well as coordinated sleep algorithms
were proposed in [25] to maintain network coverage using
low duty-cycle sensors. The randomized algorithm enables
each sensor to independently sleep under a certain proba-
bility, while the coordinated sleep algorithm allows a sen-
sor to enter sleep state if its sensing area is fully contained
by the union set of its neighbors. An algorithm was pro-
posed in [5] to decide the coverage of a target area by merely
checking the coverage state of sensing perimeters. Yan et
al. [6] proposed an adaptable energy-efficient sensing cov-
erage protocol, in which each sensor broadcasts a random
time-reference point, and decides its duty schedule based on
neighbors’ time-reference points. Co-Grid proposed in [14]
schedules sensors by adopting a distributed detection model
based on data fusion. Abrams et al. studied a variant of the
NP-hard SET K-COVER problem in [26], partitioning the
sensors into K covers such that as many areas are monitored
as frequently as possible. Xing et al. [16] studied the relation-
ship between coverage and connectivity, and proposed a cov-
erage maintenance scheme, coverage configuration protocol
(CCP), which, when integrated with an existing connectivity
maintenance scheme, is able to provide both coverage and
connectivity guarantees. In [27], Kumar et al. proposed al-
gorithms to decide quickly whether a deployed region is K-
barrier covered. Two notions of probabilistic barrier cover-
age, the weak and strong barrier coverage, are introduced and
studied. Cardei et al. [28] proposed an efficient scheme to
cover a set of targets with known locations in a randomly and
densely deployed sensor network. The target coverage prob-
lem is modeled as the maximal set cover problem and two
heuristics are proposed and evaluated. Zhang and Huo [19]
presented a scheme to optimize coverage maintenance while
providing global connectivity by keeping a minimum num-
ber of active sensors to minimize coverage redundancy.

6. CONCLUSION

In this paper, we introduced SCOM that conserves energy
while preserving the required sensing coverage by allowing
sensors to autonomously decide their active/inactive states.
An important property of SCOM is the high scalability to
sensor deployment density in terms of communication over-
head and computational complexity, which makes SCOM
suitable for densely deployed sensor networks composed of
simple sensors. We showed that the scalability of SCOM
is better than the earlier works through both theoretical
analysis and simulation study. Moreover, we demonstrated
through simulation study that SCOM outperforms several
existing competitors on energy efficiency and effectively bal-
ances workload among sensors.
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