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Abstract—In contrast to existing work on the connected cov-
erage problem in wireless sensor networks which assumes oinn
directional sensors with disk-like sensing range, this pagr inves-
tigates a suite of novel problems related to connected cowage in
directional sensor networks where sensors only sense directionally
and have a sector-like sensing range. We first consider the
problems of deploying a minimum number of directional sensos
to form a connected network to cover either a set of point-
locations (Connected Point-Coverage Deployment (CPD)) athe
entire target sensing area (Connected Region-Coverage Dep-
ment (CRD)). CPD is NP-hard as its subproblem of Geometric
Sector Cover (GSC) is NP-hard. We present two approximation
algorithms for GSC as subroutines, and develop a general agion
framework for CPD with approximation ratio ¢ + O(1), where
o is the approximation ratio of the selected GSC subroutine. W
also describe two efficient deployment patterns with guarareed
covering density for CRD, and analyze their performance boads
with respect to arbitrary non-crossing deployment patterrs. Ex-
tensive simulation results validate the correctness and migs of
the presented algorithms and analysis.

Index Terms— Directional wireless sensor networks, Coverage,
Connectivity, Approximation algorithm.

I. Introduction
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sensors. In this paper, we study a suite of problems related

to connected coverage in the context of directional sensor
networks. To our best knowledge, this is the first effort to

address such problems.

We consider a scenario where directional sensors can be
precisely deployed at any location within a target sensheg.a
and address the following two problemGpnnected Point-
Coverage Deployment and Connected Region-Coverage De-
ployment, which aim to use a minimum number of directional
sensors to form a connected network to cover a set of point-
locations and the entire target sensing area, respectively

Connected Point-Coverage Deployment (CPD) is NP-hard
as its subproblem of covering a set of points with a min-
imum number of sectors, termed Geometric Sector Cover
(GSC), is NP-hartl Therefore, our efforts focus on designing
polynomial-time solutions with provable approximatiotioa®
for CPD. We first present two approximation algorithms for
GSC. The first algorithm works for sectors with arbitrary
angle and has approximation ratiog| P| + 1, whereP is the
given set of points to cover. The second algorithm works for
sectors whose angle is no less tharand has approximation

In wireless sensor networks, to successfully accompligh tftio 9. We then develop a general framework for CPD using
assigned sensing tasks, the deployed sensors must both c8(fger algorithm for GSC as a subroutine, and prove that the

certain specific point-locations or the entire target semsirea,

approximation ratio of the framework is + O(1), where

and form a connected network through multi-hop wireless-corfi iS the approximation ratio of the GSC subroutine utilized.

munications. Therefore, deploying wireless sensor neisvty

While these approximation ratios may be large in some cir-

provide connected coverage is a critical research issue. Mostcumstances, recall that they are worst case values. Siowlat
of the existing solutions to the connected coverage problégsults show that the solutions provided by our framewotkgus

in wireless sensor networks assumm@ni-directional sensors
with disk-like sensing range [1], [2], [3]. However, in real

either subroutine are far better than the derived appraidma
[ratios suggest, indicating that our algorithms work weltéal

applications, due to equipment constraints or environaien@Pplications.

impairments, certain sensors may only sense directionallyConnected Region-Coverage Deployment (CRD) is closely
and facilitate a sector-like sensing range, which are tdrmeelated to theCovering problem in Computational Geometry.
directional sensors. For instance, multimedia and smart cameék&suming that a 2D areA is covered by a se€ of instances
sensors [4], [5], and the sensors that provide sensing ghrolPf @ geometric bodyK, then thecovering density of this

ultrasonic or infrared [6], [7] are widely used directionafoverage is defined
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TAI where||A|| and||K || stand for

the areas ofA and K, respectively. We present two efficient
patterns with bounded covering density for CRD. We also
analyze the performance bound of covering densities for our
solutions with respect to anyon-crossing deployment patterns

INote that the directional sensing capability is orthogdnah sensor node’s
communication capability, where sensors still commumei@ahni-directionally.

2GSscC is the general case of the well known NP-hard problem oht&éric
Disk Cover [8].

3A solution solving a minimization problem is arapproximation solution
(or has approximation ratiw), if the result provided by the solution is no more
thanx times the optimal result [9].



(see Definition 5.3 in Section V for a formal definition of non- Last, we review the work on the covering problem in the
crossing deployment pattern), provided that the commtioica field of Computational Geometry, which does not impose any
radius of sensors is appropriately sized related to theising connectivity constraint. The problems of covering a set of
radius. Finally, we evaluate these two deployment patterpsints using a minimum number of a given geometric body
using directional sensors with different configurationcoi- are generally NP-hard, and approximation algorithms hashbe
munication radius, sensing radius and sensing angle. proposed for disks [8], [15], orthogonal rectangles [16jda

The contributions of our paper are summarized as follow&t convex bodies [17] (see [18] for a formal definition of fat
(1) We present two approximation algorithms for GSC as subenvex body). In terms of region coverage (covering a vast 2D
routines, and develop a general framework with approxiomati square region with a given geometric shape), for a very long
ratio o + O(1) for CPD, wheres is the approximation ratio time the only shape with known optimal covering density was
of the selected GSC subroutine. (2) We present two efficiahie disk. Only recently did [18] prove that the optimal camgr
deployment patterns for CRD and analyze their coveringidendensity of any fat convex bod¥ is %K”)” where H (K)
ties for directional sensors with different communicatiadius, is the hexagon with maximum area inscribedkn However,
sensing radius and sensing angle. (3) All of the algorithnesvering a set of points or a region using sectors is sigmifiza
presented in this paper do not impose any constraint barder than using disks or fat convex bodies. We are not aware
the relative order between sensing radius and communicataf any existing work on these issues.
radius, and hence are suitable for a wide range of applitatio

The reminder of this paper is organized as follows. Section I1l. Network Model and Problem Formulation

Il reviews related work. Section Il describes the network We consider stationary, directional sensors, whose sgnsin
model of directional sensor networks, and formally _def'r_"?gnge is a sector centered at each sensor with a sensing radiu
the problems. In Section IV, we present two approxmaﬂqn and a sensing angle (0 < « < 7). Moreover, we assume
algorithms for GSC and a general framework for CPD, a th sensors and data sinks communicate omni-directignall

a_nalyze the approximation ratios .Of these SO|UtIOhS: Baot represented by a disk communication range centered at each
gives two deployment patterns with bounded covering dynsgensor or data sink with communication radiys
for CRD and evaluates their performance. Section VI coregud Throughout the paper, we usér, r's, o) to representiirec

’ Cc!s, "~

the paper with some future research directions. tional sensors, and uses(r, «) to represent aector with radius
r and anglex. Furthermore, leX be a set, andlX| stands for
Il. Related Work the cardinality ofX. Given two pointsa andb and a 2D area

Extensive research on connected coverage has been dBndab| represents the Euclidean distance betwaeand b,
for omni-directional sensor networks (see [10] for a sujveyand || Al| represents the area @t
For example, [2] presented a strip-based deployment patier Using these assumptions and notations, the problems we
achieve connected region-coverage for sensors whose comftudy in this paper are formally defined as follows:
nication radius. is less than or equal to their sensing radius ¢ Connected Point-Coverage Deployment (CPD): Givenre, rs,
In [1], an efficient deployment pattern was given for conadct ¢ and a set of point® in a 2D area. CPD seeks to deploy a
region-coverage, providet: < ﬁrs_ Recently, [3] proved minimum number of directional sensas§¢, s, ) to form a
that the result in [2] is asymptotically optimal, and delsed connected network to cove?.
a general deployment solution to connected region-coeerag Connected Region-Coverage Deployment (CRD): Givenre,
for sensors using arbitramt andrs. In terms of connected I's, « and a vast 2D square aréa CRD seeks to find a pattern
point-coverage, d4x /+/3)-approximation algorithm is given with minimum covering density to deploy directional serssor
in [11] under the assumption that = r.. We are not aware S(T'c,I's, @) to form a connected network to covéx
of any work that addresses connected coverage in the context
of directional sensor networks. IV. Connected Point-Coverage Deployment (CPD)

Recently, a few research efforts have been devoted to direcThis section presents a general framework with provable
tional sensor networks. Reference [12] presented algosith on5roximation ratio for CPD. In a nutshell, our framework
for randomly deployed directional sensor networks to idgnt ¢onsists of two phases. Phase one solves the Geometria Secto
a minimal set of directions to cover the maximal number qf,\er problem and covers all of the given point-locations
point-locations. In [13], several scheduling algorithmsre/ it directional sensors; phase two places additional sens

presented to divide a randomly deployed sensor network iftp connect all of the sensors deployed in phase one.
subsets to alternatively cover a set of point-locations so a

to prolong network lifetime. In [14], the authors analyzeé‘ Geometric Sector Cover Problem (GSC)

the probability that a point-location is sensing by a ranjom One approach to GSC is to combitﬁ%{f—] sectors together
deployed directional sensor networks(not effectivelyseel). into a complete disk, and then use the known Polynomial
However, the problems, objectives, and algorithmic apghiea Time Approximation Scheme (PTAS) [8] for Geometric Disk
presented in this paper are completely different from the&wover to cover all of the given points. Such a scheme yields
earlier research efforts. a ((%”1 + €)-approximation algorithm for GSC. However, this



Algorithm 1 Greedy Algorithm for GSC
1: INPUT: Sector s(r, «) and a set of pointsP.

2: OUTPUT: A set S of sectorss(r, «) that cover P.

@ (®) © 3 R« P; S« # (empty set)j =1,
4: while R is not emptydo
5: Find a sectos (r, «) anchored by one, two, or three points
d in R that covers a maximum number of pointsk Let
(d) (e) (f) . _
fo 1 E les of sect hored b wo and thret<ol R be the set of points oR that are covered bg (r, a);
1g. 1. Xxamples or sectors anchore Yy one, 0 an rgaspol 6: S: SU {S (r, 0!)}, R — R\ Rl- | — | + 1,
7: end while
8: Output S;

naive approach is not particularly useful because (1) whéen
small, the resulting approximation ratio can be arbityderge,
and (2) wheru is large, the algorithm requires a long running

time to achieve a reasonable approximation ratio. Theeefoe sectors (1, «) in OPTgsc, let o be the center o (1, «), and
propose two polynomial-time approximation algorithmshwity pe the middle point of the arc ig (r, a).

provable approximation ratios for GSC. The first algoritten i
suitable for sectors with arbitrary angle. The second élgor
is designed for sectors whose angle is no less than

Whens (r, o) only covers one or two points i, we can
move s (r,«) and lets(rs, «) be anchored by the points it
covers, as shown in Figures 1(a), 1(b) or 1(c).

A.1 Greedy Algorithm for GSC When s (r, «) covers three or more points, we first move

ﬁ
The key idea of the first algorithm is to solve GSC using 8(r, a) along the lineoo’ in the 0’0 direction until one or more
greedy algorithm analogous to a greedy algorithm for the Smints touch the arc. We consider the two cases separately.

Cover problem [19]. We start with the following definition. 4 |f more than one point touches the arc, we fix the center
Definition 4.1: [Anchored Sector]: A sectors(r,a) is an an- of s (r, a) at the current location and rotasd(r, ) clockwise
chored sector if it satisfies one of the following three cendpr counterclockwise until at least one point touches theeedg
tions: (1)s(r, o) covers one _poin_a, anda coincides with the Thens (r, o) is anchored, as shown in Figure 1(c) or 1(e).
center ofs(, a): as shown in F'g_“re 1(a);-(3(r, @) COVers ¢ only one point touches the arc, we still fix the center of
two or more points, and there exist two pmpisandp located s(r,a) at the current location and rotat(r, ) clockwise

on the same edge (arc) sfr, «), anda coincides with one of ", nterclockwise until one or more points touch the edge.
the end points of this edge (arc). Moreover, there are norot ) If more than one point touches the edge, tisgn, «) is
points located on the other edge (arc), as shown in Figui®s 1 nchored, as shown in Figure 1(f); (2) If only one poi’nt toesch
and 1(c); (3)s(r, «) covers three or more points, and there exi:ﬁ.|e edge, we have one poirton the arc and one point on
three pointsa, b, andc such thata, b, andc are on different one of the edges. Then we keapon the arc andy on the

edges (arc), as shov_vn_in Figure 1(d); arand b are on the edge, and move (r, «) to makex approach the edge where
szme e_ng(:a_ (arc), vlvhllesgri ?ne of the other edges (arc), a§, resides until one of the following two cases happens. Case
shown |.n igures 1(e) and 1(). ] 1: we moves (r, ) until x coincides with the end point of
~Algorithm 1 presents a greedy algorithm for GSC. Conyg gqge wherg resides, thers (r, «) is anchored, as shown
sidering different point combinations and all of the poksib;, Figure 1(b). Case 2: we mow&(r, &) until another pointz
cases in Definition 4.1, the number of sectors anchored ches the arc or edge, tharr oc),is anchored as shown in
one, two or three points i is at most('i"), (“;') (i) (f) (i) Figures 1(d), 1(e) or 1(f)'_ '

and('5) () @) +2x () () (3)), respectively. Therefore, in each
executionsof step 5in AIgorithm 1, we only need to cpnsider %% the points it originally covers. Therefore, after perfong
mostCi(P ) _sectors and the time comple_xny_ of Algorithm 1 'She transformation on each sector @PTgsc, we obtain an
O(IP[), which results from repeatedly finding the sector th%tptimal setC that coversP where each sector i@ is anchored
covers the most uncovered points. To derive the approxamati L

. ) i . by one, two, or three points iP. [ |

ratio of Algorithm 1, we first prove the following lemma. . .
Lemma 4.2: Let P be a set of points. There exists an optimal The next theorem, which fOI!OWS_ dlrect_ly from the_ proof of
setC of sectorss(r, «) with minimum cardinality that covers Lemma 4.2, states the apprOX|mat|0.n ratio of Algorlthm 1.

P, where each sector if is anchored by one, two, or threeTheorem 4.3: Let P be a set of points. Algorithm 1 is an
points in P. (log|P| + 1)-approximation algorithm for GSC.

Proof: Let OPTgsc be an optimal set of sectors(r,«) Proof: Let Sp be the set of sectors that are anchored by one,
that coversP. We perform atransformation on each sector two or three points irP. Let S be the set of sectors that result
in OPTgsc to produce the se€ where each sector i€ is from running Algorithm 1 onP. By Lemma 4.2, there exists
anchored by one, two, or three pointsin P, and the cardjnaflit an optimal setC (C C Sp) of anchored sectors(r, «) that
C is the same as that @PTgsc. For an arbitrary unanchoredcovers P. According to the known approximation ratio of a

Note that in the transformatiors (r, o) always covers all



theorem states the approximation ratio.

Theorem 4.4: Let P be a point set, and(r,a) (5 < a < )

1 be a sector. Then the performance ratio of Algorithm 2 is 9.

S Proof: Let OPTgsc be an optimal set of sectors(r, «)
R (3 < a < =) that coversP. For any sectors(r,a) in

OPTgsc, sincej < a < «, the longest distance between any

two points ins (r, ) is at most 2 x sin(%), and each inscribed

Fig. 2. Strip-based algorithm for GSCh = r x sin(%), w =
5 /4 —si nz(%) - cos(i’z'). (a) Find an inscribed rectangkbed in a sector

s(r, «). o is the center of the sectoo! is the middle point of the araj; and strip Algorithm 2 uses at mos(4 x sin(%))/(,/4 — si nZ(Q) —
vy are the two end points of the a@.andb are the middle points afv1 and 2 2

ouy; ad and be are parallel tooo. (b) Step 8 of Algorithm 2 which covers €0S(3))] < 3 sectors .tO cover the POintS thaf[ are cpvered by
the points in a strip using such inscribed rectangles. s (rs, o). Moreover, since each strip has heighi si n(%),

s (rs, o) spans at most 3 strips. As a result, Algorithm 2 uses
greedy algorithm for the Set Cover problem [19ve have at most 9 sectors to cover all of the points that are covered by
|S| < (log|P|+1)|C|. Therefore, Algorithm 1 is @log|P|+1)- s (rs, @), which provides the performance ratio of 9. [ ]

approxllmanon algon.thm for GSC. _ B. Algorithm for Connected Point-Coverage Deployment
A.2 Srip-Based Algorithm for GSC Using Large Sectors Regarding the two approximation algorithms for GSC de-

In practice, it is expected that the sensing angle of diveeti scribed in previous section, the strip-based algoriththoaigh
sensors is not small. We thus give a constant approximatiprhas a better running time and a constant approximation
algorithm for GSC using sectors with angle< a < 7. ratio, can only be applied to sectors with large angles. On

The key idea of this algorithm is to (1) divide the entirghe other hand, the greedy algorithm actually achieveslemal
sensing area into strips of fixed heightx sin(%), and (2) approximation ratios whenP| < €®. Therefore, this section
cover the points in each strip from left to right using @resents a general framework for CPD, which can use either
rectangle inscribed in the sector with heigh sin(3) and approximation algorithm for GSC as a subroutine. Such a
width 5 4 — i n2(%) — cos(%). Figure 2(a) depicts how to design allows users to choose a proper subroutine and lealanc

compute such an |nscr|bed rectangle The complete algoritihe trade-offs between quality and performance. The cample

rectangle has Iengtgl /4 — si nZ(%)—cos(%), therefore in each

is presented in Algorithm 2. framework is given as Algorithm 3.

Algorithm 2 Strip-Based Algorithm for GSC Algorithm 3 A framework for CPD |

1 INPUT: Sectors s(r,a) (5 < « < z) and point set P. 1: INPUT: Sensor s(r¢, s, ) and a setP of points.

2: OUTPUT: A set S of sectorss(r, «) that covers P. 2: OUTPUT: A set S of connected sensors that cover®.
2SS« Pi=1 3S« 08«0, <4

4: Divide the sensing area into strips with heigh sin(4); 4 Execute ar-approximation algorithm for GSC oR using
5: for each each striglo sectors(rs, o), and put the resulting sensors $;

6. Letx(p) be thex-coordinates of poinp. Sort the points 5 Create a complete gr%p@ = (51 E), where each edge
in the strip according to their-coordinates and obtain ~ SSj € E has weightl === LLT 1-
Ps = {p1, P2, --» Pm}, Wherex(p1) < X(p2) - - < X(Pm); 6: Find a Minimum Spanmng TreE of C. For each edgss;
7:  while Ps is not emptydo in T, evenly placel Iss; ”1 1 sensors on the straight line
8: Pick the first pointp;j in Ps, and place a sectay (r, a) betweens ands;, ancf put all of the sensors i®;
such that its inscribed rectangle covers the points with: OutputS=§ U $;

x-coordinates fromx(pj) to x(pj) +5,/4 —sin?(%) —

cos(%), as shown in Figure 2(b); Letd be the maximum distance between any two point3.in
9:  Remove the points covered Isy(r, o) from Ps; The time complexity of Algorithm 3 i©(Tesc +|P|®+|P| x
10: S=SuU{s,a)};i=i+1; %, whereTgsc is the time complexity of the GSC subroutine,
11: end while O(|P|3) results from computing a Minimum Spanning Tree,
12: end for and|P| x % is from Step 6 in Algorithm 3.
13: Output S; We now derive the approximation ratio of Algorithm 3. Let

o, P, &, S, C, and T be as defined in Algorithm 3. Let

The time complexity of Algorithm 2 i©(|P|log|P|), which OPTcpp = {0S1, 08, - -, 05,} be an optimal set of sensors
results from sorting the points in each strip. The followin§(c. s, @) for CPD onP. We have the following lemma.
Lemma 4.5: |S| <o x |OPTcpp] |

4In [19], the authors proved that the greedy algorithm, whitis an We defined = ((4\/§rﬂ)2 + 2[2rsw + 6. The next lemma
approximation of ratiolog|P| + 1, is the best approximation algorithm for s the kev result towards deriving the approximation ratfio o
Set Cover problem, and no polynomial-time algorithm canieaeha better y g pp

approximation ratio unles® = NP. Algorlthm 3.



Lemma 4.6: || < 0 x |OPTcpp| Y2 TN

Proof: Let Copt be a complete graph ové@PTcpp, where 56 N -

each edgeos,0sy in Copt carries weight|oscosy||. Since the o 10 1w :

edge weights irCop satisfy the triangle inequality, there exists  [2x2 o Je N/ 05ys
a minimum spanning tre@pt = (OPTcpp, Eopt) (rooted at (@)

0Soot, 0500t € OPTcpp) of Copt, Where each sensor ifypt o
has at most 5 neighbors. We show that by usiag as a F9- 3 eZ(a) Divide the leading zone into 16 celle. = 4rs/[=rc=1,
backbone, we can find a Spanning tf&e = (Si, Ec) of C w = /26 < rc. (b) Connect the Iead!ng zones. _The leading zonessg$,

. . 0sy3, 0sy4 and osys are saturated, while the leading zonesosf1, osy are
whose total weight is no more th@hx |OPTcpp]. unsaturated.

To facilitate the creation ofc, we associate each senspin

Tc with one sensoosy in Topt, Wheres andosy cover certain he added edges to the leader sensors. Specifically, for each

common points inP. For simplicity, we term each sensosy edge connecting leading zonesasf; and osyi;1, we charge

in Topt as aleader sensor, and term the sensorsTig that are [%W to os,i and osyi;1, and charge 1 to each node on the

associated witlosy asosy’s follower sensors. In this proof, we shortest path betweews,; and osyi 1 in Topt, including osy;
consider the worst case where each leader sensor is aesbcigltld 0Syi 1.

with some follower sensors. We define the leading zonespf Assuming that we have connected the leading zones in each

as a circle centered as, with radius 2s. Clearly, all of the ¢4 00 of layer—1 leader sensors, we now consider the leader
follower sensors associated wills, are withinos,’s leading  gensors in layeir. Each leader sensos, in layeri has at most
zone. We creatdc in two steps. _ five childrenos,1, 0,2, - - - , 0575, and all of the leading zones

_In the first step, we connect the_ follower sensors associafgtdhe subtree 0b,i are connected. For each node pairand
with the same leader sensor. Specifically, for each leadsose ,, .\ \ve connect their subtrees by connecting two unsaturated
0s¢, we create a square just large enough to encapsulate|digiing zones (one from each subtree). Then we connect the
leading zone, then evenly divide the square i(lﬁé%ﬂz subtrees obsy5 andos; in the same way. As a result, all of the
square cells labeled as (left to right, top to bottd®a) - -- , Cn, |eading zones o0bs, and its descendants are connected, while
n= ((%1)2. Figure 3(a) depicts an example of dividing awo leading zones remainnsaturated. Again, we charge the
leading zone into 16 cells. Denote the square cells comtginitotal weight of the added edges to the leader sensors as we did
follower sensors a€i1, Ci2, - -+, Cim, whereil <i2 < ... < for leader sensors in layer— 1.
im. Note that all of the follower sensors within the same cell We repeat the above step for each layer until reaching
are connected since the diagonal of each cell is less thantlgg root os oo, Which results in a spanning treg: of C.
equal torc. We first find an arbitrary spanning tree in each cefy combining the charges to each leader sensoffgq in
and add the edges t¢. Then, for all of the cell pair€ij and both steps, a leader sensos, will be charged at most
Cij+1, we select two follower sensosg andsy (one from each ((%1)2 + 2(%} + 6. Therefore, the total weight ofc is
cell) and add edge,sy (sxSy € C) to Ec. As a result,osc's  at mostd x |OPTcppl. As a result,|S|, which is the total

follower sensors are connected. We charge the total weightgeight of T, is no more tha® x |[OPTcpp|. m
added edges tosy, which is at mostm —i1 < (f%DZ- The following theorem, which follows directly from Lemma

In the second step, we connect the follower sensors in differ,5 and Lemma 4.6, describes the approximation ratio of the
ent leading zones. For the ease of description, we leadihg presented framework.
zone of os,’ as a shorthand for ‘all of the follower sensorsTheorem 4.7: Let P be a set of points, and led(rc, rs, a)
associated witlosy,” and define the operation of connecting twie a directional sensor. The framework described in Alporit
leading zones as adding an edgednbetween two follower 3 for CPD has an approximation ratio ef+ ¢, wheres is
sensors (one from each leading zone)Be. We conduct a the approximation ratio of the selected GSC subroutine, and
breadth-first search Oy, label the roobs ot as layer 1, and g — ((%1)2 + 2(&1 + 6. -
label the children of leader sensors in layeas layeri + 1. fe fe
Assuming Topt has totallyn layers, we connect the leading
zones bottom-up starting from layar— 1. We evaluate the presented framework using different sub-

Each leader sensosy in layern—1 has at most five children routines with simulations. We first consider a special case
in Topt, denoted a®sy1, 0Sy2, - - - , 0Sys. As depicted in Figure wherea = 7, rc = rs and the point-locations are scattered
3(b), we first connect the leading zones of each leader sensorthe rectangular lattices, as shown in Figures 4(a). Is thi
pair osyij andosyi 1, then we connect the leading zonesgfs case, each sensor's sensing range can cover at most 4 point-
andosy. As a result, we add two edges for the leading zonéscations. Therefore, the optimal solution to CPD, which is
of 0sy2, 0sy3, 0sy4 andosys, and add one edge for the leadinghown as dotted sectors with solid center in Figures 4(a), ca
zones ofosy; and osy. We term the leading zones with twobe derived manually. We thus compare the performance of the
added edgessaturated leading zones,” and the leading zonegresented framework using different subroutines agaimst t
with one added edgeunsaturated leading zones.” To count optimal solution, and the results are shown in Figures 4(b).
the total weight of the added edges, we charge the weight@h the average, the greedy and strip-based GSC subroutines

C Smulation Result



-5~ Strip-Based GSC Subroutine
-~ Greedy GSC Subroutine
—- Optimal Solution 4

Number of Sensors

160 280 400 (a) (b)
Number of Point-Locations

(b) Fig. 6. (a) Combine six directional sens@@c, I's, %) together as an omni-
directional sensor. (b)[3] Optimal deployment pattern fanni-directional

0

Fig. 4. Hollow circles stand for the point-locations. Ddttsectors with
solid circle stand for the optimal sensors that cover alhef points. (a) Point-
locations scattered on rectangular lattiggs= rs, « = 7/3. w1 = wp =rs/2, d = ,/h2+ (-lfr)2 > Tg, (%] relay sensors, shown as hollow circles, need
hy = %\/4— sin?(a/2) — cos(a/2), ho = rs — hy. (b) Performance of the to be deployed between each pair of horizontal strips of@sn® guarantee
presented framework for the rectangular lattices case. network connectivity.

. ) 2
sensors usingc andrs. w = min(re, v/3rs), h = rs + ,/rsz - %. When

160 40
—B&- Strip-Based GSC Subroutine a = 21t/ 3 B—F
—7 Strip-Based GSC Subroutine a =1t/ 3
—*- Greedy GSC Subroutine o = 21t/ 3

1200 | o Greedy GSC a=mn/3

patterns with minimum covering density to place directiona
sensors as a connected network to cover a 2D square area
A. We follow the assumption in [2], [3] and assume that

is sufficiently large so that the coverage waste beyond the

300

80 200

-8 Strip-Based GSC Subroutine a = 21t/ 3

Number of Directional Sensors
Number of Directional Sensors

"°° "] 7 Smo-aasen osc Suoune o< /3 boundary can be omitted. Notice that for a limited region of
- - (oGt cso e znia | | particular shape, such as limited disk, triangle and regéan

Transmission Radius r; (meters ) Sensing Radius r ( meters ) regions, it is possible to derive specific and more efficient
(a) (b) deployment solutions, but this is beyond the scope of thiepa

Fig. 5. (1)rs = 50m, rc increase from 1@ to 100m. (2) rc = 70m, rs A. Disk-Based Deployment Pattern (DDP)

increase from 1 to 100m. The first deployment scheme combing&:] directional
sensorss(re, I's, ) together as a complete omni-directional

only use 1.75 times and 1.43 times more sensors than dgggzor _u?r(ljg _ser|1:§|ng raglm§ a;ng con:t:numcanorl;_raddlu&,
the optimal solution, respectively. We repeat this experim as depicted in Figure (@). Then, [hese combined sensors
for other cases where point-locations are scattered aimg)rqare deployed according to the optimal deployment pattern

to other patterns, such as triangular lattice, and find to#t b described in [3] for omni-directional sensors, as shown in

greedy and strip-based GSC subroutines use at most 4 tirﬁ yre 6(b). Note that Wher$§ < V3, add|t|(_)nal_ SEeNSors,
more sensors than does the optimal solution. termedrelay sensors, shown as hollow nodes in Figure 6(b),

We next consider the case where 200 point-locations JLSed to be deployed to guarantee network connectivity.eSinc

randomly distributed in a 1008 1000m?2 2D area. We use the number of relay sensors is vanishingly small in comparis

directional sensors with different configurationsref r and to the tot.al number_ of sensors whénis sufficiently large, t.he
%}ﬁerlappmg areas introduced by relay sensors can be ignore

o, and run 50 simulations for each configuration. The averai
results are illustrated in Figure 5. As we can observe froen t .
figures, when the value o, r¢ or « increases, the number of Although the disk-based scheme does not make full use

sensors computed by both the greedy GSC subroutine and ? éhe sector sensing range, it provides some insights into
strip-based GSC subroutine drops accordingly. Moreowver, gfficient deployment patterns,.and can pe used as a benchmark
the average, the strip-based GSC subroutine us@s@and «© evaluate other (more effective) solutions.

25% more sensors than does the greedy GSC subroutine wBefitrip-Based Deployment Patterns (SDP)

2 .
« equals- and 3, respectively. _ To describe the strip-based deployment pattern, we firgt giv
In summary, the presented CPD framework can achieve cqa following definition.

nected point-coverage using directional sensors wittedfit pafinition 5.1: [Tiling Body]: Given a geometric bodK and
re, rs anda. Moreover, the results provided by the presenteéj|arge 2D ared\, a setTk of the instances oK is atiling
framework using either the greedy GSC subroutine or the-striyith K in A, if all of the instances iffk are mutually disjoint,
based GSC subroutine are far better than the correspondip@ the union of these instancesTip equalsA. Further,K is
approxima_tion ratio s_ugg_ested, indicating that our alpams  5jjeq aTiling Body if a tiling with K in A exists. -
work well in real applications. The key idea of the strip-based deployment pattern is to first
) find a convex tiling body inscribed in the sector sensing eang
V. Connected Region-Coverage Deployment (CRD)  and then deploy sensors as a connected network in horizontal
This section gives two deployment patterns for CRD thatrips so that the inscribed tiling bodies can mesh togethdr
work for directional sensors with arbitrary, rs anda (0 < tile the 2D areaA. As pointed out in [20], given a set of
o < ). Recall that the objective of CRD is to find deploymentonvex bodies (not necessarily congruent) that tile a 2Depla



A
(b)

(@)

Fig. 8. (a) Crossing deployment pattern where the sectoh wdittted
line crosses the other two sectors. (b) Non-crossing depoy pattern. (c)
Maximum hexagon inscribed within a sector.

Fig. 7. (a) Find the inscribedb-hexagon in a sectos(rs, «). (b) Strip-
based deployment pattern using directional sens@is rs,a). w < re, h =

rs(1+,/ré — w? x sin?($)—w x cos(%)). Whenh > r, [%W relay sensors,

shown as hollow circles, needs to be deployed between eaclofpstrips to . . . . . .
guarantee network connectivity. ment pattern is1on-crossing if every pair of convex bodies in

this covering isnon-crossing. Figures 8(a) and 8(b) depict the
difference between crossing and non-crossing patterns.m
the average number of edges for these convex bodies is 6. WEinding the optimal pattern to deploy directional sensors,
thus focus on finding a tiling body with no more than 6 edgegnd proving its optimality is very difficult. This is so besau
Itis shown in [21] that each convex body contains a tiling podigorously analyzing the overlapping area induced by eithe

namedp-hexagon, which is formally defined as follows. crossing sectors or connectivity requirement seems to be-an
Definition 5.2: [p-Hexagon]: A p-hexagon is a hexagon withtractable problem. We _thus fopus on analyzing_ the perfoonman
a pair of parallel opposite sides of equal length. m of DDP and SDP with arbitrary non-crossing deployment

Under Definition 5.2, extreme cases are allowed, in whidratterns in the cases where the connectivity requiremess do
adjacent sides are collinear, and some sides, even thdgbar&ot induce any overlapping area:(> +/3rs for DDP, and
ones, may be reduced to points. Thus, each triangle jis afc > r's for SDP). We start with the following theorem.
hexagon, and so is each quadrilateral and each pentagon THigorem 5.4: [18] Let A be a largd x | 2D square area, and
has a pair of parallel sides. However, since for any trianglét K be a convex body. IA is covered by a large number of
quadrilateral or pentagon that is inscribed in sector, we cfon-crossing instances ¢f, then the covering density of this
easily find an inscribed hexagon that contains this shape &@fyerage is no less th%ﬁ%, whereH (K) is the hexagon
has larger area, we focus on inscribed hexagons. Since With maximum area inscribed withiK . [
work in [21] did not specifically consider convex sectors and The next theorem, which is a standard result of Lagrangian
the connectivity constraint, we define the following opienat multiplier, describes the maximum hexagon inscribed \nithi
to find a commonp-hexagon inscribed within convex sectorgonvex sector. Due to page limitations, the detailed preoioit
to guarantee connected region-coverage. provided.

Theorem 5.5: Lets(r, a) (0 < a < «) be a sector, led be the

Finding a p-hexagon inscribed within a sector As shown center ofs(r, ), and leta ande be the two end points of the
in Figure 7(a), for sectos(r, a), o and o’ denote the center arc ins(r, a). The maximum hexagon inscribed withs(r, a)
of the sector and the middle point of the arc, respectively. Vis 0abcde with area 22sin(%), as shown in Figure 8(c), where
place this sector in ary-coordinate system wherecoincides b, ¢ andd are evenly distributed on the arc. ]
with the origin, ancd’ resides on thg-axis. We find two points ~ SDP achieves the maximum covering density whem rs,

a andd on the two edges of the sector whej@a|| = |jod| < as does DDP when; > +/3rs. On the other hand, Theorems
rc. Then we find two more points andc on the arc such that 5-4 and 5.5 give the theoretical lower-bound of coveringsitgn

bothab andcd are vertical to thec-axis. The hexagonabo'cd ~ for any non-crossing deployment patterns (not necesseoity
is a p-hexagon. nected). We compare the maximum covering density of DDP

and SDP with the theoretical lower-bound, and the results ar

By using Lagrangian multiplier [22], we can find suchpa given in Figure 9. Whem¢ > rg, the covering density of SDP
hexagonoabo'cd ([loal| < r¢) with maximum area, and theiS Very close to the theoretical lower-boundq% more on the
corresponding deployment pattern using syshexagons to average). For DDP, when > V/3rs, its covering density varies

achieve connected region-coverage is shown in Figure 7(b)Sharply when the sensing angle changes. This is so because
when 2r is not divisible bya, there exists some overlap area

in each combined disk. On the average, the covering density

In general, the deployment patterns can be categorizedcdDDP is 297% more than the theoretical lower-bound.
crossing patterns and non-crossing patterns, which are ex- Using crossing sectors in a covering is very wasteful.
plained in following definition. Moreover, it is believed that the non-crossing requirement
Definition 5.3: [Non-crossing Deployment Pattern]: Let K; Theorem 5.4 can be removed, provided the region needed to
and K> be two convex bodiesK; and K, arenon-crossing if  be covered is very large. Therefore, we conjecture the tesul
there exist two half planelst andL~ such thalL*NK; c K, presented in Figure 9 actually indicate the performanceou
andL™ N Ky c Ki. Let A be a 2D area covered by a set obf the presented deployment patterns with respect to arpitr
convex bodies following a deployment pattern. This deplogleployment patterns, including the optimal solution.

C. Comparison with Non-Crossing Deployment Patterns
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Fig. 9. Comparison with the theoretical lower-bound of moossing deploy-
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sensors using differemt, rs anda (a) Covering density of DDP. (b) Covering

density of SDP.

D. Numerical Results

(11]

[12]

We further compare the covering density of DDP and SDE®!
using directional sensors with different configurations Qfrs
and «. The numerical results are presented in Figure 10. We

can see from these figures that SDP outperforms DDP in

[14]

of the configurations. Moreover, the covering density ofhbofilbl]
SDP and DDP decreases when the régicdecreases or when([16]

the sensing angle increases.

VI. Conclusion and Future Work

[17]

(18]

In this paper, we studied several novel problems related !l?)]
connected coverage in directional wireless sensor neBNor{(
Specifically, we presented two approximation algorithms f@20]

the GSC problem, and using these algorithms as the sub

tine, developed a framework with an approximation ratio

o + O(1) for CPD, wheres is the approximation ratio of

g

the selected GSC subroutine. We also presented two efficié#t
patterns to deploy directional sensors for CRD. Future work
includes finding better solutions to CPD and CRD, as well as
investigating current problems with higher order connatgti

or coverage requirement.
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