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Abstract-Various sensor network measurement studies
have reported instances of transient faults in sensor read-
ings. In this work, we seek to answer a simple question:
How often are such faults observed in real deployments? To
do this, we first explore and characterize three qualitatively
different classes of fault detection methods. Rule-based
methods leverage domain knowledge to develop heuris-
tic rules for detecting and identifying faults. Estimation
methods predict "normal" sensor behavior by leveraging
sensor correlations, flagging anomalous sensor readings
as faults. Finally, learning-based methods are trained to
statistically identify classes of faults. We find that these
three classes of methods sit at different points on the
accuracy/robustness spectrum. Rule-based methods can
be highly accurate, but their accuracy depends critically
on the choice of parameters. Learning methods can be
cumbersome, but can accurately detect and classify faults.
Estimation methods are accurate, but cannot classify
faults. We apply these techniques to four real-world sensor
data sets and find that the prevalence of faults as well
as their type varies with data sets. All three methods
are qualitatively consistent in identifying sensor faults in
real world data sets, lending credence to our observations.
Our work is a first-step towards automated on-line fault
detection and classification.

I. INTRODUCTION

With the maturation of sensor network software, we
are increasingly seeing longer-term deployments of wire-
less sensor networks in real world settings. As a result,
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This work made use of Integrated Media Systems Center Shared
Facilities supported by the National Science Foundation under Co-
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research attention is now turning towards drawing mean-
ingful scientific inferences from the collected data [1].
Before sensor networks can become effective replace-
ments for existing scientific instruments, it is important
to ensure the quality of the collected data. Already,
several deployments have observed faulty sensor read-
ings caused by incorrect hardware design or improper
calibration, or by low battery levels [2], [1], [3].

Given these observations, and the realization that it
will be impossible to always deploy a perfectly calibrated
network of sensors, an important research direction for
the future will be automated detection, classification, and
root-cause analysis of sensor faults, as well as techniques
that can automatically scrub collected sensor data to
ensure high quality. A first step in this direction is an
understanding of the prevalence of faulty sensor readings
in existing real-world deployments. In this paper, we take
such a step.
We start by focusing on a small set of sensor faults

that have been observed in real deployments: single-
sample spikes in sensor readings (we call these SHORT
faults, following [2]), longer duration noisy readings
(NOISE faults), and anomalous constant offset readings
(CONSTANT faults). Given these fault models, our
paper makes the following two contributions.
Detection Methods. We first explore three qualitatively
different techniques for automatically detecting such
faults from a trace of sensor readings. Rule-based meth-
ods leverage domain knowledge to develop heuristic
rules for detecting and identifying faults. Estimation
methods predict "normal" sensor behavior by leveraging
sensor correlations, flagging deviations from the normal
as sensor faults. Finally, learning-based methods are
trained to statistically detect and identify classes of
faults.
By artificially injecting faults of varying intensity into
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sensor datasets, we are able to study the detection perfor-
mance of these methods. We find that these methods sit
at different points on the accuracy/robustness spectrum.
While rule-based methods can detect and classify faults,
they can be sensitive to the choice of parameters. By
contrast, the estimation method we study is a bit more
robust to parameter choices but relies on spatial corre-
lations and cannot classify faults. Finally, our learning
method (based on Hidden Markov Models) is cumber-
some, partly because it requires training, but it can fairly
accurately detect and classify faults. Furthermore, at low
fault intensities, these techniques perform qualitatively
differently: the learning method is able to detect more
NOISE faults but with higher false positives, while the
rule-based method detects more SHORT faults, with the
estimation method's performance being intermediate. We
also propose and evaluate hybrid detection techniques,
which combine these three methods in ways that can
be used to reduce false positives or false negatives,
whichever is more important for the application.

Evaluation on Real-World Datasets. Armed with this
evaluation, we apply our detection methods (or, in some
cases, a subset thereof) to four real-world data sets.
The largest of our data sets spans almost 100 days, and
the smallest spans one day. We examine the frequency
of occurrence of faults in these real data sets, using
a very simple metric: the fraction of faulty samples
in a sensor trace. We find that faults are relatively
infrequent: often, SHORT faults occur once in about
two days in one of the data sets that we study, and
NOISE faults are even less frequent. We find no spatial
or temporal correlation among faults. However, different
data sets exhibits different levels of faults: for example,
in one month-long dataset we found only six instances of
SHORT faults, while in another 3-month long dataset, we
found several hundred. Finally, we find that our detection
methods incur false positives and false negatives on these
data sets, and hybrid methods are needed to reduce one
or the other.

Our study informs the research on ensuring data
quality. Even though we find that faults are relatively
rare, they are not negligibly so, and careful attention
needs to be paid to engineering the deployment and to
analyzing the data. Furthermore, our detection methods
could be used as part of an on-line fault detection and
remediation system, i.e., where corrective steps could be
taken during the data collection process based on the
diagnostic system's results.

II. SENSOR FAULTS

In this section, we visually depict some faults in sensor
readings observed in real datasets. These examples are
drawn from the same real-world datasets that we use
to evaluate the prevalence of sensor faults; we describe
details about these datasets later in the paper. These
examples give the reader visual intuition for the kinds
of faults that occur in practice, and motivate the fault
models we use in this paper.

Before we begin, a word about terminology. We use
the term sensor fault loosely. Strictly speaking, what
we call a sensor fault is really a visually or statistically
anomalous reading. In one case, we have been able to
establish that the behavior we identified was indeed a
fault in the design of an analog-to-digital converter. That
said, the kinds of faults we describe below have been
observed by others as well [2], [1], and that leads us to
believe that the readings we identify as faults actually
correspond to malfunctions in sensors. Finally, in this
paper we do not attempt to precisely establish the cause
of a fault.
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Figure l.a shows readings from a sensor reporting
chlorophyll concentration measurements from a sensor
network deployment in lake water. Due to faults in
the analog-to-digital converter board the sensor starts
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reporting values 4 -5 times greater than the actual
chlorophyll concentration. Similarly, in Figure l.b, one
of the samples reported by a humidity sensor has a
value that is roughly 3 times the value of the rest
of the samples, resulting in a noticeable spike in the
plot. Finally, Figure 2 shows that the variance of the
readings from an accelerometer attached to a MicaZ
mote measuring ambient vibration increases when the
voltage supplied to the accelerometer becomes low.
The faults in sensor readings shown in these figures

characterize the kinds of faults we observed in the four
data sets from wireless sensor network deployments
which we analyze in this paper. We know of two other
sensor network deployments [1], [2] that have observed
similar faults.

In this paper, we explore the following three fault
models motivated by these examples (further details are
given in Section IV):

1) SHORT: A sharp change in the measured value
between two successive data points (Figure l.b).

2) NOISE: The variance of the sensor readings in-
creases. Unlike SHORT faults that affect a single
sample at a time, NOISE faults affect a number of
successive samples (see Figure 2).

3) CONSTANT: The sensor reports a constant value
for a large number of successive samples. The
reported constant value is either very high or very
low compared to the "normal" sensor readings
(Figure l.a) and uncorrelated to the underlying
physical phenomena.

SHORT and NOISE faults were first identified and
characterized in [2] but only for a single data set.

III. DETECTION METHODS

In this paper, we explore and characterize three qual-
itatively different detection methods - Linear Least-
Squares estimation (LLSE), Hidden Markov Models
(HMM), and a Rule-based method which leverages do-
main knowledge (the nature of faults in sensor readings)
to develop heuristic rules for detecting and identifying
faults. The Rule-based methods analyzed in this paper
were first proposed in [2].
Our motivation for considering three qualitatively dif-

ferent detection methods is as follows. As one might
expect, and as we shall see later in the paper, no single
method is perfect for detecting the kinds of faults we
consider in this paper. Intuitively, then, it makes sense to
explore the space of detection techniques to understand
the trade-offs in detection accuracy versus the robustness
to parameter choices and other design considerations.

This is what we have attempted to do in a limited
way, and our choice of qualitatively different approaches
exposes differences in the trade offs.

A. Rule-based (Heuristic) Methods

Our first class of detection methods uses two intuitive
heuristics for detecting and identifying the fault types
described in Section II.
NOISE Rule: Compute the standard deviation of sample
readings within a window N. If it is above a certain
threshold, the samples are corrupted by the NOISE fault.
To detect CONSTANT faults, we use a slightly modified
NOISE rule where we classify the samples as corrupted
by CONSTANT faults if the standard deviation is zero.
The window size N can be in terms of time or number of
samples. Clearly, the performance of this rule depends
on the window size N and the threshold.
SHORTRule: Compute the rate of change of the physical
phenomenon being sensed (temperature, humidity etc.)
between two successive samples. If the rate of change is
above a threshold, it is an instance of a SHORT fault.

For well-understood physical phenomena like temper-
ature, humidity etc., the thresholds for the NOISE and
SHORT rules can be set based on domain knowledge.
For example, [2] uses feedback from domain scientists
to set a threshold on the rate of change of chemical
concentration in soil.

For automated threshold selection, [2] proposes the
following technique:

. Histogram method: Plot the histogram of the stan-
dard deviations or the rate of change observed for
the entire time series (of sensor readings) being
analyzed. If the histogram is multi-modal, select one
of the modes as the threshold.

For the NOISE rule, the Histogram method for auto-
mated threshold selection will be most effective when,
in the absence of faults, the histogram of standard
deviations is uni-modal and sensor faults affect the mea-
sured values in such a way that the histogram becomes
bi-modal. However, this approach is sensitive to the
choice of N; the number of modes in the histogram of
standard deviations depends on N. Figure 3 shows the
effect of N on the number of modes in the histogram
computed for sensor measurements taken from a real-
world deployment. The measurements do not contain a
sensor fault, but choosing N= 1000 gives a multi-modal
histogram, and would result in false positives.

Selecting the right parameters for the rule-based meth-
ods requires a good understanding of reasonable sensor
readings. In particular, a domain expert would have
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suggested that N= 1000 in our previous example was
an unrealistic choice.

B. An Estimation-Based Method

Is there a method that perhaps requires less domain
knowledge in setting parameters? For physical phenom-
ena like ambient temperature, light etc. which exhibit
a diurnal pattern, statistical correlations between sensor
measurements can be exploited to generate estimates for
the sensed phenomenon based on the measurements of
the same phenomenon at other sensors. Regardless of the
cause of the statistical correlation, we can exploit the ob-
served correlation in a reasonably dense sensor network
deployment to detect anomalous sensor readings.
More concretely, suppose the temperature values re-

ported by sensors si and s2 are correlated. Let t4 (t2) be
the estimate of temperature at sl based on the tempera-
ture t2 reported by s2. Let t1 be the actual temperature
value reported by si. If It1 4 > 8, for some threshold
8, we classify the reported reading t1 as erroneous. If the
estimation technique is robust, in the absence of faults,
the estimate error (It1- t ) would be small whereas a
fault of the type SHORT or CONSTANT would cause the
reported value to differ significantly from the estimate.

In this paper we consider the Linear Least-Squares Es-
timation (LLSE) [4] method as the estimation technique
of choice. In the real-world, the value t2 at sensor s2
might itself be faulty. In such situations, we can estimate
t4 based on measurements at more than one sensor.

In general, the information needed for applying the
LLSE method may not be available a priori. In applying
the LLSE method to the real-world data sets, we divide
the data set into a training set and a test set. We compute
the mean and variance of sensor measurements, and the
covariance between sensor measurements based on the
training data set and use them to detect faulty samples in
the test data set. This involves an assumption that, in the
absence of faults or external perturbations, the physical

phenomenon being sensed does not change dramatically
between the time when the training and test samples were
collected. We found this assumption to hold for many of
the data sets we analyzed.

Finally, we set the threshold 8 used for detecting
faulty samples based on the LLSE estimation error for
the training data set. We use the following two heuristics
for determining 8:

. Maximum Error: If the training data has no faulty
samples, we can set 8 to be the maximum es-
timation error for the training data set, i.e. 8=
max{I t- : t1 C TS} where TS is the set of all
samples in the training data set.

. Confidence Limit: In practice, the training data set
will have faults. If we can reasonably estimate, e.g.,
from historical information, the fraction of faulty
samples in the training data set, (say) p%, we can
set 8 to be the upper confidence limit of the (1-
p)% confidence interval for the LLSE estimation
errors on the training data set.

Finally, although we have described an estimation-
based method that leverages spatial correlations, this
method can equally well be applied by only leveraging
temporal correlations at a single node. By extracting
correlations induced by diurnal variations at a node, it
might be possible to estimate readings, and thereby de-
tect faults, at that same node. We have left an exploration
of this direction for future work.

C. A Learning-based Method

For phenomena that may not be spatio-temporally
correlated, a learning-based method might be more ap-
propriate. For example, if the pattern of "normal" sensor
readings and the effect of sensor faults on the reported
readings for a sensor measuring a physical phenomenon
is well understood, then we can use learning-based
methods, for example Hidden Markov Models (HMMs)
and neural networks, to construct a model for the mea-
surements reported by that sensor. In this paper we chose
HMMs because they are a reasonable representative of
learning based methods that can simultaneously detect
and classify sensor faults. Determining the most effective
learning based method is left for future work.
The states in an HMM mirror the characteristics of

both the physical phenomenon being sensed as well as
the sensor fault types. For example, based on our charac-
terization of faults in Section II, for a sensor measuring
ambient temperature, we can use a 5-state HMM with
the states corresponding to day, night, SHORT faults,
NOISE faults and CONSTANT faults. Such an HMM

4

216



can capture not only the diurnal pattern of temperature
but also the distinct patterns in the reported values in
the presence of faults. For brevity, we omit a formal
definition of HMMs; the interested reader is referred
to [5].

D. Hybrid Methods

Finally, observe that we can use combinations of
the Rule-based, LLSE, and HMM methods to elimi-
nate/reduce the false positives or negatives. In this paper,
we study two such schemes:

. Hybrid(U): Over two (or more) methods, this
method identifies a sample as faulty if at least one
of the methods identifies the sample as faulty. Thus,
Hybrid(U) is intended for reducing false negatives
(it may not eliminate them entirely, since all meth-
ods might incorrectly flag a sample to be faulty).
However, it can suffer from false positives.

* Hybrid(l): Over two (or more) methods, this method
identifies a sample as faulty only if both (all) the
methods identify the sample as faulty. Essentially,
we take an intersection over the set of samples
identified as faulty by different methods. Hybrid(I)
is intended for reducing false positives (again, it
may not eliminate them entirely), but it can suffer
from false negatives.

Several other hybrid methods are possible. For example,
Hybrid(U) can be easily modified so that results from
different methods have different weights in determining
if a measurement is faulty. This would be advantageous
in situations where a particular method or heuristic is
known to be better at detecting faults of a certain type. In
situations where it is possible to obtain a good estimate
of the correct value of an erroneous measurement, for
example with LLSE, we can use different methods in
sequence- first correct all the faults reported by one
method and then use this modified time series of mea-
surements as input to another method. We have left the
exploration of these methods for future work.

IV. EVALUATION: INJECTED FAULTS

Before we can evaluate the prevalence of faults in real-
world datasets using the methods discussed in the pre-
vious section, we need to characterize the accuracy and
robustness of these methods. To do this, we artificially
injected faults of the types discussed in Section II into a
real-world data set. Before injecting faults, we verified
that the real-world data set did not contain any faults.

This methodology has two advantages. First, injecting
faults into a data set gives us an accurate "ground truth"
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Fig. 4. Injected SHORT Faults

that helps us better understand the performance of a
detection method. Second, we are able to control the
intensity of a fault and can thereby explore the limits
of performance of each detection method as well as
comparatively assess different schemes at low fault in-
tensities. Many of the faults we have observed in existing
real data sets are of relatively high intensity; even so, we
believe it is important to understand behavior across a
range of fault intensities, since it is unclear if faults in
future data sets will continue to be as pronounced as
those in today's data sets.

Below, we discuss the detection performance of vari-
ous methods for each type of fault. We describe how we
generate faults in the corresponding subsections. We use
three metrics to understand the performance of various
methods: the number of faults detected, false negatives,
and false positives. More specifically, we use the fraction
of samples with faults as our metric, to have a more
uniform depiction of results across the data sets. For the
figures pertaining to this section and Section V, the labels
used for different detection methods are:R: Rule-based,
L: LLSE, H: HMM, U:Hybrid(U), and I: Hybrid(I).

A. SHORT Faults

To inject SHORT faults, we picked a sample i and
replaced the reported value vi with v$i = vi + f x vi. The
multiplicative factor f determines the intensity of the
SHORT fault. We injected SHORT faults with intensity
f {2,5, 10}. Injecting SHORT faults in this manner
(instead of just adding a constant value) does not require
knowledge of the range of "normal" sensor readings.

Figure 4 compares the accuracy of the SHORT rule,
LLSE, HMM, Hybrid(U), and Hybrid(I) for SHORT
faults. The horizontal line in the figure represents the
actual fraction of samples with injected faults. The four
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sets of bar plots correspond to increasing intensity of
SHORT faults (left to right).
The SHORT rule and LLSE do not have any false

positives; hence, the Hybrid(I) method exhibits no false
positives. However, for faults with low intensity (f = 2),
the SHORT rule as well as LLSE have significant false
negatives. The choice of threshold used to detect a faulty
sample governs the trade-off between false positives and
false negatives; reducing the threshold would reduce the
number of false negatives but increase the number of
false positives. For the SHORT rule, the threshold was
selected automatically using the histogram method and
for LLSE the threshold was set using the Maximum Error
criterion.
The HMM method has fewer false negatives compared

to SHORT rule and LLSE but it has false positives for
lowest intensity (f = 2). While training the HMM for
detecting SHORT faults, we observed that if the training
data had a sufficient number of SHORT faults (on the
order of 15 faults in 11000 samples), the intensity of the
faults did not affect the performance of HMMs.

In these experiments, Hybrid(U) performs like the
method with more detections and Hybrid(I) performs like
the method with fewer detections (while eliminating the
false positives). However, in general this does not have to
be the case: in the absence of false positives, Hybrid(U)
could detect more faults than the best of the methods and
Hybrid(I) could detect fewer faults than the worst of the
methods (as illustrated on the real data sets in Section
V).

B. NOISE Faults

To inject NOISE faults, we pick a set of successive
samples W and add a random value drawn from a
normal distribution, N(0, 62), to each sample in W. We
vary the intensity of NOISE faults by choosing different
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values for (T. The Low, Medium, and High intensity of
NOISE faults correspond to 0.5x, 1.5x, and 3x increase
in standard deviation of the samples in W, respectively.
Apart from varying the intensity of NOISE faults, we
also vary its duration by considering different numbers
of samples in W. The total number of samples in the time
series into which we injected NOISE faults was 22,600.
To train the HMM, we injected NOISE faults into the
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training data. These faults were of the same duration
and intensity as the faults used for comparing different
methods. There were no NOISE faults in the training
data for LLSE. For the NOISE rule, N= 100 was used.

Figures 5 (IW= 3000), 6 (|W| = 2000), 7 (|W| =
1000) and 8 (IW 100) show the performance of differ-
ent methods for NOISE faults with varying intensity and
duration. The horizontal line in each figure corresponds
to the number of samples with faults.
Impact of Fault Duration: The impact of fault duration
is most dramatic for the HMM method. For lWl = 100,
regardless of the fault intensity, there were not enough
samples to train the HMM model. Hence, Figure 8 does
not show HMM results. For IW 1000 and low fault
intensity, we again failed to train the HMM model. This
is not very surprising because for short duration (e.g.,
IWI = 100) or low intensity faults, the data with injected
faults is very similar to the data without injected faults.
For faults with medium and high intensity or faults with
sufficiently long duration, e.g., IWI > 1000, performance
of the HMM method is comparable to those of the
NOISE rule and LLSE.
The NOISE rule and LLSE methods are more robust to

fault duration than HMMs in the sense that we were able
to derive model parameters for those cases. However, for
IW 100 and low fault intensity, both the methods fail
to detect any of the samples with faults. The LLSE also
has a significant number of false positives for IWI=
100 and fault intensity 0.5x. The false positives were
eliminated by the Hybrid(I) method.
Impact of Fault Intensity: For medium and high intensity
faults, there are no false negatives for any method. For
low intensity faults, all the methods have significant false
negatives. For fault duration and intensities for which the
HMM training algorithm converged, the HMM method
gave lower false negatives as compared to the NOISE
rule and LLSE. However, most of the time the HMM
method gave more false positives. Hybrid methods are
able to reduce the number of false positives or negatives,
as intended. High false negatives for low fault intensity
arise because the data with injected faults is very similar
to the data without faults.

V. FAULTS IN REAL-WORLD DATA SETS

We analyze four data sets from real-world deploy-
ments for prevalence of faults in sensor traces. The
sensor traces contain measurements from a variety of
phenomena - temperature, humidity, light, pressure, and
chlorophyll concentration. However, all of these phe-
nomena exhibit a diurnal pattern in the absence of

outside perturbation or sensor faults.

A. Great Duck Island (GDI) data set

We looked at data collected using 30 weather motes
on the Great Duck Island over a period of 3 months [6].
Attached to each mote were temperature, light, and
pressure sensors, and these were sampled once every 5
minutes. Of the 30 motes, the data set contained sampled
readings from the entire duration of the deployment for
only 15 motes. In this section, we present our findings
on the prevalence of faults in the readings for these 15
motes.
The predominant fault in the readings was of the

type SHORT. We applied the SHORT rule, the LLSE
method, and Hybrid(I) to detect SHORT faults in light,
humidity, and pressure sensor readings. Figure 9 shows
the overall prevalence (computed by aggregating results
from all 15 nodes) of SHORT faults for different sensors
in the GDI data set. The Hybrid (I) technique eliminates
all false positives reported by the SHORT rule or the
LLSE method. The intensity of SHORT faults was high
enough to detect by visual inspection. This ground-truth
is included for reference in the figure under the label V.

It is evident from the figure that SHORT faults are
relatively infrequent. They are most prevalent in the light
sensor data (approximately 1 fault every 2000 samples).
Figure 10 shows the distribution of SHORT faults in light
sensor readings across various nodes. SHORT faults do
not exhibit any discernible pattern in the prevalence of
these faults across different sensor nodes; the same holds
for other sensors, but we have omitted the corresponding
graphs for brevity.

In this data set, NOISE faults were infrequent. Only
two nodes had NOISE faults with a duration of about
100 samples. The NOISE rule detected it, but the LLSE
method failed primarily because its parameters had been
optimized for SHORT faults.

B. INTEL Lab, Berkeley data set

54 Mica2Dot motes with temperature, humidity and
light sensors were deployed in the Intel Berkeley Re-
search Lab between February 28th and April 5th,
2004 [7]. In this paper, we present the results on the
prevalence of faults in the temperature readings (sampled
on average once every 30 seconds).

This dataset exhibited a combination of NOISE and
CONSTANT faults. Each sensor also reported the volt-
age values along with the samples. Inspection of the
voltage values reported showed that the faulty samples
were well correlated with the last few days of the
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deployment when the lithium ion cells supplying power

to the motes were unable to supply the voltage required
by the sensors for correct operation.

The samples with NOISE faults were contiguous in
time, and both the NOISE rule and a simple two-state
HMM model identified most of these samples. Figure 11

shows that close to 20% of the total temperature samples
collected by all the motes were faulty. Both the NOISE

H

Fig. 11. Intel data set: Prevalence of Noise faults

rule and the HMM have some false negatives while
the HMM also has some false positives. For this data
set, we could eliminate all the false positives using
Hybrid(I) with the NOISE rule and the HMM. However,
the Hybrid(I) incurred more false negatives.

Interestingly, for this dataset, we could not apply the
LLSE method to detect NOISE faults. NOISE faults
across various nodes were temporally correlated, since
all the nodes ran out of battery power at approximately
the same time. This breaks an important assumption
underlying the LLSE technique, that faults at different
sensors are uncorrelated.

Finally, in this data set, there were surprisingly few
instances of SHORT faults. A total of 6 faults were ob-
served for the entire duration of the experiment (Table I).
All of these faults were detected by the HMM method,
LLSE, and the SHORT rule.

ID # Faults Total # Samples
2 1 46915
4 1 43793
14 1 31804
16 2 34600
17 1 33786

TABLE I
INTEL LAB: SHORT FAULTS, TEMPERATURE

C. NAMOS data set

Nine buoys with temperature and chlorophyll con-

centration sensors (fluorimeters) were deployed in Lake
Fulmor, James Reserve for over 24 hours in August
2006 [8]. Each sensor was sampled every 10 seconds.
We analyzed the measurements from chlorophyll sensors

for the prevalence of faults.
The predominant fault was a combination of NOISE

and CONSTANT caused by hardware faults in the ADC
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Station ID # Faults Total # samples|
3 86 45396
21 1 84818
41 1 60680

TABLE II
SHORT FAULTS IN SENSORSCOPE DATA SET

(Analog-to-Digital Converter) board. Figure l.a shows
the measurements reported by buoy 103. We applied the
NOISE Rule to detect samples with errors. Figure 12
shows the fraction of samples corrupted by faults. The
sensor measurements at 4 (out of 9) buoys were affected
by faults in the ADC board and resulted in more than
15% of erroneous samples at three of them. Buoy 103
was affected the worst, with 35% erroneous samples.
We could not apply LLSE and HMM methods because
there was not enough data to train the models (data was
collected for 24 hours only).

D. SensorScope data set

The SensorScope project is an ongoing outdoor sensor
network deployment consisting of weather-stations with
sensors for sensing several environmental quantities such
as temperature, humidity, solar radiation, soil moisture,
and so on [9]. We analyzed the temperature measure-
ments reported once every 15 seconds during November,
2006 by 31 weather stations deployed on a university
campus.
We found the occurrence of faults to be the lowest for

this data set. The data from only 3 out of the 31 stations
that we looked at contained instances of SHORT faults.
We identified the faulty samples using the SHORT rule
and the LLSE method. Neither of the methods generated
any false positives. We did not find any instances of
NOISE and CONSTANT faults. Table (II) presents our
findings from the SensorScope data set.

VI. RELATED WORK

Two recent papers [10], [11] have proposed a declar-
ative approach to erroneous data detection and cleaning.
StreamClean [10] provides a simple declarative language
for expressing integrity constraints on the input data.
Samples violating these constraints are considered faulty.
StreamClean uses a probabilistic approach based on
entropy maximization to estimate the correct value of
an erroneous sample. The evaluation in [10] is geared
towards a preliminary feasibility study and does not
use any real world data sets. Extensible Sensor stream
Processing (ESP) framework [11] provides support for

specifying the algorithms used for detecting and cleaning
erroneous samples using declarative queries. This ap-
proach works best when the types of faults that can occur
and the methods to correct them are known a priori. The
declarative queries used for outlier detection in [11] are
similar to our Rule-based method for SHORT faults. The
ESP framework is evaluated using the INTEL Lab data
set [7] and a data set from an indoor RFID network
deployment.

Koushanfar et al. [12] propose a real-time fault de-
tection procedure that exploits multi sensor data fusion.
Given measurements of the same source(s) by n sensors,
the data fusion is performed (n + 1) times-once with
measurements from all the sensors and in the rest of the
iterations the data from exactly one sensor is excluded.
Measurements from a sensor are classified as faulty if
excluding them improves the consistency of the data
fusion results significantly. This approach is similar to
our HMM model based fault detection because it requires
a sensor data fusion model. However, it cannot be used
for applications such as volcano monitoring [3] where
sensor data fusion is not used; but the HMM based
method can be. Simulations and data from a small indoor
sensor network are used for evaluation in [12]. Data from
real world deployment are not used.

Elnahrawy et al. [13] propose a Bayesian approach
for cleaning and querying noisy sensors. However, using
a Bayesian approach requires prior knowledge of the
probability distribution of the true sensor readings and
the characteristics of the noise process corrupting the
true readings. In terms of the prior knowledge and the
models required, the Bayesian approach in [13] is similar
to the HMM based method we evaluated in this paper.
The evaluation in [13] does not use any real world data
set.

Several papers on real-world sensor network deploy-
ments [1], [6], [2], [3] present results on meaningful
inferences drawn from the collected data. However, to
the best of our knowledge, only [2], [3], [1] do a detailed
analysis of the collected data. The aim of [2] is to do
root cause analysis using Rule-based methods for on-line
detection and remediation of sensor faults for a specific
type of sensor network monitoring the presence of ar-
senic in groundwater. The SHORT and NOISE detection
rules analyzed in this paper were proposed in [2]. Werner
et al. [3] compare the fidelity of data collected using a
sensor network monitoring volcanic activity to the data
collected using traditional equipment used for monitor-
ing volcanoes. Finally, Tolle et al. [1] examine spatio-
temporal patterns in micro-climate on a single redwood
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tree. While these publications thoroughly analyze their
respective data sets, examining fault prevalence was not
an explicit goal. Our work presents a thorough analysis
of four different real-world data sets. Looking at different
data sets also enables us to characterize the accuracy
and robustness of three qualitatively different detection
methods.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

In this paper, we focused on a simple question: How
often are sensor faults observed in real deployments?
To answer this question, we first explored and char-
acterized three qualitatively different classes of fault
detection methods (Rule-based, LLSE, and HMMs) and
then applied them to real world data sets. Several other
methods based on time series, Bayesian filter, neural
networks etc. can be used for sensor fault detection.
However, the three methods discussed in this paper
are representatives of the larger class of these alternate
techniques. For example, a time series method would
rely on temporal correlations in measured samples at the
same node whereas the LLSE method relies on temporal
as well as spatial correlation across different nodes.
Hence, an analysis of the three methods with injected
faults presented in Section IV, not only demonstrates the
differences, in terms of accuracy and robustness, between
these methods but can also help make an informed
opinion about the efficacy of several other methods for
sensor fault detection.
We know summarize our main findings. SHORT faults

in real data sets were relatively infrequent but of high
intensity. In the GDI data set SHORT faults occurred
once in two days but the faulty sensor values were often
orders of magnitude higher than the correct value. CON-
STANT and NOISE faults were relatively infrequent
too, but in the INTEL Lab and NAMOS data sets a
significant percentage (between 15 -35%) of samples
were affected. Such a high percentage of erroneous
samples highlights the importance of automated, on-line
sensor fault detection. Except in the INTEL Lab data
set, we found no spatial or temporal correlation among
faults. In that data set, the faults across various nodes
were temporally correlated because all the nodes ran
out of battery power at approximately the same time.
Finally, we found that our detection methods incurred
false positives and false negatives on these data sets, and
hybrid methods were needed to reduce one or the other.

Even though we analyzed most of the publicly avail-
able real world sensor data sets for faults, it is hard to
make general statements about sensor faults in real world
deployments based on just four data sets. However, our
results raise awareness of the prevalence and severity of
the problem of data corruption and can inform future
deployments. Overall, we believe that our work opens
up new research directions in automated high-confidence
fault detection, fault classification, data rectification,
and so on. More sophisticated statistical and learning
techniques than those we have presented can be brought
to bear on this crucial area.
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