
SYNAPSE: A Network Reprogramming Protocol for
Wireless Sensor Networks using Fountain Codes

Michele Rossi†, Giovanni Zanca†, Luca Stabellini⋆,

Riccardo Crepaldi‡, Albert F. Harris III‡ and Michele Zorzi†

†Dept. of Information Engineering, University of Padova, 35131 Padova, Italy.

Email: {rossi, zancagio, zorzi}@dei.unipd.it
‡Dept. of Computer Science, University of Illinois, Urbana-Champaign, 61801 Illinois, USA.

Email: {rcrepal2, aharris}@uiuc.edu
⋆Wireless@KTH, Royal Institute of Technology, Electrum 418, SE-164 40 Kista, Sweden.

Email: luca.stabellini@radio.kth.se

Abstract—Wireless reprogramming is a key functionality in
Wireless Sensor Networks (WSNs). In fact, the requirements for
the network may change in time, or new parameters might have to
be loaded to change the behavior of a given protocol. In large scale
WSNs it makes economical as well as practical sense to upload the
code with the needed functionalities without human intervention,
i.e., by means of efficient over the air reprogramming. This poses
several challenges as wireless links are affected by errors, data
dissemination has to be 100% reliable, and data transmission and
recovery schemes are often called to work with a large number
of receivers. State of the art protocols, such as Deluge, implement
error recovery through the adaptation of standard Automatic Re-
peat reQuest (ARQ) techniques. These, however, do not scale well
in the presence of channel errors and multiple receivers. In this
paper, we present an original reprogramming system for WSNs
called SYNAPSE, which we designed to improve the efficiency
of the error recovery phase. SYNAPSE features a hybrid ARQ
(HARQ) solution were data are encoded prior to transmission
and incremental redundancy is used to recover from losses, thus
considerably reducing the transmission overhead. For the coding,
digital Fountain Codes were selected as they are rateless and
allow for lightweight implementations. In this paper, we design
special Fountain Codes and use them at the heart of SYNAPSE
to provide high performance while meeting the requirements of
WSNs. Moreover, we present our implementation of SYNAPSE for
the Tmote Sky sensor platform and show experimental results,
where we compare the performance of SYNAPSE with that of
state of the art protocols.

I. INTRODUCTION

Many applications currently exploit wireless sensor networks

(WSNs) for long term data gathering, ranging from environ-

mental sensing, manufacturing plant control, etc, and many

more are under development. We note that the requirements

for the network (which translate into functionalities to support)

may change in time. Also, the WSN itself might be moved

to a different place thus requiring reconfiguration. Finally, we

might want to reconfigure on the fly a given protocol through,

e.g., the upload of new specifications for its rules and general

behavior. These needs all call for energy efficient, scalable,

topology independent and fast methods to wirelessly reprogram

the WSN. In order to reach these goals, a protocol must meet

several requirements which are peculiar to WSNs. First, it is

crucial that the code delivery is 100% reliable and reaches all

intended destination nodes. It shall be so regardless of channel

errors, link variability and topology changes. Second, program

sizes can be as large as 48 Kbytes, usually packets are 26 bytes

long and sensor nodes have a limited amount of RAM (4 or

10 Kbytes, depending on the sensor hardware) and FLASH

memory (usually 512 Kbytes). This means that the code cannot

be entirely stored in RAM, i.e., we are dealing with large

data transfers if compared with the actual memory capabilities

of the sensors: as a result, dedicated dissemination/Automatic

Repeat reQuest (ARQ) schemes are to be designed. Third, the

WSN environment is inherently multi-hop, which implies that

special protocols are needed to ensure reliable dissemination

over multiple hops without requiring any a priori knowledge

about the network topology. Fourth, WSNs are usually highly

populated with wireless devices, thus if no proper countermea-

sures are taken, it is likely that many senders will transmit at the

same time. This will translate into collisions, that result in an

overall slow-down of the delivery process as well as decreased

energy efficiency. Therefore, special algorithms are needed

to properly handle the selection of senders and intelligent

schemes for feedback suppression (e.g., ARQ NACKs) shall

be implemented to reduce collisions [1].

A few practical algorithms have been designed to solve

the above problems. The state-of-the-art is represented by the

following four protocols: Deluge [2], MNP [3], Stream [4]

and Freshet [5]. These schemes all transfer data in chunks

(referred to as pages) in multi-hop WSNs. Some form of

epidemic routing (all), intelligent sender election (MNP) as

well as transmission/feedback suppression (all), pipelining (all)

and aggressive sleeping behavior (MNP and Freshet) have been

used. However, we observe that the transmission of pages and

the subsequent error recovery is always obtained through the

adaptation of standard ARQ techniques. That is, the erroneous

reception of part(s) of the code is notified through some sort of

status messages (basically NACKs, even though bit-masks can

be used for improved efficiency see, e.g., [3]), which are sent

to the sender upon the completion of their transmission.

In this paper we present SYNAPSE, an original protocol for

reprogramming WSNs. While incorporating many of the above

techniques, SYNAPSE adopts an extremely efficient (and differ-

ent) data transmission/recovery paradigm. In fact, a Fountain

Code [6] (FC), specifically designed to meet the needs of sensor

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

network reprogramming, is used at the heart of the data dissem-

ination/recovery process. This code is designed to maintain a

high efficiency, in terms of overhead, in the face of small packet

sizes and typical program lengths. These codes were selected

due to their desirable properties: FCs are rateless and have a

low computational complexity, as encoding and decoding are

performed efficiently through XOR operations. Our Fountain

Code has been implemented on Tmote Sky nodes and shown

to execute efficiently even with the limited available processing

power. Our experiments show that we achieve reliable network

programming with very low overhead compared to other current

in-network reprogramming techniques [2]. It shall be observed

that our present research work is complementary in nature to

what previously done: while others mainly concentrated their

study upon devising smart algorithms (i.e., modified epidemic

schemes) for sender selection, sleeping modes etc., our focus

is on extremely efficient solutions for the local delivery of the

data (i.e., between the senders and their neighbors), as well as

their proper integration with previous techniques.

The rest of the paper is organized as follows. Section II

surveys related work. Section III describes the structure and the

algorithms used in SYNAPSE. Section IV presents the design

of the Fountain Code we adopt in our framework as well as its

performance. Section V shows our experimental results, where

the performance of SYNAPSE is compared with that of state-

of-the-art algorithms. Finally, Section VI concludes the paper.

II. RELATED WORK

XNP [7] is the first network reprogramming protocol for

WSNs. It operates only over a single hop and does not support

incremental updating of the program image. The Multihop Over

the Air Protocol (MOAP) [8] extended the code delivery to

multi-hop networks. It introduced some interesting features for

the local recovery of data (NACKs, local broadcast, sliding

window recovery), which are all used by the most recent

protocols. MOAP disseminates data in a hop-by-hop fashion,

i.e., a node has to receive the whole program before starting

the dissemination over the next hop.

Next, we discuss the four protocols that define the state-of-

the-art for wireless sensor network reprogramming: Deluge [2],

MNP [3], Freshet [5] and Stream [4]. Deluge disseminates

the code in multi-hop environments exploiting an epidemic

routing algorithm, which uses a three-way handshake based on

advertisement (ADV), request (REQ) and actual code (CODE)

transfer. Note that ADVs and REQs have smaller sizes if com-

pared to data packets; this reduces the transmission overhead

when nodes contend for the channel. In Deluge, the code is

subdivided into pages, which are disseminated using a NACK-

based ARQ protocol. The code is transmitted, page by page,

via broadcast and pipelining is implemented. Pipelining allows

a node that correctly receives a page from a node within its

previous hop to promptly start the dissemination of this page

to the next hop. The randomization of the transmission of

the advertisement within predetermined time windows as well

as advertisement suppression are implemented to reduce the

congestion in the propagation of the code through multiple

hops. MNP [3] has many features in common with Deluge.

In addition, it implements special algorithms to reduce the

problems due to collisions and hidden terminals. This is

achieved through a distributed priority assignment so that, in

a neighborhood, there is at most one sender transmitting the

program at any given time. The sender election is greedy

and distributed, i.e., there is no need to know the topology

in advance. In MNP the senders with a higher number of

potential receivers are assigned higher priority and sleeping

modes are also used to reduce the energy consumption; a

sender can go to sleep when a neighbor with higher priority has

data to send. Freshet [5] is based on Deluge and aggressively

optimizes the energy consumption during reprogramming. In

an initial phase, some meta-data (information) about the code

to be transferred and the topology (in terms of number of hops

from the front wave where the code is currently being trans-

mitted) are disseminated to sensor nodes. Using this topology

information, nodes estimate when the code will actually get

to their vicinity and enter a sleeping period accordingly. Some

other features, such as the dynamic adjustment of the frequency

at which meta-data is transmitted, are implemented as well.

Stream [4] builds on Deluge and optimizes what is actually

sent over the channel. Common intuition would be to transfer

only what actually needed, i.e., the program image. However,

Deluge, MNP and Freshet all disseminate the image of the

programming protocol together with that of the program to

be transferred. This considerably inflates the amount of data

to be disseminated (up to 20 folds for the transmission of a

program image consisting of a single page [4]). Stream obviates

this problem by pre-installing in each sensor node, before its

actual deployment, the re-programming application. This is

done through the segmentation of the FLASH into multiple

partitions so that the re-programming protocol and the program

to be transferred are stored in different image areas. Hence,

at dissemination time Stream transmits over the channel the

minimal support (about one page) needed for the activation of

the re-programming image together with the actual program

image. In reference [4] this strategy is implemented on Deluge

and is shown to provide substantial performance improvements.

SYNAPSE adopts many of the above techniques. It uses

three way handshakes as per the ADV-REQ-CODE paradigm

introduced above. It implements randomization when sending

advertisements. It exploits broadcast transmissions for the code

and NACKs to request missing data and it implements the

method proposed in Stream [4]. On the other hand, it fea-

tures new elements such as the extension of Deluge’s FLASH

memory partition management (see PartitionManager in

Section III) as well as a novel hybrid ARQ error recovery

mechanism.

III. A DATA DISSEMINATION SYSTEM FOR WIRELESS

SENSOR NETWORKS

In the following Section III-A we illustrate SYNAPSE’s

architecture. Section III-B introduces the BootLoader, which

we realized to allow the management of the FLASH (format-

ting, partitioning, etc.) and load new programs. In Section III-C

we present the Fountain Based dissemination protocol.

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

DataDisseminationBootLoader

SingleHop BootLoader

Communication
Radio Partition

ManagerCodec

Fig. 1. SYNAPSE’s component architecture in TinyOS-2.x.

A. General Architecture

In what follows, we describe the SYNAPSE data dissemina-

tion system by discussing its main functional blocks.

Structure of the software: the software was developed in

a modular and portable way to facilitate its extension or

the modification of any of its parts. The software architec-

ture is shown in Fig. 1. There are two independent macro-

blocks: BootLoader and DataDissemination, which

cannot be executed concurrently as the micro-controller is

single-task. The communication between BootLoader and

DataDissemination is possible thanks to the Information

Memory, a portion of the internal FLASH, which is preserved

even after a device reset.

BootLoader: Our sensor nodes feature a TI MSP430 micro-

controller with direct access to an internal FLASH of

48 Kbytes; additional storage is provided by an external FLASH

of 1024 Kbytes. The BootLoader is loaded at boot time,

and handles read and write operations between these mem-

ories. It can copy applications into the external FLASH and

load them on demand. Due to its importance, we present the

BootLoader in greater detail in Section III-B.

BootLoader Communication: this is a TinyOS module

allowing the communication between TinyOS applications

(in our case the DataDissemination module) and the

BootLoader. It is implemented to hide hardware details. This

module provides a reboot command which is used to reset the

device. This command is executed when a new application is

received and needs to be loaded in place of the current program.

DataDissemination: the DataDissemination module

communicates directly with the SingleHop and the

BootLoaderCommunication modules. This is the only

module that has to be included in a TinyOS project to

support in-network reprogramming. DataDissemination

implements an epidemic routing algorithm as well as a three-

way-handshake similar to the one in [2].

SingleHop: DataDissemination uses the SingleHop

module to send/receive data to/from the devices in the cur-

rent node’s neighborhood. Hence, SingleHop manages lo-

cal transmissions, whereas DataDissemination decides

whether or not the current node should contribute itself to the

data dissemination, by initiating a local dissemination proce-

dure. When a node actively participates in the dissemination,

the SingleHop module reads transport blocks of data from

the external FLASH and sends them to the Radio module.

Radio: it is responsible for transmitting and receiving data

packets. For improved efficiency, the Radio module imple-

ments a Hybrid ARQ (HARQ) strategy, where packets are

encoded according to a digital fountain approach [6]. These

issues are discussed in greater detail in Sections III-C and IV.

The Radio module provides the Codec with the current set

of original packets (the current transport block), which are

used by the Codec to obtain encoded packets. These are then

passed to the Radio module for their actual transmission.

To summarize, the main functionalities of the Radio module

are: 1) transmission and reception of encoded data packets, 2)

implementation of a HARQ retransmission strategy, 3) control

of the Codec, determining how many packets are to be

encoded, when incremental redundancy has to be created, etc.

Codec: the codec implements the Fountain Code coding rou-

tines, which were specifically designed for sensor devices, see

Section IV for further details.

Partition Manager: it is a TinyOS module we wrote to provide

functionalities for reading, writing and creating memory parti-

tions in the external FLASH. The FLASH is partitioned and

used as an external disk through the definition of a partition

table, which is stored at the beginning of the memory. This

allows for a hardware independent approach which facilitates

the porting to a new type of memory chip. More details are

given in the next section.

B. Boot Loader for Wireless Network Reprogramming

The BootLoader can copy applications between internal

and external FLASH memories and subsequently restart the

device with the copied application. In addition, it can create

new memory partitions on the external FLASH and format it.

To this end, we implemented a dynamic partitioning system

that allows the use of the external FLASH memory as a

WORM (Write Once Read Many) device, without knowing in

advance the number and the size of the partitions. To keep

track of the first memory location for each application we

store in the external FLASH, we use a hash-function returning

an identifier (application ID) calculated as a function of the

application object’s code. This generation is performed by the

compiling system, which usually resides in a PC having the

necessary computational power. In the external FLASH we

maintain a partition table which relates application IDs to

the memory location where the corresponding application is

saved. The application ID is subsequently used by the boot

loader to retrieve the application from the external FLASH,

copy it to the internal FLASH and load it. In summary,

the BootLoader supports the following functionalities: ex-

ecute an application, format the external FLASH, copy ap-

plications from the internal to the external FLASH, load

applications from the external FLASH. Finally, a portion of

the internal FLASH is used to support the communication

between BootLoader and DataDissemination, which

can thus exploit the above functionalities at runtime using the

BootLoaderCommunication interface.

C. Data Dissemination Protocol

Next, we present the data dissemination and error recovery

algorithms we implemented in SYNAPSE. Efficient dissemi-

nation requires the subdivision of files into so called transport

blocks of appropriate size, so that they can be processed in the

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

available RAM. Transport blocks are composed of K packets,

whose reliable transmission to neighboring nodes is obtained

through a Fountain Codes based HARQ protocol. Next, we

detail the dissemination protocol in the single-hop case as well

as the current implementation of the multi-hop scheme.

Single-hop dissemination: We observe that plain ARQ is

inefficient as its throughput quickly decreases as a function

of the number of receivers [9]. To overcome this, we adopted

a HARQ solution where transport blocks are encoded prior

to transmission. Differently from ARQ, all we need to know is

how many redundancy packets are still needed by each receiver

to recover the original data. In addition, the same redundancy

packets can correct losses at multiple receivers. Fountain Codes

were selected as they allow for lightweight implementations,

with advantages in terms of memory requirements and compu-

tational needs. They are rateless, i.e., incremental redundancy

can be obtained on the fly without needing to know in advance

the worst case error probability, the number of receivers, etc.

Moreover, they retain the good properties of standard forward

error correcting (FEC) codes. The design of FCs is described

in Section IV.

Consider a given node i and let Ni be the set of devices

in its communication range. The objective of the single-hop

dissemination protocol (SingleHop module) is to reliably

and efficiently disseminate the transport blocks stored at node

i to all interested devices in Ni. Each transport block is sent

during a so called dissemination round. A new round should be

initiated only when all nodes in Ni have received and decoded

the current transmission block.

At the beginning of a round, node i broadcasts K + δ1

encoded packets, where δ1 = 4 is selected to guarantee a

recovery probability higher than 0.8 for typical packet error

rates, p ≈ 0.05 and K = 32. These packets are followed by a

DECODE message. Data packets are used to build a decoding

matrix G (see Section IV). In case a receiver j ∈ Ni is still

unable to invert G after receiving the DECODE message, it

will ask the transmitter for additional redundancy packets. In

this request (NACK) it will indicate the rank of its decoding

matrix rj . The transmitting node i collects incoming NACKs

and calculates ξ = minj rj . Note that at least K−ξ redundancy

packets need to be transmitted to have a full rank G at all

receivers. We chose to transmit K − ξ + δ packets to provide

extra-protection. δ = 4 gives good performance in practical

settings as well as over error prone links, i.e., p ≤ 0.3. Also, δ is

kept fixed for all subsequent retransmission requests. Timeouts

and a limit on the maximum number of re-transmission cycles

are used to avoid deadlocks. In case no NACKs are received

after a predefined timeout, node i assumes an implicit ACK

from the receivers.

We observe that receiving nodes may have different memory

writing times, due to, e.g., different error patterns, battery level,

etc. Hence, different nodes will finish writing the transport

block at different time instants and the transmitter needs to syn-

chronize with the slowest node in order to start the transmission

of a new block. This is achieved by electing a synchronizer

node which, round-by-round, is the slowest node to decode.

This node shall provide an explicit acknowledgment to the

transmitter upon the completion of each transmission round.

Multi-hop dissemination: in its current version, SYNAPSE

implements a hop-by-hop data dissemination protocol. In detail,

when a node receives the whole file it starts broadcasting

advertisement (ADV) messages. ADVs are de-synchronized

through random back-offs as multiple nodes may complete the

reception of the file at the same time. Upon the reception of an

ADV, a node which does not have the data to be disseminated

responds with a request (REQ) message; feedback suppression

is used to limit the amount of signaling traffic. Thus, the sender

starts a new single-hop dissemination phase, intended to all

its potential receivers. Network allocation vectors (NAV) are

inserted in each ADV/REQ and used to infer the amount of

time an overhearing sender should wait before sending its own

ADV(s). The details of the ADV/REQ phase are similar to

what implemented in [2]. It is observed that the use of FEC

allows for smart implementation of pipelining. The focus of the

present paper is on the design of codes with good performance

as well as their usage within data dissemination schemes in

WSNs. Enhanced pipelining techniques exploiting such codes

are the objective of our current research and will be integrated

in future versions of the system.

IV. FOUNTAIN BASED ENCODING

In section IV-A we discuss the main characteristics of

Fountain Codes, why we use them in our framework and

which are their main differences with respect to other encoding

methods. In section IV-B we detail the Fountain Codes we

use in SYNAPSE, discussing the approach we considered

for the optimization of the degree distribution at the encoder

and the decoding technique we use at the receiving side. In

Section IV-C we give some important implementation details.

A. Introduction to Fountain Codes

Digital Fountain Codes were presented by M. Luby in [10]

and were the first example of codes realizing the Digital

Fountain paradigm of [11]. FCs are near optimal rateless codes

designed for erasure channels [6], [12]. Common methods

for reliably transmitting packets over these channels are ARQ

protocols where receivers send back to the transmitter status

reports to identify missing packets. The transmitter, in turn,

decodes incoming reports and retransmits what is lost. ARQ has

the advantage of working regardless of the erasure probability p
but often requires a large amount of feedback. In addition, the

forward channel (transmitter → receivers) performance (e.g.,

delay and throughput efficiency) is heavily impacted even for a

small number of receivers and low error rates [9]. As a solution,

researchers used HARQ schemes, see, e.g., [1], [9]. HARQ

scales considerably better than ARQ as a single redundancy

packet can recover different losses at multiple receivers. We

advocate the use of Fountain Codes based HARQ for network

programming. These, in fact, retain the good performance of

previous HARQ schemes [1], [9] while presenting additional

advantages:

• Due to the rateless nature of these codes, we do not need

to know in advance the error probability p. This simplifies

implementation and increases efficiency. In fact, the actual

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

amount of redundancy to use within our dissemination

protocol can be decided on the fly.

• Packets are encoded using arithmetic on the Galois field

GF (2), i.e., by means of bitwise XOR operations. This

substantially speeds up the execution time with respect

to traditional packet-based Reed Solomon codes [1], [9],

which use more complex operations among polynomial

coefficients in GF (q), with q > 2. In fact, fast operations

over GF (q) require the use of look-up tables, which

is substantially slower than XORing symbols. This is

a tremendous advantage for resource constrained sensor

devices. We also observe that, while Tornado codes [13]

also perform encoding in GF (2), they are not rateless.

Encoding Procedure: the encoding process is very simple.

Its key ingredient is the degree distribution ρ(d), which is a

probability distribution determining the number of input packets

to combine to form any given encoded packet tn. The input file

is subdivided into a number of, say, K packets of b bits each

and the following operations are executed:

• Pick a degree dn, 1 ≤ dn ≤ K from the distribution ρ(d),
whose characteristics depend on the file length K, as well

as on the targeted performance (e.g., in terms of coding

complexity and overhead, see Section IV-B).

• Randomly and uniformly pick dn packets among the K
given as input. The encoded packet tn is obtained through

the bitwise sum, modulo 2 of these dn packets, i.e., by suc-

cessively XORing them. dn is the degree of the encoded

packet so obtained, while the information about which dn

packets were XORed together forms the corresponding

encoding vector. Continue from the previous step until

the desired number of packets is encoded.

Due to the above procedure, all encoded packets are equally

representative of the whole input file, as they are independently

generated using the same distribution. Hence, it is not important

which packets are lost during transmission, what matters is how

many packets are correctly received. Moreover, the goodness

of the encoding process is totally captured by the adopted

degree distribution, whose optimization is thus crucial to obtain

good performance. This optimization is the subject of the

following section IV-B. Finally, rateless codes require the

correct reception of N ≥ K encoded packets for decoding

the original K packets; N depends on the selected distribution

ρ(d). For large K, there are encoding distributions requiring a

small overhead [10]. The overhead (O) is defined as the extra

redundancy needed for recovery, i.e., O = N − K.

Decoding Procedure: decoding can be done by inverting a

decoding matrix G, which is formed by the received encoding

vectors, i.e., solving for s the system t = Gs, where t is

the vector containing the received encoded packets, whereas s

contains the K original packets to be retrieved. Very efficient

decoding procedures, based on message passing, were proposed

for large K [10]; these heuristically solve the above linear

system. Our focus in this paper is however different as K
in our settings is small. Here, with K we mean the number

of packets in a transport block, see Section III-C. We remind

that, due to the inherent RAM limitations of sensor devices,

we cannon work with large K values. Hence, the suboptimal

decoding in [10] is not an option in our case due to its poor

performance (O ≫ 1) for small K. On the other hand, we note

that optimal decoding amounts to reducing the decoding matrix

G to upper triangular form via Gaussian elimination [12]. For

large K, this method is not efficient as its complexity grows as

O(K3). However, in our case this complexity is acceptable

due to the small values of K (e.g., K = 32). Hence, we

decided to implement an optimal decoder, according to an

efficient Gaussian elimination routine. This, together with the

optimization of the degree distribution at the encoder, led us to

small overhead at the cost of a reasonable complexity.

B. Optimization of the Degree Distribution ρ(d)

For properly designed fountain codes, N should be close to

K. Some overhead is unavoidable and depends on the adopted

ρ(d). In this section, we present an original algorithm for

the optimization of the degree distribution according to given

performance objectives. As we show later, our optimization

technique is very effective and competitive with state of the

art optimizers for Fountain Codes. The optimized degree distri-

butions we present in this section are used within SYNAPSE’s

error recovery scheme. We optimize our codes for transmission

over error-free channels. For full recovery at the receiver(s), all

we need is to receive K independent packets so that G can be

inverted. This implies the reception of N ≥ K packets as not

all packets we generate through ρ(d) are linearly independent.

However, a probability p > 0 does not change anything at the

receiver side (K independent packets are still needed). Hence,

as packets are generated independently of each other, losses

will preserve all the properties of the distribution designed for

p = 0. In practice, a good distribution for error-free channels

will preserve its good performance over error-prone links [12].

Before describing our optimization algorithm we introduce

a few definitions. A sample of the algorithm involves the

generation of encoded packets until these allow full recovery

at the decoder. An iteration of the algorithm is composed

of a fixed number of samples, M . To optimize the degree

distribution we adopt an iterative approach: we start from an

initial distribution, we generate samples and, for each of them,

we calculate a cost, which is subsequently used to refine the

distribution itself. The procedure is terminated when a stopping

condition, which is defined below and depends on the latest

distribution obtained, is verified. A new iteration is started

otherwise. In the following, we define some parameters:

• K is the number of packets in the input file.

• pj , j = 1, 2, . . . ,K are the point probabilities defining the

degree distribution ρ(d).
• M is the number of samples generated during each itera-

tion of the algorithm.

• C(i), i = 1, 2, . . . ,M is the cost (used to drive the

optimization) associated with the i-th sample of the current

iteration.

• N(i), i = 1, 2, . . . ,M is the number of encoded packets

needed for correct decoding of the original K packets for

sample i.
• nj(i), i = 1, 2, . . . ,M ; j = 1, ..,K is the number of

degree j packets generated within the i-th sample.

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

We use ideas from the theory of genetic algorithms to iter-

atively obtain, through subsequent refinements, an optimized

degree distribution. We start by generating a population of

M samples and evaluating for each sample i its cost C(i).
C(i) may for example be a function of the overhead (defined

as O(i) = N(i) − K) and/or of the number of elementary

operations (XORs) required for decoding. Once we have the

costs for all samples 1, 2, . . . ,M , we select the most promising

samples as follows. We compute the α-percentile, Cα, of the

observed costs C(1), C(2), . . . , C(M) and pick all samples k
having cost C(k) ≤ Cα. These samples are subsequently used

to refine the degree distribution ρ(d). The refined distribution

survives to the next iteration. Let S be the set containing the

selected samples: S = {k : C(k) ≤ Cα} and let pj be the

point probabilities associated with the current distribution. The

new distribution is obtained as:

pnew
j =

∑

k∈S

nj(k)

N(k)

|S|
j = 1, 2, . . . ,K , (1)

where |S| is the cardinality of set S. Since this new distribution

(it is easy to verify that
∑K

j=1
pnew

j = 1) is obtained from

samples having small cost, it is reasonable to suppose that

adopting pnew
j for the generation of new samples, i.e., at the

next iteration of the algorithm, will result in outcomes with

smaller cost. These are in turn used to generate a new distri-

bution and this procedure is iterated until a certain stopping

condition is verified. In our algorithm, the stopping condition

is defined in terms of the expected value of the cost during

the last two iterations. In particular, the optimization process is

continued if and only if the mean cost obtained in the current

iteration is strictly lower than that obtained previously.

We tested our algorithm, comparing its performance against

that of the optimization scheme in [14]. In [14] an iterative sim-

ulation approach based on importance sampling and gradient

search is proposed and used to optimize the degree distribution

of LT codes [10], i.e., considering a message passing decoder.

As a benchmark to test the effectiveness of our optimization

approach, we considered the sparse degree distributions of [14],

i.e., pj 6= 0 for j = 2ℓ, where ℓ = 0, 1, . . . , ℓmax, 2ℓmax < K
and pj = 0 otherwise. We initialized each of the non-zero prob-

abilities to the same value, pj = 1/γ, such that
∑K

j=1
pj = 1.

We set C(i) = N(i), ∀ i, M = 1000, α = 0.05 and Cα

was updated only when the cardinality of S was found to be

higher than M/2, and left unchanged otherwise. We empirically

verified that updating Cα only when S contains a sufficient

number of samples leads to better performance. The value M/2
was empirically found to give the best performance in our

tests. The results of the optimization are shown in Table I;

for comparison we also show the values obtained in [14].

As shown in the table, even though our algorithm adopts an

empirical approach and no rigorous criteria are defined for its

convergence, the performance achieved by our distributions is

comparable with that of [14]. Further, it is observed that the

results in Table I (and the corresponding distributions) were

obtained with at most 20 iterations of M = 1000 samples

each, i.e., we achieve a gain of orders of magnitude in terms

TABLE I
OPTIMIZED SPARSE ρ(d) FOR LT CODES (MESSAGE PASSING DECODER).

K → 16 32 64 128

p1 0.221 0.212 0.161 0.187
p2 0.457 0.351 0.400 0.339
p4 0.188 0.288 0.256 0.275
p8 0.134 0.101 0.101 0.101
p16 - 0.048 0.045 0.046
p32 - - 0.037 0.031
p64 - - - 0.021

E[N] 22.6 43.6 82.7 158.7

Std. σ(N) 4.4 6.4 9.1 11.4

E[N] in [14] 22.5 43.6 81.9 159.8

Std. σ(N) in [14] 4.2 6.8 7.7 12.1

of computational complexity with respect to the optimization

technique in [14] (requiring millions of iterations).

As discussed in Section IV-A the message passing (LT)

decoder [10] is not suitable for our settings, i.e., for small K
values. On the other hand, in our case an optimal decoder, based

on Gaussian elimination, can be used at a reasonable compu-

tational cost. We thus applied our optimization algorithm to a

Gaussian elimination decoder to obtain distributions having low

decoding cost as well as low overhead. For this purpose we used

two cost functions. The first one, as in the previous example,

is the number of packets needed to decode the transmitted file,

i.e., C1(i) = N(i). The second one, C2(i), is instead defined

as the number of XORs between 16-bit words performed at

the decoder to recover the original K packets. In detail, C2(i)
is given by the sum of the XORs necessary for the reduction

of the received encoding matrix G in upper triangular form

and those needed to recover the original data once G has been

reduced. These two cost functions were used to define a new set

of useful samples S ′ = {k : C1(k) ≤ Cα1

∧
C2(k) ≤ Cα2

}, to

be used in Eq. (1), that in this case was obtained considering

two different values for the α-percentiles for C1 and C2; M
was set to 50000 and the initial distribution was pj = 1/K,

j = 1, 2, . . . ,K. In order to adhere to our experimental settings,

we considered packets of 25 bytes that for K = 32 correspond

to transport blocks of 800 bytes. XORs operate on 16 bit words,

as for the TI MSP430 micro-controller of our sensor nodes.

Optimizations were carried out for K ∈ {32, 48, 64, 128}.

Due to space constraints, here we only present results for

K = 32, which was also considered for the results in Section V.

The selection of the parameters α1 and α2 to use within the

algorithm is not trivial; by tuning these two coefficients it is

in fact possible to obtain degree distributions with different

properties in terms of overhead (O = N − K) and decoding

cost (number of XORs to obtain the K original packets). Note

that a lower decoding cost will result in a higher overhead

and vice versa. We ran an extensive optimization campaign

varying these parameters. The distributions leading to minimum

overhead and minimum decoding cost were obtained setting

(α1, α2) to (0.05, 1) and (1, 0.05), respectively. For K = 32 we

obtained the distributions shown in Figs. 2 and 3. Besides these

two distributions, we also consider the uniform distribution

as it is known to give asymptotically optimal performance in

terms of overhead [6] (even though it has unsatisfactory cost

performance). For our decoder the uniform distribution achieves

an average overhead of E[C1] = 34.09 ± 0.03 packets and an

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

j

p
j

Fig. 2. ρ(d): optimal encoding distribution in
terms of transmission overhead.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

j

p
j

Fig. 3. ρ(d): optimal encoding distribution in
terms of overall decoding cost.

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

j

p
j

Fig. 4. ρ(d): encoding distribution obtaining a
good tradeoff between overhead and cost.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [XOR]

P
[C

2
 ≤

 x
]

Uniform Distribution

Optimal C
1
 (OH)

Optimal C
2

Selected Distribution

Fig. 5. Empirically measured cumulative distribution of the computational
cost at the decoder for different degree distributions. The cost is measured as
the number of XORs between 16-bit words.

average decoding cost of E[C2] = 6481±10 XORs; 95% confi-

dence intervals were obtained considering 10000 samples of the

decoding process. In Fig. 2 we plot our optimal distribution in

terms of overhead, having E[C1] = 33.65± 0.03 packets and a

slightly higher decoding cost of E[C2] = 6586±9.8 XORs. For

small K it performs better than the uniform distribution. The

best performance in terms of decoding cost is achieved with the

distribution in Fig. 3 having E[C2] = 3249±16 XORs, i.e., its

decoding cost is more than 50% smaller than that achievable

with the uniform distribution (see Fig. 5). However, this last

distribution is not interesting in practice as its average overhead

is unacceptably high, i.e., E[C1] = 50.7 ± 0.2 packets.

As one might expect, suitable tradeoffs between overhead

and decoding cost can be obtained through a judicious choice

of the pair (α1, α2). For the selection of these parameters we

have done an exhaustive search in the region {(α1, α2) : 0 ≤
α1 ≤ 1, 0 ≤ α2 ≤ 1}, from which we selected the distribution

in Fig. 4, obtained considering α1 = 0.05 and α2 = 0.075.

For this distribution we have E[C1] = 34.26 ± 0.04 and

E[C2] = 5142± 12, thus we reduce the decoding cost of more

TABLE II
OPTIMIZED ρ(d) FOR A GAUSSIAN ELIMINATION DECODER, K = 32.

j = 1 → 16 pj j = 17 → 32 pj

1 0.1005 17 0.0108
2 0.1493 18 0.0113
3 0.0993 19 0.0118
4 0.0622 20 0.0121
5 0.0489 21 0.0128
6 0.0357 22 0.0135
7 0.0258 23 0.0147
8 0.0230 24 0.0156
9 0.0174 25 0.0169
10 0.0154 26 0.0202
11 0.0134 27 0.0271
12 0.0126 28 0.0321
13 0.0116 29 0.0482
14 0.0111 30 0.0650
15 0.0106 31 0.0391
16 0.0108 32 0.0012

than 20% with respect to the uniform case (see Fig. 5) whilst

maintaining almost the same overhead. The optimized degree

distribution for this case is shown in Table II. We observe

that these results substantially improve the results shown in

Table I: this is mainly due to the higher performance of

Gaussian elimination with respect to message passing decoding.

In addition, in these last optimizations we did not restrict

ourselves to a specific class of distributions, as we instead

did for the results in Table I. We finally observe that higher

gains can be obtained considering larger values for K. As an

example, with K = 128 a cost reduction of up to 40% can

be achieved with respect to the uniform distribution, whilst

maintaining almost the same overhead. This K, however, hardly

fits our memory requirements.

C. Implementation Details

First of all, encoding vectors are not transmitted along with

encoded packets. We instead use the same random number

generator at both transmitter and receivers and associate random

seeds with packets identifiers. An initial seed is communicated

at the beginning of transmission rounds, whereas the seeds used

for the subsequent packets are incrementally obtained from

their sequence numbers. In this way, no overhead is introduced

for the transmission of encoding vectors. In addition, the choice

of the pseudo random generator deserves particular attention.

In SYNAPSE we adopt a generator based on Linear Feedback

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

0 0.05 0.1 0.15 0.2 0.25 0.3
40

60

80

100

120

140

160

180

200

Packet loss, p

T
ra

n
s
m

it
te

d
 d

a
ta

 [
K

b
y
te

]

SYNAPSE 5 nodes

SYNAPSE 15 nodes

SYNAPSE 30 nodes

Deluge 5 nodes

Deluge 15 nodes

Deluge 30 nodes

Fig. 6. Data traffic vs. p.

0 0.05 0.1 0.15 0.2 0.25 0.3

40

60

80

100

120

140

160

180

200

220

240

260

Packet loss, p

D
is

s
e
m

in
a
ti
o
n
 t
im

e
 [
s
]

SYNAPSE 5 nodes

SYNAPSE 15 nodes

SYNAPSE 30 nodes

Deluge 5 nodes

Deluge 15 nodes

Deluge 30 nodes

Fig. 7. Data dissemination time vs. p.

0 0.05 0.1 0.15 0.2 0.25 0.3

10

20

30

40

50

60

70

Packet loss, p

C
o
n
tr

o
l
tr

a
ff
ic

 [
K

b
y
te

]

SYNAPSE 5 nodes

SYNAPSE 15 nodes

SYNAPSE 30 nodes

Deluge 5 nodes

Deluge 15 nodes

Deluge 30 nodes

Fig. 8. Signaling traffic vs. p.

Shift Registers (LFSR) [15] working with registers of 16 bits.

This method, which is optimized for the TI MSP430 micro-

controller of our sensor nodes, is very fast. Decoding a block

of K = 32 packets (800 bytes) with LFSR takes about 462
ms. For comparison, the same operation with a more accurate

Linear Congruential random Generator takes about 660 ms. A

drawback of LFSR is that a few random seeds exist which

provide unsatisfactory performance. There is, however, a large

number of seeds for which LSFR performs properly.

V. EXPERIMENTAL RESULTS

The experimental results that we show in this section were

obtained in the SignetLab testbed deployed in the Department

of Information Engineering of the University of Padova [16].

The hardware platform consists of Tmote Sky sensor nodes,

featuring an IEEE 802.15.4 2420 Chipcon wireless transceiver

working at 2.4 GHz and allowing a maximum data rate of

250 Kbps. These sensors have a TI MSP430 micro-controller

with 10 Kbytes of RAM and 48 Kbytes of internal FLASH.

These nodes are also equipped with an external FLASH mem-

ory of 1 Mbyte. SYNAPSE was developed using the nesC

programming language in TinyOS v2.x [17].

In what follows, the performance of SYNAPSE is compared

to that of Deluge [2]. In our comparison between SYNAPSE

and Deluge, exactly the same amount of data was transmitted

by the two dissemination protocols in all experiments. Note

that, as mentioned in Section II, the optimizations introduced

in Stream [4], where the actual amount of data to disseminate

is reduced by pre-installing the re-programming software in

all sensor nodes, can be used in SYNAPSE as well. The

performance enhancement of optimized SYNAPSE compared

to Stream would be similar to that of SYNAPSE compared to

standard Deluge.

We ran a series of tests to assess the performance of

SYNAPSE in a single hop environment with one sender and a

variable number of receiving nodes. In order to have full control

of the packet error probability over the wireless links, the

receivers were positioned sufficiently close to the transmitter so

as to have a negligible packet error probability due to channel

impairments, and we emulated channel errors by discarding the

received packets through a software defined probability p. In

the following plots, vertical bars are used to represent 95%

confidence intervals.

As a first result, Fig. 6 shows the total number of data bytes

transmitted by all nodes to successfully disseminate a program

of 27100 bytes to all receivers. The results for 5, 15 and 30
receivers are plotted as a function of p ∈ [0, 0.3]. Considering

the experiments with 5 receivers, we note that there is an

initial gap for p = 0, which is due to the publishing procedure

implemented in Deluge. In detail, as soon as any node receives a

correct page, it starts publishing this information through ADV

messages. This is necessary to achieve spatial multiplexing [2],

which consists of a distributed and very efficient technique for

multi-hop dissemination and ARQ. However, as a drawback of

this mechanism data packets may collide; this effect is more

pronounced for an increasing network density (see curves for

15 and 30 nodes and p = 0).

It is observed that, with this phenomenon alone, Deluge’s

and SYNAPSE’s curves would be parallel. This, however, does

not occur but the performance gap between the two protocols

increases with p. This is mainly due to the higher efficiency

of SYNAPSE’s HARQ technique. Note that the authors of

Deluge [2] decided against using error correcting codes as they

found that, for realistic network settings, this did not offer good

results, which is expected if traditional fixed-rate FEC is used.

On the other hand, SYNAPSE uses a more sophisticated FEC

technique which is efficient in these cases, as the rateless codes

we use do not need to know the error probability experienced by

the receivers in advance, but rather adapt to the actual channel

conditions. Also, the code is efficient for a large number of

receivers as additional redundancy can be generated on the fly

until full recovery.

In Fig. 7, we show the reprogramming time as a function of

p for the same network configurations as above. We observe a

trend similar to that in Fig. 6, as well as substantial improve-

ments in terms of reprogramming time. Note also that the gap

between Deluge’s curves is mainly due to the higher number

of collisions of ADVs, REQs and DATA packets experienced

for an increasing number of nodes. In SYNAPSE, instead,

this gap is mainly due to the collisions occurring over the

feedback channel, i.e., among NACKs. These collisions slow

down the dissemination and are more likely to occur when the

node density increases. A feedback suppression mechanism is

Technical Report, DEI - University of Padova, Italy. November 2007.

M. Rossi et Al., “SYNAPSE: A Network Reprogramming Protocol...”

8 18 28
0

20

40

60

80

100

120

140

160

180

Application size [Kbyte]

D
is

s
e

m
in

a
ti
o

n
 t

im
e

 [
s
]

1
st

 hop

2
nd

 hop

3
rd

 hop

4
th

 hop

Fig. 9. SYNAPSE’s dissemination time for a multihop network with 4 hops
and 30 nodes.

however used in SYNAPSE to mitigate this problem.

We continue our discussion with Fig. 8, where we show

the signaling traffic sent by the two dissemination protocols

as a function of p. Interestingly, Deluge performs very close to

SYNAPSE at low densities (5 nodes), whereas for an increasing

number of receivers its performance is considerably impacted

by the transmission of control packets. This is not due to the

Trickle algorithm [2] that Deluge uses for the suppression of

ADVs, but rather to the fact that all receivers have to send

their error bit-vectors (REQs). This is not necessary in our case

as redundancy packets are effectively used to correct different

losses at multiple receivers. Hence we only need to receive at

least one NACK requiring a sufficient number of packets, rather

than multiple specific retransmission requests.

As a sample result for SYNAPSE’s dissemination time in

multi-hop scenarios, in Fig. 9 we show the reprogramming time

for the first 4 hops of a grid network. In Fig 10 we show a

snapshot of the reprogramming times for the same network.

As expected from the hop-by-hop nature of the implemented

multihop mechanism, the dissemination time is linear with the

number of hops. This shows that SYNAPSE is also effective in

multi-hop environments. Improvements of SYNAPSE in these

scenarios are the objective of our future research.

VI. CONCLUSIONS

In this paper we presented SYNAPSE, a system for re-

programming WSNs exploiting rateless Fountain Codes. We

first reviewed the advantages offered by these codes. We

subsequently designed, through a novel genetic optimization

approach, an encoding distribution which is tailored to the

specific needs of WSNs. This distribution is used at the heart

of SYNAPSE’s dissemination and error recovery mechanisms.

Finally, we tested our TinyOS implementation of the protocol

on the Tmote Sky sensor platform. Experimental results, ob-

tained for single as well as multi-hop environments, confirm

the effectiveness of our approach in disseminating data to a

large number of receivers, especially in the presence of channel

impairments. In conclusion, rateless codes proved to be a viable

and very promising practical method for disseminating data in

WSNs. In the final version of the paper we will provide a link

0 1 2 3 4 5
0

1

2

3

4

X Position

Y
 P

o
s
it
io

n

20

40

60

80

100

120

140

160

180

Fig. 10. SYNAPSE: snapshot of a single dissemination for a grid network of
30 nodes. Different colors represent different dissemination times (in seconds).

to the open source code distribution of SYNAPSE.

REFERENCES

[1] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based Loss
Recovery for Reliable Multicast Transmission,” IEEE/ACM Trans. on
Networking, vol. 6, no. 4, pp. 349–361, 1998.

[2] J. W. Hui and D. Culler, “The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale,” in ACM SenSys, Baltimore,
Maryland, USA, Nov. 2004.

[3] S. S. Kulkarni and L. Wang, “MNP: Multihop Network Reprogramming
Service for Sensor Networks,” in IEEE ICDCS, Columbus, Ohio, USA,
Jun. 2005.

[4] R. K. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead Wireless
Reprogramming for Sensor Networks,” in IEEE INFOCOM, Anchorage,
Alaska, USA, May 2007.

[5] M. D. Krasniewski, R. K. Panta, S. Bagchi, C.-L. Yang, and W. J.
Chappell, “Energy-efficient, On-demand Reprogramming of Large-scale
Sensor Networks,” ACM Trans. on Sensor Networks, 2008, accepted for
publication.

[6] D.J.C. MacKay, “Fountain Codes,” IEE Proceedings – Communications,
vol. 152, no. 6, pp. 1062–1068, 2005.

[7] J. Jeong, S. Kim, and A. Broad, “Network Reprogramming,”
Berkeley, California, USA, Aug. 2003. [Online]. Available: http:
//www.tinyos.net/tinyos-1.x/doc/

[8] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update
mechanism for wireless sensor networks,” Los Angeles, California, USA,
2003, CENS Technical Report no. 30.

[9] M. Rossi, M. Zorzi, and F. H. Fitzek, “Link Layer Algorithms for
Efficient Multicast Service Provisioning in 3G Cellular Systems,” in IEEE
Globecom, Dallas, Texas, US, Nov. 2004.

[10] M. Luby, “LT Codes,” in The 43rd Annual IEEE Symposium on Founda-
tions of Computer Science, Vancouver, B.C., Canada, Nov. 2002.

[11] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital
Fountain Approach to Reliable Distribution of Bulk Data,” in ACM
SIGCOMM, Vancouver, B.C., Canada, Sep. 1998.

[12] D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[13] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” in 29-th annual ACM symposium
on Theory of computing, El Paso, Texas, US, May 1997.

[14] E. Hyytiä, T. Tirronen and J. Virtamo, “Optimizing the Degree Distri-
bution of LT Codes with an Importance Sampling Approach,” in RESIM
2006, 6-th International Workshop on Rare Event Simulation, Bamberg,
Germany, Oct. 2006.

[15] D. E. Knuth, The Art of Computer Programming, volume 2: Seminumer-
ical Algorithms, 3rd ed. Addison-Wesley, 1997.

[16] R. Crepaldi, S. Friso, A. F. Harris III, M. Mastrogiovanni, C. Petrioli,
M. Rossi, A. Zanella, and M. Zorzi, “The Design, Deployment, and
Analysis of SignetLab: A Sensor Network Testbed and Interactive Man-
agement Tool,” in IEEE Tridentcom, Orlando, Florida, US, May 2007.

[17] “TinyOS: an open source OS for the networked sensor regime.” [Online].
Available: http://www.tinyos.net

Technical Report, DEI - University of Padova, Italy. November 2007.

