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Abstract—In contrast to existing work on the connected cov-
erage problem in wireless sensor networks which assumes omni-
directional sensors with disk-like sensing range, this paper inves-
tigates a suite of novel problems related to connected coverage in
directional sensor networks where sensors only sense directionally
and have a sector-like sensing range. We first consider the
problems of deploying a minimum number of directional sensors
to form a connected network to cover either a set of point-
locations (Connected Point-Coverage Deployment (CPD)) orthe
entire target sensing area (Connected Region-Coverage Deploy-
ment (CRD)). CPD is NP-hard as its subproblem of Geometric
Sector Cover (GSC) is NP-hard. We present two approximation
algorithms for GSC as subroutines, and develop a general solution
framework for CPD with approximation ratio σ + O(1), where
σ is the approximation ratio of the selected GSC subroutine. We
also describe two efficient deployment patterns with guaranteed
covering density for CRD, and analyze their performance bounds
with respect to arbitrary non-crossing deployment patterns. Ex-
tensive simulation results validate the correctness and merits of
the presented algorithms and analysis.

Index Terms—Directional wireless sensor networks, Coverage,
Connectivity, Approximation algorithm.

I. Introduction

In wireless sensor networks, to successfully accomplish the
assigned sensing tasks, the deployed sensors must both cover
certain specific point-locations or the entire target sensing area,
and form a connected network through multi-hop wireless com-
munications. Therefore, deploying wireless sensor networks to
provide connected coverage is a critical research issue. Most
of the existing solutions to the connected coverage problem
in wireless sensor networks assumeomni-directional sensors
with disk-like sensing range [1], [2], [3]. However, in real
applications, due to equipment constraints or environmental
impairments, certain sensors may only sense directionally
and facilitate a sector-like sensing range, which are termed
directional sensors. For instance, multimedia and smart camera
sensors [4], [5], and the sensors that provide sensing through
ultrasonic or infrared [6], [7] are widely used directional
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sensors1. In this paper, we study a suite of problems related
to connected coverage in the context of directional sensor
networks. To our best knowledge, this is the first effort to
address such problems.

We consider a scenario where directional sensors can be
precisely deployed at any location within a target sensing area,
and address the following two problems,Connected Point-
Coverage Deployment and Connected Region-Coverage De-
ployment, which aim to use a minimum number of directional
sensors to form a connected network to cover a set of point-
locations and the entire target sensing area, respectively.

Connected Point-Coverage Deployment (CPD) is NP-hard
as its subproblem of covering a set of points with a min-
imum number of sectors, termed Geometric Sector Cover
(GSC), is NP-hard2. Therefore, our efforts focus on designing
polynomial-time solutions with provable approximation ratios3

for CPD. We first present two approximation algorithms for
GSC. The first algorithm works for sectors with arbitrary
angle and has approximation ratiolog|P| + 1, whereP is the
given set of points to cover. The second algorithm works for
sectors whose angle is no less thanπ

3 and has approximation
ratio 9. We then develop a general framework for CPD using
either algorithm for GSC as a subroutine, and prove that the
approximation ratio of the framework isσ + O(1), where
σ is the approximation ratio of the GSC subroutine utilized.
While these approximation ratios may be large in some cir-
cumstances, recall that they are worst case values. Simulation
results show that the solutions provided by our framework using
either subroutine are far better than the derived approximation
ratios suggest, indicating that our algorithms work well inreal
applications.

Connected Region-Coverage Deployment (CRD) is closely
related to theCovering problem in Computational Geometry.
Assuming that a 2D areaA is covered by a setC of instances
of a geometric bodyK , then the covering density of this
coverage is defined as|C |×‖K‖‖A‖ , where‖A‖ and‖K‖ stand for
the areas ofA and K , respectively. We present two efficient
patterns with bounded covering density for CRD. We also
analyze the performance bound of covering densities for our
solutions with respect to anynon-crossing deployment patterns

1Note that the directional sensing capability is orthogonalto a sensor node’s
communication capability, where sensors still communicate omni-directionally.

2GSC is the general case of the well known NP-hard problem of Geometric
Disk Cover [8].

3A solution solving a minimization problem is anx-approximation solution
(or has approximation ratiox), if the result provided by the solution is no more
than x times the optimal result [9].



(see Definition 5.3 in Section V for a formal definition of non-
crossing deployment pattern), provided that the communication
radius of sensors is appropriately sized related to their sensing
radius. Finally, we evaluate these two deployment patterns
using directional sensors with different configurations ofcom-
munication radius, sensing radius and sensing angle.

The contributions of our paper are summarized as follows:
(1) We present two approximation algorithms for GSC as sub-
routines, and develop a general framework with approximation
ratio σ + O(1) for CPD, whereσ is the approximation ratio
of the selected GSC subroutine. (2) We present two efficient
deployment patterns for CRD and analyze their covering densi-
ties for directional sensors with different communicationradius,
sensing radius and sensing angle. (3) All of the algorithms
presented in this paper do not impose any constraint on
the relative order between sensing radius and communication
radius, and hence are suitable for a wide range of applications.

The reminder of this paper is organized as follows. Section
II reviews related work. Section III describes the network
model of directional sensor networks, and formally defines
the problems. In Section IV, we present two approximation
algorithms for GSC and a general framework for CPD, and
analyze the approximation ratios of these solutions. Section V
gives two deployment patterns with bounded covering density
for CRD and evaluates their performance. Section VI concludes
the paper with some future research directions.

II. Related Work

Extensive research on connected coverage has been done
for omni-directional sensor networks (see [10] for a survey).
For example, [2] presented a strip-based deployment pattern to
achieve connected region-coverage for sensors whose commu-
nication radiusrc is less than or equal to their sensing radiusrs .
In [1], an efficient deployment pattern was given for connected
region-coverage, providedrc ≤

√
3rs . Recently, [3] proved

that the result in [2] is asymptotically optimal, and described
a general deployment solution to connected region-coverage
for sensors using arbitraryrc and rs . In terms of connected
point-coverage, a(4π/

√
3)-approximation algorithm is given

in [11] under the assumption thatrs = rc. We are not aware
of any work that addresses connected coverage in the context
of directional sensor networks.

Recently, a few research efforts have been devoted to direc-
tional sensor networks. Reference [12] presented algorithms
for randomly deployed directional sensor networks to identify
a minimal set of directions to cover the maximal number of
point-locations. In [13], several scheduling algorithms were
presented to divide a randomly deployed sensor network into
subsets to alternatively cover a set of point-locations so as
to prolong network lifetime. In [14], the authors analyzed
the probability that a point-location is sensing by a randomly
deployed directional sensor networks(not effectively sensed).
However, the problems, objectives, and algorithmic approaches
presented in this paper are completely different from these
earlier research efforts.

Last, we review the work on the covering problem in the
field of Computational Geometry, which does not impose any
connectivity constraint. The problems of covering a set of
points using a minimum number of a given geometric body
are generally NP-hard, and approximation algorithms had been
proposed for disks [8], [15], orthogonal rectangles [16], and
fat convex bodies [17] (see [18] for a formal definition of fat
convex body). In terms of region coverage (covering a vast 2D
square region with a given geometric shape), for a very long
time the only shape with known optimal covering density was
the disk. Only recently did [18] prove that the optimal covering
density of any fat convex bodyK is ‖K‖

‖H(K )‖ , where H (K )

is the hexagon with maximum area inscribed inK . However,
covering a set of points or a region using sectors is significantly
harder than using disks or fat convex bodies. We are not aware
of any existing work on these issues.

III. Network Model and Problem Formulation

We consider stationary, directional sensors, whose sensing
range is a sector centered at each sensor with a sensing radius
rs and a sensing angleα (0 < α < π). Moreover, we assume
both sensors and data sinks communicate omni-directionally,
represented by a disk communication range centered at each
sensor or data sink with communication radiusrc.

Throughout the paper, we uses(rc, rs , α) to representdirec-
tional sensors, and uses(r, α) to represent asector with radius
r and angleα. Furthermore, letX be a set, and|X | stands for
the cardinality ofX . Given two pointsa andb and a 2D area
A, ‖ab‖ represents the Euclidean distance betweena and b,
and‖A‖ represents the area ofA.

Using these assumptions and notations, the problems we
study in this paper are formally defined as follows:
• Connected Point-Coverage Deployment (CPD): Givenrc, rs ,
α and a set of pointsP in a 2D area. CPD seeks to deploy a
minimum number of directional sensorss(rc, rs , α) to form a
connected network to coverP.
• Connected Region-Coverage Deployment (CRD): Given rc,
rs , α and a vast 2D square areaA. CRD seeks to find a pattern
with minimum covering density to deploy directional sensors
s(rc, rs , α) to form a connected network to coverA.

IV. Connected Point-Coverage Deployment (CPD)

This section presents a general framework with provable
approximation ratio for CPD. In a nutshell, our framework
consists of two phases. Phase one solves the Geometric Sector
Cover problem and covers all of the given point-locations
with directional sensors; phase two places additional sensors
to connect all of the sensors deployed in phase one.

A Geometric Sector Cover Problem (GSC)

One approach to GSC is to combine⌈2π
α
⌉ sectors together

into a complete disk, and then use the known Polynomial
Time Approximation Scheme (PTAS) [8] for Geometric Disk
Cover to cover all of the given points. Such a scheme yields
a (⌈2π

α ⌉ + ǫ)-approximation algorithm for GSC. However, this
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Fig. 1. Examples of sectors anchored by one, two and three points

naive approach is not particularly useful because (1) whenα is
small, the resulting approximation ratio can be arbitrarily large,
and (2) whenα is large, the algorithm requires a long running
time to achieve a reasonable approximation ratio. Therefore, we
propose two polynomial-time approximation algorithms with
provable approximation ratios for GSC. The first algorithm is
suitable for sectors with arbitrary angle. The second algorithm
is designed for sectors whose angle is no less thanπ

3 .

A.1 Greedy Algorithm for GSC

The key idea of the first algorithm is to solve GSC using a
greedy algorithm analogous to a greedy algorithm for the Set
Cover problem [19]. We start with the following definition.
Definition 4.1: [Anchored Sector]: A sector s(r, α) is an an-
chored sector if it satisfies one of the following three condi-
tions: (1)s(r, α) covers one pointa, anda coincides with the
center ofs(r, α), as shown in Figure 1(a); (2)s(r, α) covers
two or more points, and there exist two pointsa andb located
on the same edge (arc) ofs(r, α), anda coincides with one of
the end points of this edge (arc). Moreover, there are no other
points located on the other edge (arc), as shown in Figures 1(b)
and 1(c); (3)s(r, α) covers three or more points, and there exist
three pointsa, b, andc such thata, b, andc are on different
edges (arc), as shown in Figure 1(d); ora and b are on the
same edge (arc), whilec is on one of the other edges (arc), as
shown in Figures 1(e) and 1(f).

Algorithm 1 presents a greedy algorithm for GSC. Con-
sidering different point combinations and all of the possible
cases in Definition 4.1, the number of sectors anchored by
one, two or three points inP is at most
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), respectively. Therefore, in each
execution of step 5 in Algorithm 1, we only need to consider at
mostO(P3) sectors and the time complexity of Algorithm 1 is
O(|P|4), which results from repeatedly finding the sector that
covers the most uncovered points. To derive the approximation
ratio of Algorithm 1, we first prove the following lemma.
Lemma 4.2: Let P be a set of points. There exists an optimal
set C of sectorss(r, α) with minimum cardinality that covers
P, where each sector inC is anchored by one, two, or three
points in P.
Proof: Let O PTGSC be an optimal set of sectorss(r, α)

that coversP. We perform atransformation on each sector
in O PTGSC to produce the setC where each sector inC is
anchored by one, two, or three points in P, and the cardinality of
C is the same as that ofO PTGSC . For an arbitrary unanchored

Algorithm 1 Greedy Algorithm for GSC
1: INPUT: Sector s(r, α) and a set of pointsP.
2: OUTPUT: A set S of sectorss(r, α) that cover P.
3: R ← P; S ← ∅ (empty set);i = 1;
4: while R is not emptydo
5: Find a sectorsi (r, α) anchored by one, two, or three points

in R that covers a maximum number of points inR. Let
Ri be the set of points ofR that are covered bysi (r, α);

6: S = S ∪ {si (r, α)}; R = R \ Ri ; i = i + 1;
7: end while
8: Output S;

sectorsi (r, α) in O PTGSC , let o be the center ofsi (r, α), and
o′ be the middle point of the arc insi (r, α).

When si (r, α) only covers one or two points inP, we can
move si (r, α) and let s(rs , α) be anchored by the points it
covers, as shown in Figures 1(a), 1(b) or 1(c).

When si (r, α) covers three or more points, we first move
si (r, α) along the lineoo′ in the

−→
o′o direction until one or more

points touch the arc. We consider the two cases separately.

• If more than one point touches the arc, we fix the center
of si (r, α) at the current location and rotatesi (r, α) clockwise
or counterclockwise until at least one point touches the edge.
Thensi (r, α) is anchored, as shown in Figure 1(c) or 1(e).

• If only one point touches the arc, we still fix the center of
si (r, α) at the current location and rotatesi (r, α) clockwise
or counterclockwise until one or more points touch the edge.
(1) If more than one point touches the edge, thensi (r, α) is
anchored, as shown in Figure 1(f); (2) If only one point touches
the edge, we have one pointx on the arc and one pointy on
one of the edges. Then we keepx on the arc andy on the
edge, and movesi (r, α) to makex approach the edge where
y resides until one of the following two cases happens. Case
1: we movesi (r, α) until x coincides with the end point of
the edge wherey resides, thensi (r, α) is anchored, as shown
in Figure 1(b). Case 2: we movesi (r, α) until another pointz
touches the arc or edge, thensi (r, α) is anchored as shown in
Figures 1(d), 1(e) or 1(f).

Note that in the transformation,si (r, α) always covers all
of the points it originally covers. Therefore, after performing
the transformation on each sector inO PTGSC , we obtain an
optimal setC that coversP where each sector inC is anchored
by one, two, or three points inP.

The next theorem, which follows directly from the proof of
Lemma 4.2, states the approximation ratio of Algorithm 1.

Theorem 4.3: Let P be a set of points. Algorithm 1 is an
(log|P| + 1)-approximation algorithm for GSC.

Proof: Let SP be the set of sectors that are anchored by one,
two or three points inP. Let S be the set of sectors that result
from running Algorithm 1 onP. By Lemma 4.2, there exists
an optimal setC (C ⊆ SP ) of anchored sectorss(r, α) that
covers P. According to the known approximation ratio of a
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Fig. 2. Strip-based algorithm for GSC.h = r × sin( α
2 ), w =

r
2

√

4− sin2( α
2 ) − cos( α

2 ). (a) Find an inscribed rectangleabcd in a sector

s(r, α). o is the center of the sector;o′ is the middle point of the arc;v1 and
v2 are the two end points of the arc.a andb are the middle points ofov1 and
ov2; ad and bc are parallel tooo′. (b) Step 8 of Algorithm 2 which covers
the points in a strip using such inscribed rectangles.

greedy algorithm for the Set Cover problem [19]4, we have
|S| ≤ (log|P|+1)|C|. Therefore, Algorithm 1 is a(log|P|+1)-
approximation algorithm for GSC.

A.2 Strip-Based Algorithm for GSC Using Large Sectors

In practice, it is expected that the sensing angle of directional
sensors is not small. We thus give a constant approximation
algorithm for GSC using sectors with angleπ3 ≤ α < π .

The key idea of this algorithm is to (1) divide the entire
sensing area into strips of fixed heightr × sin(α

2 ), and (2)
cover the points in each strip from left to right using a
rectangle inscribed in the sector with heightr × sin(α

2 ) and

width r
2

√

4− sin2(α
2 ) − cos(α

2 ). Figure 2(a) depicts how to
compute such an inscribed rectangle. The complete algorithm
is presented in Algorithm 2.

Algorithm 2 Strip-Based Algorithm for GSC

1: INPUT: Sectors s(r, α) (π
3 ≤ α < π) and point set P.

2: OUTPUT: A set S of sectorss(r, α) that covers P.
3: S ← ∅; i = 1;
4: Divide the sensing area into strips with heightr × sin(α

2 );
5: for each each stripdo
6: Let x(p) be thex-coordinates of pointp. Sort the points

in the strip according to theirx-coordinates and obtain
Ps = {p1, p2, ··, pm}, wherex(p1) ≤ x(p2) · · ≤ x(pm);

7: while Ps is not emptydo
8: Pick the first pointp j in Ps , and place a sectorsi (r, α)

such that its inscribed rectangle covers the points with

x-coordinates fromx(p j) to x(p j )+ r
2

√

4− sin2(α
2 )−

cos(α
2 ), as shown in Figure 2(b);

9: Remove the points covered bysi (r, α) from Ps ;
10: S = S ∪ {si (r, α)}; i = i + 1;
11: end while
12: end for
13: Output S;

The time complexity of Algorithm 2 isO(|P|log|P|), which
results from sorting the points in each strip. The following

4In [19], the authors proved that the greedy algorithm, whichhas an
approximation of ratiolog|P| + 1, is the best approximation algorithm for
Set Cover problem, and no polynomial-time algorithm can achieve a better
approximation ratio unlessP = N P.

theorem states the approximation ratio.
Theorem 4.4: Let P be a point set, ands(r, α) (π

3 ≤ α < π)
be a sector. Then the performance ratio of Algorithm 2 is 9.
Proof: Let O PTGSC be an optimal set of sectorss(r, α)

(π
3 ≤ α < π) that coversP. For any sectorsi (r, α) in

O PTGSC , sinceπ
3 ≤ α < π , the longest distance between any

two points insi (r, α) is at most 2r×sin(α
2 ), and each inscribed

rectangle has lengthr2

√

4− sin2(α
2 )−cos(α

2), therefore in each

strip Algorithm 2 uses at most⌈(4×sin(α
2 ))/(

√

4− sin2(α
2 )−

cos(α
2))⌉ ≤ 3 sectors to cover the points that are covered by

si (rs , α). Moreover, since each strip has heightr × sin(α
2 ),

si (rs , α) spans at most 3 strips. As a result, Algorithm 2 uses
at most 9 sectors to cover all of the points that are covered by
si (rs , α), which provides the performance ratio of 9.

B. Algorithm for Connected Point-Coverage Deployment

Regarding the two approximation algorithms for GSC de-
scribed in previous section, the strip-based algorithm, although
it has a better running time and a constant approximation
ratio, can only be applied to sectors with large angles. On
the other hand, the greedy algorithm actually achieves smaller
approximation ratios when|P| < e8. Therefore, this section
presents a general framework for CPD, which can use either
approximation algorithm for GSC as a subroutine. Such a
design allows users to choose a proper subroutine and balance
the trade-offs between quality and performance. The complete
framework is given as Algorithm 3.

Algorithm 3 A framework for CPD
1: INPUT: Sensor s(rc, rs , α) and a set P of points.
2: OUTPUT: A set S of connected sensors that coversP.
3: S ← ∅; S1 ← ∅; S2 ← ∅;
4: Execute aσ -approximation algorithm for GSC onP using

sectors(rs , α), and put the resulting sensors inS1;
5: Create a complete graphC = (S1, E), where each edge

si s j ∈ E has weight⌈ ‖si s j‖
rc
⌉ − 1;

6: Find a Minimum Spanning TreeT of C. For each edgesi s j

in T , evenly place⌈ ‖si s j‖
rc
⌉ − 1 sensors on the straight line

betweensi and s j , and put all of the sensors inS2;
7: Output S = S1 ∪ S2;

Let d be the maximum distance between any two points inP.
The time complexity of Algorithm 3 isO(TGSC+|P|3+|P|×
d
rc

, whereTGSC is the time complexity of the GSC subroutine,
O(|P|3) results from computing a Minimum Spanning Tree,
and |P| × d

rc
is from Step 6 in Algorithm 3.

We now derive the approximation ratio of Algorithm 3. Let
σ , P, S1, S2, C, and T be as defined in Algorithm 3. Let
O PTC P D = {os1, os2, · · · , osv } be an optimal set of sensors
s(rc, rs , α) for CPD on P. We have the following lemma.
Lemma 4.5: |S1| ≤ σ × |O PTC P D |

We defineθ = (⌈4
√

2rs
rc
⌉)2 + 2⌈2rs

rc
⌉ + 6. The next lemma

is the key result towards deriving the approximation ratio of
Algorithm 3.



Lemma 4.6: |S2| ≤ θ × |O PTC P D |
Proof: Let Copt be a complete graph overO PTC P D , where
each edgeosxosy in Copt carries weight‖osxosy‖. Since the
edge weights inCopt satisfy the triangle inequality, there exists
a minimum spanning treeTopt = (O PTC P D, Eopt ) (rooted at
osroot , osroot ∈ O PTC P D) of Copt , where each sensor inTopt

has at most 5 neighbors. We show that by usingTopt as a
backbone, we can find a spanning treeTC = (S1, EC ) of C
whose total weight is no more thanθ × |O PTC P D |.

To facilitate the creation ofTC , we associate each sensorsi in
TC with one sensorosx in Topt , wheresi andosx cover certain
common points inP. For simplicity, we term each sensorosx

in Topt as aleader sensor, and term the sensors inTC that are
associated withosx asosx ’s follower sensors. In this proof, we
consider the worst case where each leader sensor is associated
with some follower sensors. We define the leading zone ofosx

as a circle centered atosx with radius 2rs . Clearly, all of the
follower sensors associated withosx are within osx ’s leading
zone. We createTC in two steps.

In the first step, we connect the follower sensors associated
with the same leader sensor. Specifically, for each leader sensor
osx , we create a square just large enough to encapsulate its
leading zone, then evenly divide the square into(⌈4

√
2rs

rc ⌉)
2

square cells labeled as (left to right, top to bottom)C1, · · · , Cn ,
n = (⌈4

√
2rs

rc ⌉)
2. Figure 3(a) depicts an example of dividing a

leading zone into 16 cells. Denote the square cells containing
follower sensors asCi1, Ci2, · · · , Cim , wherei1 < i2 < · · · <
im. Note that all of the follower sensors within the same cell
are connected since the diagonal of each cell is less than or
equal torc. We first find an arbitrary spanning tree in each cell
and add the edges toEC . Then, for all of the cell pairsCi j and
Ci j+1, we select two follower sensorssx andsy (one from each
cell) and add edgesx sy (sx sy ∈ C) to EC . As a result,osx ’s
follower sensors are connected. We charge the total weight of
added edges toosx , which is at mostim − i1≤ (⌈4

√
2rs

rc ⌉)
2.

In the second step, we connect the follower sensors in differ-
ent leading zones. For the ease of description, we use ‘leading
zone of osx ’ as a shorthand for ‘all of the follower sensors
associated withosx ,’ and define the operation of connecting two
leading zones as adding an edge inC between two follower
sensors (one from each leading zone) toEC . We conduct a
breadth-first search onTopt , label the rootosroot as layer 1, and
label the children of leader sensors in layeri as layeri + 1.
Assuming Topt has totally n layers, we connect the leading
zones bottom-up starting from layern − 1.

Each leader sensorosy in layern−1 has at most five children
in Topt , denoted asosy1, osy2, · · · , osy5. As depicted in Figure
3(b), we first connect the leading zones of each leader sensor
pair osyi andosyi+1, then we connect the leading zones ofosy5
and osy . As a result, we add two edges for the leading zones
of osy2, osy3, osy4 andosy5, and add one edge for the leading
zones ofosy1 and osy . We term the leading zones with two
added edges ‘saturated leading zones,’ and the leading zones
with one added edge ‘unsaturated leading zones.’ To count
the total weight of the added edges, we charge the weight of

(a) (b)

Fig. 3. (a) Divide the leading zone into 16 cells.e = 4rs/⌈ 4
√

2rs
rc ⌉,

w =
√

2e2 ≤ rc . (b) Connect the leading zones. The leading zones ofosy2,
osy3, osy4 and osy5 are saturated, while the leading zones ofosy1, osy are
unsaturated.

the added edges to the leader sensors. Specifically, for each
edge connecting leading zones ofosyi and osyi+1, we charge
⌈2rs

rc
⌉ to osyi and osyi+1, and charge 1 to each node on the

shortest path betweenosyi and osyi+1 in Topt , including osyi

andosyi+1.
Assuming that we have connected the leading zones in each

subtree of layeri−1 leader sensors, we now consider the leader
sensors in layeri . Each leader sensorosz in layer i has at most
five childrenosz1, osz2, · · · , osz5, and all of the leading zones
in the subtree ofozi are connected. For each node pairozi and
ozi+1, we connect their subtrees by connecting two unsaturated
leading zones (one from each subtree). Then we connect the
subtrees ofosz5 andosz in the same way. As a result, all of the
leading zones ofosz and its descendants are connected, while
two leading zones remainunsaturated. Again, we charge the
total weight of the added edges to the leader sensors as we did
for leader sensors in layern − 1.

We repeat the above step for each layer until reaching
the root osroot , which results in a spanning treeTC of C.
By combining the charges to each leader sensor inTopt in
both steps, a leader sensorosw will be charged at most
(⌈4
√

2rs
rc
⌉)2 + 2⌈2rs

rc
⌉ + 6. Therefore, the total weight ofTC is

at mostθ × |O PTC P D |. As a result,|S2|, which is the total
weight of T , is no more thanθ × |O PTC P D|.

The following theorem, which follows directly from Lemma
4.5 and Lemma 4.6, describes the approximation ratio of the
presented framework.
Theorem 4.7: Let P be a set of points, and lets(rc, rs , α)

be a directional sensor. The framework described in Algorithm
3 for CPD has an approximation ratio ofσ + θ , whereσ is
the approximation ratio of the selected GSC subroutine, and
θ = (⌈4

√
2rs

rc
⌉)2 + 2⌈2rs

rc
⌉ + 6.

C Simulation Result

We evaluate the presented framework using different sub-
routines with simulations. We first consider a special case
whereα = π

3 , rc = rs and the point-locations are scattered
on the rectangular lattices, as shown in Figures 4(a). In this
case, each sensor’s sensing range can cover at most 4 point-
locations. Therefore, the optimal solution to CPD, which is
shown as dotted sectors with solid center in Figures 4(a), can
be derived manually. We thus compare the performance of the
presented framework using different subroutines against the
optimal solution, and the results are shown in Figures 4(b).
On the average, the greedy and strip-based GSC subroutines
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Fig. 4. Hollow circles stand for the point-locations. Dotted sectors with
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presented framework for the rectangular lattices case.
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increase from 10m to 100m.

only use 1.75 times and 1.43 times more sensors than does
the optimal solution, respectively. We repeat this experiment
for other cases where point-locations are scattered according
to other patterns, such as triangular lattice, and find that both
greedy and strip-based GSC subroutines use at most 4 times
more sensors than does the optimal solution.

We next consider the case where 200 point-locations are
randomly distributed in a 1000× 1000 m2 2D area. We use
directional sensors with different configurations ofrs , rc and
α, and run 50 simulations for each configuration. The average
results are illustrated in Figure 5. As we can observe from the
figures, when the value ofrs , rc or α increases, the number of
sensors computed by both the greedy GSC subroutine and the
strip-based GSC subroutine drops accordingly. Moreover, on
the average, the strip-based GSC subroutine uses 29.3% and
25% more sensors than does the greedy GSC subroutine when
α equals2π

3 and π
3 , respectively.

In summary, the presented CPD framework can achieve con-
nected point-coverage using directional sensors with different
rc, rs and α. Moreover, the results provided by the presented
framework using either the greedy GSC subroutine or the strip-
based GSC subroutine are far better than the corresponding
approximation ratio suggested, indicating that our algorithms
work well in real applications.

V. Connected Region-Coverage Deployment (CRD)

This section gives two deployment patterns for CRD that
work for directional sensors with arbitraryrc, rs and α (0 <

α < π). Recall that the objective of CRD is to find deployment

(a) (b)

Fig. 6. (a) Combine six directional sensorss(rc, rs ,
π
3 ) together as an omni-

directional sensor. (b)[3] Optimal deployment pattern foromni-directional

sensors usingrc and rs . w = min(rc,
√

3rs ), h = rs +
√

r2
s − w2

4 . When

d =
√

h2 + (w
2 )2 > rc , ⌈ d

rc
⌉ relay sensors, shown as hollow circles, need

to be deployed between each pair of horizontal strips of sensors to guarantee
network connectivity.

patterns with minimum covering density to place directional
sensors as a connected network to cover a 2D square area
A. We follow the assumption in [2], [3] and assume thatA
is sufficiently large so that the coverage waste beyond the
boundary can be omitted. Notice that for a limited region of
particular shape, such as limited disk, triangle and rectangle
regions, it is possible to derive specific and more efficient
deployment solutions, but this is beyond the scope of this paper.

A. Disk-Based Deployment Pattern (DDP)

The first deployment scheme combines⌈2π
α ⌉ directional

sensorss(rc, rs , α) together as a complete omni-directional
sensor using sensing radiusrs and communication radiusrc,
as depicted in Figure 6(a). Then, these combined sensors
are deployed according to the optimal deployment pattern
described in [3] for omni-directional sensors, as shown in
Figure 6(b). Note that whenrc

rs
<
√

3, additional sensors,
termedrelay sensors, shown as hollow nodes in Figure 6(b),
need to be deployed to guarantee network connectivity. Since
the number of relay sensors is vanishingly small in comparison
to the total number of sensors whenA is sufficiently large, the
overlapping areas introduced by relay sensors can be ignored
[3].

Although the disk-based scheme does not make full use
of the sector sensing range, it provides some insights into
efficient deployment patterns, and can be used as a benchmark
to evaluate other (more effective) solutions.

B. Strip-Based Deployment Patterns (SDP)

To describe the strip-based deployment pattern, we first give
the following definition.
Definition 5.1: [Tiling Body]: Given a geometric bodyK and
a large 2D areaA, a setTK of the instances ofK is a tiling
with K in A, if all of the instances inTK are mutually disjoint,
and the union of these instances inTK equalsA. Further,K is
called aTiling Body if a tiling with K in A exists.

The key idea of the strip-based deployment pattern is to first
find a convex tiling body inscribed in the sector sensing range,
and then deploy sensors as a connected network in horizontal
strips so that the inscribed tiling bodies can mesh togetherand
tile the 2D areaA. As pointed out in [20], given a set of
convex bodies (not necessarily congruent) that tile a 2D plane,
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Fig. 7. (a) Find the inscribedp-hexagon in a sectors(rs , α). (b) Strip-
based deployment pattern using directional sensorss(rc, rs , α). w ≤ rc , h =
rs (1+

√

r2
s −w2× sin2( α

2 )−w×cos( α
2 )). Whenh > rc , ⌈ h

rc
⌉ relay sensors,

shown as hollow circles, needs to be deployed between each pair of strips to
guarantee network connectivity.

the average number of edges for these convex bodies is 6. We
thus focus on finding a tiling body with no more than 6 edges.
It is shown in [21] that each convex body contains a tiling body
namedp-hexagon, which is formally defined as follows.
Definition 5.2: [ p-Hexagon]: A p-hexagon is a hexagon with
a pair of parallel opposite sides of equal length.

Under Definition 5.2, extreme cases are allowed, in which
adjacent sides are collinear, and some sides, even the parallel
ones, may be reduced to points. Thus, each triangle is ap-
hexagon, and so is each quadrilateral and each pentagon that
has a pair of parallel sides. However, since for any triangle,
quadrilateral or pentagon that is inscribed in sector, we can
easily find an inscribed hexagon that contains this shape and
has larger area, we focus on inscribed hexagons. Since the
work in [21] did not specifically consider convex sectors and
the connectivity constraint, we define the following operation
to find a commonp-hexagon inscribed within convex sectors
to guarantee connected region-coverage.

Finding a p-hexagon inscribed within a sector: As shown
in Figure 7(a), for sectors(r, α), o and o′ denote the center
of the sector and the middle point of the arc, respectively. We
place this sector in anxy-coordinate system whereo coincides
with the origin, ando′ resides on they-axis. We find two points
a andd on the two edges of the sector where‖oa‖ = ‖od‖ ≤
rc. Then we find two more pointsb andc on the arc such that
bothab andcd are vertical to thex-axis. The hexagonoabo′cd
is a p-hexagon.

By using Lagrangian multiplier [22], we can find such ap-
hexagonoabo′cd (‖oa‖ ≤ rc) with maximum area, and the
corresponding deployment pattern using suchp-hexagons to
achieve connected region-coverage is shown in Figure 7(b).

C. Comparison with Non-Crossing Deployment Patterns

In general, the deployment patterns can be categorized as
crossing patterns and non-crossing patterns, which are ex-
plained in following definition.
Definition 5.3: [Non-crossing Deployment Pattern]: Let K1
and K2 be two convex bodies.K1 and K2 arenon-crossing if
there exist two half planesL+ andL− such thatL+∩K1 ⊂ K2
and L− ∩ K2 ⊂ K1. Let A be a 2D area covered by a set of
convex bodies following a deployment pattern. This deploy-

(a) (b) (c)

Fig. 8. (a) Crossing deployment pattern where the sector with dotted
line crosses the other two sectors. (b) Non-crossing deployment pattern. (c)
Maximum hexagon inscribed within a sector.

ment pattern isnon-crossing if every pair of convex bodies in
this covering isnon-crossing. Figures 8(a) and 8(b) depict the
difference between crossing and non-crossing patterns.

Finding the optimal pattern to deploy directional sensors,
and proving its optimality is very difficult. This is so because
rigorously analyzing the overlapping area induced by either the
crossing sectors or connectivity requirement seems to be anin-
tractable problem. We thus focus on analyzing the performance
of DDP and SDP with arbitrary non-crossing deployment
patterns in the cases where the connectivity requirement does
not induce any overlapping area (rc ≥

√
3rs for DDP, and

rc ≥ rs for SDP). We start with the following theorem.
Theorem 5.4: [18] Let A be a largel× l 2D square area, and
let K be a convex body. IfA is covered by a large number of
non-crossing instances ofK , then the covering density of this
coverage is no less than‖K‖‖H(K )‖ , whereH (K ) is the hexagon
with maximum area inscribed withinK .

The next theorem, which is a standard result of Lagrangian
multiplier, describes the maximum hexagon inscribed within a
convex sector. Due to page limitations, the detailed proof is not
provided.
Theorem 5.5: Let s(r, α) (0 < α < π) be a sector, leto be the
center ofs(r, α), and leta ande be the two end points of the
arc in s(r, α). The maximum hexagon inscribed withins(r, α)

is oabcde with area 2r2sin(α
4 ), as shown in Figure 8(c), where

b, c andd are evenly distributed on the arc.
SDP achieves the maximum covering density whenrc ≥ rs ,

as does DDP whenrc ≥
√

3rs . On the other hand, Theorems
5.4 and 5.5 give the theoretical lower-bound of covering density
for any non-crossing deployment patterns (not necessarilycon-
nected). We compare the maximum covering density of DDP
and SDP with the theoretical lower-bound, and the results are
given in Figure 9. Whenrc ≥ rs , the covering density of SDP
is very close to the theoretical lower-bound (5.7% more on the
average). For DDP, whenrc ≥

√
3rs , its covering density varies

sharply when the sensing angle changes. This is so because
when 2π is not divisible byα, there exists some overlap area
in each combined disk. On the average, the covering density
of DDP is 29.7% more than the theoretical lower-bound.

Using crossing sectors in a covering is very wasteful.
Moreover, it is believed that the non-crossing requirementin
Theorem 5.4 can be removed, provided the region needed to
be covered is very large. Therefore, we conjecture the results
presented in Figure 9 actually indicate the performance bound
of the presented deployment patterns with respect to arbitrary
deployment patterns, including the optimal solution.
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Fig. 10. Covering Density of presented deployment pattern for directional
sensors using differentrc , rs andα (a) Covering density of DDP. (b) Covering
density of SDP.

D. Numerical Results

We further compare the covering density of DDP and SDP
using directional sensors with different configurations ofrc, rs

and α. The numerical results are presented in Figure 10. We
can see from these figures that SDP outperforms DDP in all
of the configurations. Moreover, the covering density of both
SDP and DDP decreases when the ratiorc

rs
decreases or when

the sensing angleα increases.

VI. Conclusion and Future Work

In this paper, we studied several novel problems related to
connected coverage in directional wireless sensor networks.
Specifically, we presented two approximation algorithms for
the GSC problem, and using these algorithms as the subrou-
tine, developed a framework with an approximation ratio of
σ + O(1) for CPD, whereσ is the approximation ratio of
the selected GSC subroutine. We also presented two efficient
patterns to deploy directional sensors for CRD. Future work
includes finding better solutions to CPD and CRD, as well as
investigating current problems with higher order connectivity
or coverage requirement.
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