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Abstract—In most sensor networks the nodes are static.
Nevertheless, node connectivity is subject to changes because
of disruptions in wireless communication, transmission power
changes, or loss of synchronization between neighboring nodes.
Hence, even after a sensor is aware of its immediate neighbors, it
must continuously maintain its view, a process we call continuous
neighbor discovery. In this work we distinguish between neighbor
discovery during sensor network initialization and continuous
neighbor discovery. We focus on the latter and view it as a
joint task of all the nodes in every connected segment. Each
sensor employs a simple protocol in a coordinate effort to reduce
power consumption without increasing the time required to detect
hidden sensors.

I. INTRODUCTION

A sensor network may contain a huge number of simple
sensor nodes that are deployed at some inspected site. In
large areas, such a network usually has a mesh structure. In
this case, some of the sensor nodes act as routers, forwarding
messages from one of their neighbors to another. The nodes are
configured to turn their communication hardware on and off
to minimize energy consumption. Therefore, in order for two
neighboring sensors to communicate, both must be in active
mode.

In the sensor network model considered in this paper, the
nodes are placed randomly over the area of interest and their
first step is to detect their immediate neighbors – the nodes
with which they have a direct wireless communication – and to
establish routes to the gateway. In networks with continuously
heavy traffic, the sensors need not invoke any special neighbor
discovery protocol during normal operation. This is because
any new node, or a node that has lost connectivity to its
neighbors, can hear its neighbors simply by listening to the
channel for a short time. However, for sensor networks with
low and irregular traffic, a special neighbor discovery scheme
should be used. This paper presents and analyzes such a
scheme.

Despite the static nature of the sensors in many sensor
networks, connectivity is still subject to changes even after the
network has been established. The sensors must continuously
look for new neighbors in order to accommodate the following
situations:

1) Loss of local synchronization due to accumulated clock
drifts.

2) Disruption of wireless connectivity between adjacent
nodes by a temporary event, such as a passing car or

animal, a dust storm, rain or fog. When these events are
over, the hidden nodes must be rediscovered.

3) The ongoing addition of new nodes, in some networks
to compensate for nodes which have ceased to function
because their energy has been exhausted.

4) The increase in transmission power of some nodes, in
response to certain events, such as detection of emergent
situations.

For these reasons, detecting new links and nodes in sensor
networks must be considered as an ongoing process. In the
following discussion we distinguish between the detection of
new links and nodes during initialization, i.e., when the node is
in Init state, and their detection during normal operation, when
the node is in Normal state. The former will be referred to as
initial neighbor discovery whereas the latter will be referred
to as continuous neighbor discovery. While previous works
[1], [2], [3] address initial neighbor discovery and continuous
neighbor discovery as similar tasks, to be performed by the
same scheme, we claim that different schemes are required,
for the following reasons:

• Initial neighbor discovery is usually performed when the
sensor has no clue about the structure of its immediate
surroundings. In such a case, the sensor cannot commu-
nicate with the gateway and is therefore very limited in
performing its tasks. The immediate surroundings should
be detected as soon as possible in order to establish a
path to the gateway and contribute to the operation of
the network. Hence, in this state, more extensive energy
use is justified. In contrast, continuous neighbor discovery
is performed when the sensor is already operational. This
is a long-term process, whose optimization is crucial for
increasing network lifetime.

• When the sensor performs continuous neighbor discovery,
it is already aware of most of its immediate neighbors and
can therefore perform it together with these neighbors in
order to consume less energy. In contrast, initial neighbor
discovery must be executed by each sensor separately.

Figure 1 shows a typical neighbor discovery protocol. In this
protocol, a node becomes active according to its duty cycle.
Let this duty cycle be α in Init state and β in Normal state.
We want to have β � α. When a node becomes active, it
transmits periodical HELLO messages and listens for similar
messages from possible neighbors. A node that receives a
HELLO message immediately responds and the two nodes
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Fig. 2. Continuous neighbor discovery vs. initial neighbor discovery in sensor
networks

can invoke another procedure to finalize the setup of their
joint wireless link.

To summarize, in the Init state, a node has no information
about its surroundings and therefore must remain active for
a relatively long time in order to detect new neighbors. In
contrast, in the Normal state the node must use a more
efficient scheme. Such a scheme is the subject of our study.
Figure 2 summarizes this idea. When node u is in the Init
state, it performs initial neighbor discovery. After a certain
time period, during which the node is expected, with high
probability, to find most of its neighbors, the node moves
to the Normal state, where continuous neighbor discovery is
performed. A node in the Init state is also referred to in this
paper as a hidden node and a node in the Normal state is
referred to as a segment node.

The main idea behind the continuous neighbor discovery
scheme we propose is that the task of finding a new node
u is divided among all the nodes that can help v to detect
u. These nodes are characterized as follows: (a) they are
also neighbors of u; (b) they belong to a connected segment
of nodes that have already detected each other; (c) node v
also belongs to this segment. Let degS(u) be the number of
these nodes. This variable indicates the in-segment degree of a
hidden neighbor u. In order to take advantage of the proposed
discovery scheme, node v must estimate the value of degS(u).

The rest of the paper is organized as follows. In Section II

we present related work. Section III presents a basic scheme
and problem definition. The core of the paper is Section IV,
which presents three methods for estimating the in-segment
degree of a hidden neighbor and analyzes their accuracy. Sec-
tion V concentrates on a special case where the network nodes
are uniformly distributed. For this case, we are able to find a
numeric value for the accuracy of the three methods presented
in IV. Section VI presents our continuous neighbor discovery
scheme, which is based on our findings in Section IV. Section
VII presents simulation results that demonstrate the scheme’s
efficiency. It also includes a discussion of problems that arise
when two small segments have to detect one another. Finally,
Section VIII concludes this work.

II. RELATED WORK

In a WiFi network operating in centralized mode, a special
node, called an access point, coordinates access to the shared
medium. Messages are transmitted only to or from the access
point. Therefore, neighbor discovery is the process of having
a new node detected by the base station. Since energy con-
sumption is not a concern for the base station, discovering new
nodes is rather easy. The base station periodically broadcasts a
special HELLO message1. A regular node that hears this mes-
sage can initiate a registration process. The regular node can
switch frequencies/channels in order to find the best HELLO
message for its needs. Which message is the best might depend
on the identity of the broadcasting base station, on security
considerations, or on PHY layer quality (signal-to-noise ratio).
Problems related to possible collisions of registration messages
in such a network are addressed in [4]. Other works try to
minimize neighbor discovery time by optimizing the broadcast
rate of the HELLO messages [1], [5], [6], [7], [8]. The main
differences between neighbor discovery in WiFi and in mesh
sensor networks are that neighbor discovery in the former
is performed only by the central node, for which energy
consumption is not a concern. In addition, the hidden nodes
are assumed to be able to hear the HELLO messages broadcast
by the central node. In contrast, neighbor discovery in sensor
networks is performed by every node, and hidden nodes cannot
hear the HELLO messages when they sleep.

In mobile ad-hoc networks (MANETs), nodes usually do
not switch to a special sleep state. Therefore, two neighboring
nodes can send messages to each other whenever their physical
distance allows communication. AODV [9] is a typical routing
protocol for MANETs. In AODV, when a node wishes to send
a message to another node, it broadcasts a special RREQ (route
request) message. This message is then broadcast by every
node that hears it for the first time. The same message is used
for connectivity management, as part of an established route
maintenance procedure, aside from which there is no special
neighbor discovery protocol.

Minimizing energy consumption is an important target de-
sign in Bluetooth [10]. As in WiFi, the process of neighbor
discovery in Bluetooth is also asymmetric. A node that wants

1The various systems and protocols that employ neighbor discovery use
different names for their control message, such as BEACON or NEIGHBOR-
DISCOVERY. For consistency, throughout this paper, we refer to all these
control messages as HELLO.
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to be discovered switches to an inquiry scan mode, whereas
a node that wants to discover its neighbors enters the inquiry
mode. In the inquiry scan mode, the node listens for a certain
period on each of the 32 frequencies dedicated to neighbor
discovery, while the discovering node passes through these
frequencies one by one and broadcasts HELLO in each of
them. This process is considered to be energy consuming and
slow. A symmetric neighbor discovery scheme for Bluetooth
is proposed in [11]. The idea is to allow each node to switch
between the inquiry scan mode and the inquiry mode.

The 802.15.4 standard [12] proposes a rather simple scheme
for neighbor discovery. It assumes that every coordinator node
issues one special “beacon” message per frame, and a newly
deployed node has only to scan the available frequencies
for such a message. However, the standard also supports a
beaconless mode of operation. Under this mode, a newly
deployed node should transmit a beacon request on each
available channel. A network coordinator that hears such a
request should immediately answer with a beacon of its own.
However, this scheme does not supply any bound on the
hidden neighbor discovery time.

Neighbor discovery in wireless sensor networks is addressed
in [2]. The authors propose a policy for determining the
transmission power of every node, in order to guarantee that
each node detects at least one of its neighbors using as little
power as possible.

In [1], the authors study the problem of neighbor discovery
in static wireless ad hoc networks with directional antennas.
At each time slot, a sensor either transmits HELLO messages
in a random direction, or listens for HELLO messages from
other nodes. The goal is to determine the optimal rate of trans-
mission and reception slots, and the pattern of transmission
directions.

In [6], neighbor discovery is studied for general ad-hoc
wireless networks. The authors propose a random HELLO
protocol, inspired by ALOHA. Each node can be in one of
two states: listening or talking. A node decides randomly
when to initiate the transmission of a HELLO message. If
its message does not collide with another HELLO, the node
is considered to be discovered. The goal is to determine
the HELLO transmission frequency, and the duration of the
neighbor discovery process.

In [5], the sensor nodes are supposed to determine, for
every time slot, whether to transmit HELLO, to listen, or to
sleep. The optimal transition rate between the three states is
determined using a priori knowledge of the maximum possible
number of neighbors.

In [13], the Disco algorithm is proposed for scheduling the
wake-up times of two nodes that wish to find each other. For
this algorithm, each node chooses a prime number; the choice
depends on the required discovery time. Using the Chinese
Remainders theorem, it is proved that the wake-up periods of
the nodes will overlap within the required time. However, [13]
does not discuss the problem of many sensors in the same
segment collaborating to reduce the energy they expend for
discovering hidden nodes.

As discussed in Section I, the sensor network nodes spend
most of their time in sleep/idle mode, where they cannot

receive or transmit messages. Therefore, the node’s ability to
discover a new neighbor is limited to periods when both are
active. In [3], this neighbor discovery model is shown to be
similar to the well-known “birthday paradox.” In our work we
use a similar analysis, in order to find the probability that a
node will be discovered by one of its neighbors.

A novel low-power listening (LPL) technique, proposed in
[14] to overcome sensor synchronization problems, is imple-
mented by the B-MAC protocol [15]. The transmission of a
packet is preceded by a special preamble. This preamble is
long enough to be discovered if each node performs periodic
channel sampling. However, this technique can usually not be
used for initial neighbor discovery, and cannot be used at all
for continuous neighbor discovery, because it actually requires
the node to stay awake during the entire time it is searching
for a new neighbor.

III. A BASIC SCHEME AND PROBLEM DEFINITION

In the following discussion, two nodes are said to be
neighboring nodes if they have direct wireless connectivity.
We assume that all nodes have the same transmission range,
which means that connectivity is always bidirectional. During
some parts of our analysis, we also assume that the network
is a unit disk graph; namely, any pair of nodes that are within
transmission range are neighboring nodes. Two nodes are said
to be directly connected if they have discovered each other
and are aware of each other’s wake-up times. Two nodes are
said to be connected if there is a path of directly connected
nodes between them. A set of connected nodes is referred
to as a segment. Consider a pair of neighboring nodes that
belong to the same segment but are not aware that they have
direct wireless connectivity. See, for example, nodes a and c
in Figure 4(a). These two nodes can learn about their hidden
wireless link using the following simple scheme, which uses
two message types: (a) SYNC messages for synchronization
between all segment nodes, transmitted over known wireless
links; (b) HELLO messages for detecting new neighbors.

Scheme 1 (detecting all hidden links inside a segment):
This scheme is invoked when a new node is discovered by
one of the segment nodes. The discovering node issues a
special SYNC message to all segment members, asking them
to wake up and periodically broadcast a bunch of HELLO
messages. This SYNC message is distributed over the already
known wireless links of the segment. Thus, it is guaranteed
to be received by every segment node. By having all the
nodes wake up “almost at the same time” for a short period,
we can ensure that every wireless link between the segment’s
members will be detected.

To better understand the benefit of Scheme 1, we now
compare its performance to the performance of a trivial
algorithm where every node discovers its hidden neighbors
independently. When Scheme 1 is used, a hidden node is
discovered by all of its in-segment neighbors as soon as it is
discovered by the first of them. In contrast, when Scheme 1 is
not used, the hidden node is discovered by all of its in-segment
neighbors only when it is discovered by the last of them. To
analyze the time slots at which these nodes are discovered,
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Fig. 3. Discovery delay of non-cooperative vs. cooperative schemes

suppose that the time axis is divided into slots such that the
probability that a node discovers a given hidden neighbor is
p. Consider a node u with m in-segment hidden neighbors.
The probability that u discovers its first in-segment hidden
neighbor only at slot k + 1 is

pm(k) = (1 − p)mk

(1 − (1 − p)m).

Since pm has geometric distribution with probability of suc-
cess equal to p′ = 1 − (1 − p)m, the expected time until
the first discovery (first “success”) is Em = (1 − p′)/p′ =
(1 − p)m/(1 − (1 − p)m). If Scheme 1 is not used, node u
discovers all its in-segment hidden neighbors one by one. The
expected delay in this case is the expected delay until the first
discovery in a set of m neighbors (Em) plus the expected
delay until the first discovery in a set of m − 1 neighbors
(Em−1) and so on, namely,

∑

1≤i≤m Ei. Figure 3 shows a
numerical comparison between the two cases when p = 0.01
and the number of in-segment neighbors ranges between 1 and
9.

Scheme 1 allows two neighboring nodes u and v to discover
each other if they belong to a connected segment. However,
as discussed in Section I, in order for two neighbors not yet
connected to the same segment to detect each other, each node
should also execute the following scheme:

Scheme 2 (detecting a hidden link outside a segment):
Node u wakes up randomly, every T (u) seconds on the
average, for a fixed period of time H . During this time it
broadcasts several HELLO messages, and listens for possible
HELLO messages sent by new neighbors. The value of T (u)
is as follows:

• T (u) = TI , if node u is in the Init state of Figure 2.
• T (u) = TN (u), if node u is in the Normal state of

Figure 2, where TN(u) is computed according to the
scheme presented in Section IV.

A random wake-up approach is used to minimize the pos-
sibility of repeating collisions between the HELLO messages
of nodes in the same segment. Theoretically, another scheme
may be used, where segment nodes coordinate their wake-up
periods to prevent collisions and speed up the discovery of
hidden nodes. However, finding an efficient time division is
equivalent to the well-known node coloring problem, which is
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Fig. 4. Segments with hidden nodes and links

NP-hard and also cannot be well approximated. Since the time
period during which every node wakes up is very short, and
the HELLO transmission time is even shorter, the probability
that two neighboring nodes will be active at the same time is
practically 0. In the rare case of collisions, CSMA/CD can be
used to schedule retransmissions.

By Scheme 1, the discovery of an individual node by any
node in a segment leads to the discovery of this node by
all of its neighbors that are part of this segment. Therefore,
discovering a node that is not yet in the segment can be
considered a joint task of all the neighbors of this node in the
segment. As an example, consider Figure 4(a), which shows
a segment S and a hidden node u. In this figure, a dashed
line indicates a hidden wireless link, namely, a link between
two nodes that have not yet discovered each other. A thick
solid line indicates a known wireless link. After execution
of Scheme 1, all hidden links in S are detected (see Figure
4(b)). The links connecting nodes in S to u are not detected
because u does not belong to the segment. Node u has 4
hidden links to nodes in S. Hence, we say that the degree of
u in S is degS(u) = 4. When u is discovered by one of its
four neighbors in S, it will also be discovered by the rest of
its neighbors in S as soon as Scheme 1 is reinvoked. Consider
one of the four segment members that are within range of u,
node v say. Although it may know about the segment members
within its own transmission range, it does not know how many
in-segment neighbors participate in discovering u.

In the next section we study three methods that allow v
to estimate the value of degS(u) for a hidden node u, and
compare their accuracy and applicability.

IV. ESTIMATING THE IN-SEGMENT DEGREE OF A HIDDEN
NEIGHBOR

As already explained, we consider the discovery of hidden
neighbors as a joint task to be performed by all segment
nodes. To determine the discovery load to be imposed on every
segment node, namely, how often such a node should become
active and send HELLO messages, we need to estimate the
number of in-segment neighbors of every hidden node u,
denoted by degS(u). In this section we present methods that
can be used by node v in the Normal (continuous neighbor
discovery) state to estimate this value. Node u is assumed to
not yet be connected to the segment, and it is in the Init (initial
neighbor discovery) state. Three methods are presented:
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1) Node v measures the average in-segment degree of the
segment’s nodes, and uses this number as an estimate
of the in-segment degree of u. The average in-segment
degree of the segment’s nodes can be calculated by the
segment leader. To this end, it gets from every node in
the segment a message indicating the in-segment degree
of the sending node, which is known due to Scheme 1.
We assume that the segment size is big enough for the
received value to be considered equal to the expected
number of neighbors of every node.

2) Node v discovers, using Scheme 1, the number of its
in-segment neighbors, degS(v), and views this number
as an estimate of degS(u). This approach is expected
to yield better results than the previous one when the
degrees of neighboring nodes are strongly correlated.

3) Node v uses the average in-segment degree of its seg-
ment’s nodes and its own in-segment degree degS(v)
to estimate the number of node u’s neighbors. This
approach is expected to yield the best results if the cor-
relation between the in-segment degrees of neighboring
nodes is known. An interesting special case is when the
in-segment nodes are uniformly distributed.

The in-segment degree of v and u depends on how the
various nodes are distributed in the network. Let X be a
random variable that indicates the degree degS(v) of v, a
uniform randomly chosen node in the segment S. Let Y be
a random variable that indicates the degree degS(u) of u, a
uniform randomly chosen hidden neighbor of v, which we
want to estimate. Note that u itself is not aware of the value
of Y . Let Y ′ be the estimated value of Y . Clearly, we want
Y ′ to be as close as possible to Y . We use the mean square
error measure (MSE) to decide how good an estimate is. The
MSE is defined as E((Y − Y ′)2). Since v and u are two
random neighbors in the same graph, X and Y have the same
distribution. Let us denote the correlation between X and Y ,
corr(X, Y ), by C. Throughout the section we assume that
degS(v) is small compared to the network size.

Denote the average graph degree by µ. Clearly, E(X) =
E(Y ) = µ. Thus, for the first method the following holds:

MSE1 = E((Y − Y ′)2) = E((Y − µ)2)

= Var(Y ). (1)

For the second method, we have Y ′ = X . Hence,

MSE2 = E((Y − Y ′)2) = E((Y − X)2)

=
∑

x

∑

y

(y − x)2P (X = x, Y = y)

=
∑

x

∑

y

(y2 − 2xy + x2)P (X = x, Y = y)

= E(X2) + E(Y 2) − 2E(XY ). (2)

By the correlation of random variables and the fact that
Var(X) = Var(Y ), we get

corr(X, Y ) =
cov(X, Y )

Var(X)
.

Using the definition of covariance, we get

cov(X, Y ) = E((X − E(X))(Y − E(Y ))

= (XY − XE(Y ) − Y E(Y ) + E(X)E(Y ))

= (XY ) − E(X)E(Y ) − E(Y )E(X) + E(X)E(Y )

= (XY ) − E(X)E(Y ).

Hence,

E(XY ) = cov(X, Y ) + E(X)E(Y )

= corr(X, Y ) Var(X) + E(X)E(Y )

= C Var(X) + E(X)E(Y ). (3)

Substituting into Eq. 2 and keeping in mind that X and Y
have the same distribution, we get

MSE2 = E(X2) + E(Y 2) − 2(C Var(X) + E(X)E(Y ))

= E(X2) + E(X2) − 2C Var(X) − 2E(X)E(X)

= 2E(X2) − 2E(X)2 − 2C Var(X)

= 2 Var(X) − 2C Var(X)

= (2 − 2C) Var(X).

For the third estimation approach, we define a linear pre-
diction problem. We seek the values of β and γ that minimize
the MSE function E((Y − Y ′)2), where Y ′ = βX + γ. By
differentiating the MSE with respect to γ, we get

δMSE
δ(γ)

=
δ(E((Y ′ − Y )2) = E((βX + γ − Y )2))

δ(γ)
. . .

= 2γ + 2βµ − 2µ.

Equating the result to 0 yields

γ̂ = µ − βµ. (4)

In a similar way, differentiating the MSE with respect to β
yields

δMSE
δ(β)

= 2βE(X2) + 2γµ− 2E(XY ).

We now replace γ with the value of γ̂ from Eq. 4 and get:

δMSE
δ(β)

= 2βE(X2) + 2γµ − 2E(XY )

= 2βE(X2) + 2(µ − βµ)µ

−2E(XY )

= 2βE(X2) + 2µ2 − 2βµ2

−2E(XY ).

Therefore, the value of β that brings the MSE to its minimum
is

β =
µ2 − E(XY )

µ2 − E(X2)
=

cov(X, Y )

Var(X)
.

Since X and Y have similar distribution,

cov(X, Y ) = corr(X, Y ) Var(X) = C Var(X). (5)
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Method degS(u) MSE
1 µ Var(X)
2 X (2 − 2C) Var(X)
3 CX + (1 − C)µ (1 − C2) Var(X)

Fig. 5. The three methods and their MSEs

We conclude that β = C Var(X)/ Var(X) = C and
γ = µ − βµ = (1 − C)µ are the values that minimize the
MSE. Therefore, for the third estimation method, degS(v) is
estimated as:

Y ′ = CX + (1 − C)µ,

and the value of MSE3 is

MSE3 = E((Y ′ − Y )2)

= E((CX + (1 − C)µ − Y )2)

= E(C2X2 + 2C(1− C)Xµ

−2CXY − 2(1− C)µY + (1 − C)2µ2 + Y 2)

= C2E(X2) + 2C(1− C)E(X)µ − 2CE(XY )

−2(1− C)µE(Y ) + (1 − C)2µ2 + E(Y 2)

= C2E(X2) + 2C(1− C)µ2 − 2CE(XY )

−2(1− C)µ2 + (1 − C)2µ2 + E(Y 2)

= C2E(X2) + E(Y 2) − 2CE(XY )

+(2C − 2C2 − 2 + 2C + 1 − 2C + C2)µ2

= C2E(X2) + E(Y 2) + (2C − C2 − 1)µ2

−2CE(XY ).

Using again the fact that X and Y have the same distribution
and substituting the value of E(XY ) from Eq. 3 yields

MSE3 = (C2 + 1)E(X2) + (2C − C2 − 1)µ2

−2C(C Var(X) + µ2)

= (C2 + 1)E(X2) − (C2 + 1)µ2 − 2C2 Var(X)

= (C2 + 1)(E(X2) − µ2) − 2C2 Var(X)

= (C2 + 1) Var(X) − 2C2 Var(X)

= (1 − C2) Var(X).

The table in Figure 5 summarizes the three methods dis-
cussed above and their MSEs. We see that the accuracy of the
three methods depends on the correlation between the degrees
of neighboring nodes and on the variance of node degree. For
small values of C, the first and the third estimation methods
are more accurate than the second one. For greater values of
C = corr(X, Y ), the accuracy of the second and the third
methods is closer to that of the first method. Moreover, for
the same variance, the MSEs of these methods approach 0
when C approaches 1. An example of a sensor network with
C close to 1 is a network whose sensors are spread around
several spots of interest, because the correlation between node
degrees is greater than when the nodes are uniformly spread
all over the network.

V. THE UNIFORM DISTRIBUTION SPECIAL CASE

We now examine a special case where the network nodes are
uniformly distributed. The node degree has a binomial distri-
bution, where the “probability of success” p is the probability
that a node v is in the transmission range of another node u.
This probability is equal to the ratio between the area covered
by v and the area covered by the whole network. For this kind
of distribution, the variance is known to be np(1− p), where
n is the number of nodes. Note that np is the expected node
degree, denoted earlier by µ. For this special case we get

corr(X, Y ) =
cov(X, Y )

Var(X)

=
E(XY ) − µ2

Var(X)
, (6)

where

E(XY ) =
∑

y

∑

x

xyP (X = x, Y = y)

=
∑

y

∑

x

xyP (X = x|Y = y)P (Y = y)

=
∑

y

[yP (Y = y)
∑

x

xP (X = x|Y = y)]

=
∑

y

[yP (Y = y)E(X |Y = y)]. (7)

We now show how to find E(X |Y = y), namely, the
expected number of neighbors of v given that the number of
neighbors of u is known and equal to y. The set of neighbors of
v can be divided into two subsets: subset A includes neighbors
of v that are also neighbors of u; subset B includes neighbors
of v that are not neighbors of u. In the same way, the set of
neighbors of u can be divided into two sets: the same subset
A, and subset B′ of neighbors of u that are not neighbors of
v. Theorem 1 shows the relationship between the neighbors
of v and the neighbors of u:

Theorem 1: Let u, v and w be nodes in a geometric graph
with the same transmission range, where nodes are distributed
uniformly. If u is a neighbor of v and v is a neighbor of w,
then the probability that u is also a neighbor of w is R =
1 − 3

4π

√
3 ≈ 0.586503.

The proof is presented in the appendix.
Following Theorem 1, we conclude that (a) the expected

size of subset A is equal to the number of neighbors of u
multiplied by R, namely E(|A|) = R · degS(u); (b) the
expected size of subset B is equal to the average graph degree
multiplied by (1 −R), where (1 −R) is the part of the area
covered by v but not by u, as follows from Theorem 1. Since
the degree of v is |A| + |B|, we get

E(X |Y = y) = Ry + (1 −R)µ.
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Substituting this into Eq. 7 yields:

E(XY ) =
∑

y

yP (Y = y)(Ry + (1 −R)µ)

=
∑

y

Ry2P (Y = y)

+(1 −R)µ
∑

y

yP (Y = y)

= RE(Y 2) + (1 −R)µ2. (8)

Substituting Eq. 8 into Eq. 6 yields

corr(X, Y ) =
E(XY ) − µ2

Var(X)

=
RE(Y 2) + (1 −R)µ2 − µ2

Var(X)

=
RE(Y 2) −Rµ2 + µ2 − µ2

Var(X)

=
RVar(Y )

Var(X)

=
RVar(X)

Var(X)
= R.

Hence, for the uniform distribution special case, the three
estimation approaches yield the following MSEs:

1) MSE1 = Var(X),
2) MSE2 ≈ 0.84 Var(X),
3) MSE3 ≈ 0.66 Var(X).
We see that the third approach yields the smallest MSE.

However, this approach, as well as the first one, requires some
global information on the network topology, while the second
approach requires only local information.

VI. AN EFFICIENT CONTINUOUS NEIGHBOR DISCOVERY
ALGORITHM

In this section we present an algorithm for assigning
HELLO message frequency to the nodes of the same segment.
This algorithm is based on Scheme 1. Namely, if a hidden
node is discovered by one of its segment neighbors, it is
discovered by all its other segment neighbors after a very short
time. Hence, the discovery of a new neighbor is viewed as a
joint effort of the whole segment. One of the three methods
presented in Section IV is used to estimate the number of
nodes participating in this effort.

Suppose that node u is in initial neighbor discovery state,
where it wakes up every TI seconds for a period of time
equal to H , and broadcasts HELLO messages. Suppose that
the nodes of segment S should discover u within a time period
T with probability P . Each node v in the segment S is in
continuous neighbor discovery state, where it wakes up every
TN(v) seconds for a period of time equal to H and broadcasts
HELLO messages.

We assume that, in order to discover each other, nodes u
and v should have an active period that overlaps by at least a
portion δ, 0 < δ < 1, of their size H . Thus, if node u wakes
up at time t for a period of H , node v should wake up between

t−H(1− δ) and t + H(1− δ). The length of this valid time
interval is 2H(1−δ). Since the average time interval between
two wake-up periods of v is TN (v), the probability that u and
v discover each other during a specific HELLO interval of u
is 2H(1−δ)

TN (v) .
Let n be the number of in-segment neighbors of u. When

u wakes up and sends HELLO messages, the probability that
at least one of its n neighbors is awake during a sufficiently
long time interval is 1 − (1 − 2H(1−δ)

TN (v) )n.
For the sake of our analysis, consider a division of the time

axis of u into time slots of length H . The probability that
u is awake in a given time slot is H

TI
, and the probability

that u is discovered during this time slot is P1 = H
TI

(1 −
(1 − 2H(1−δ)

TN (v) )n). Denote by D the value of T
H

. Then, the
probability that u is discovered within at most D slots is P2 =
1 − (1 − P1)

D. Therefore, we seek the value of TN (v) that
satisfies the following equation:

1− (1 − P1)
D ≥ P,

which can also be stated as

P1 ≥ 1 − D
√

1 − P .

Since P1 = H
TI

(1 − (1 − 2H(1−δ)
TN (v) )n), we get

H
TI

(1 − (1 − 2H(1−δ)
TN (v) )n) ≥ 1 − D

√
1 − P ,

and therefore

TN (v) ≤ 2H(1− δ)

1 − n

√

1 − TI

H
(1 − D

√
1 − P )

. (9)

Since node v does not know the exact value of n, it can
estimate it using the methods presented in Section IV.

We now give a simple example for the proposed algorithm.
Suppose that nodes in the Init state remain active until they
enter the Normal state. Suppose also that the requirement is to
discover a hidden node within 10 time units with probability
0.5. Consider a segment node in the Normal state, where
continuous neighbor discovery is performed, that estimates the
degree of its hidden neighbor as 1. Following our definitions,
D = 10, TI = H = 1 and n = 1. Substituting these values into
Eq. 9 yields TN ≈ 15. Note that the intuitive value of TN = 20
is wrong because it would yield a detection probability of
1−(1− 1

20 )10 ≈ 0.4 to discover a hidden node within 10 time
units.

If one needs to enforce not only the expected hidden
neighbor discovery delay but also an upper bound on it, each
node can be assigned a wake-up period according to the rules
described in [13].

In Figure 6 we present two graphs that show the dependency
between T and TN(v). We assume that a hidden node wakes
up once every 100H time units on the average, and that TI =
100, H = 1, and δ = 0.5 . In Figure 6(a) the estimated value
of n is 10. The curves present the value of TN (v) as a function
of the desired discovery time T for 3 different values of P :
0.5, 0.8 and 0.95. In Figure 6(b) P is set to 0.8 and n varies
between 5 and 50. Again, TN (v) is calculated as a function
of the desired discovery time. As expected, the nodes have to
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Fig. 6. TN (v) as a function of maximum tolerated delay

work harder to achieve a greater discovery rate in less time,
while the increase in the density of segment nodes allows to
a greater TN(v) to be chosen. In both graphs the dependency
between TN (v) and T is almost linear and, as we can see in
Figure 6(b), the slope of the curves is almost linear in the
value of n as well. This means that a node v can use linear
approximation to compute the value of TN (v).

VII. SIMULATION STUDY

In this section we present a simulation study for the schemes
presented in the paper. We simulate a large sensor network,
with nodes distributed randomly and uniformly over the area of
interest. We assume that the nodes have an equal and constant
transmission range. Communication is always bi-directional.
We also assume that most of the nodes discover each other
and enter the continuous neighbor discovery state before the
simulation begins.

Our simulation model consists of 2,000 sensor nodes, ran-
domly placed over a 10,000 x 10,000 grid. The transmission
range is set to r units. Any two nodes whose Euclidean
distance is not greater than r are considered to have wireless
connectivity. A portion of the nodes are randomly selected
to be hidden. These nodes are uniformly distributed in the
considered area. We set the algorithm parameters such that
every hidden node will be detected with probability P within
a predetermined period of time T . For the study reported in
this section, r is chosen to be 300 (0.03 of the graph), the
detection probability ranges between 0.3 and 0.7, and the target
detection time is 100 time units.

The hidden nodes are assumed to be in the initial neighbor
discovery state, where they are supposed to wake up randomly,
every TI time units on the average, and to exchange HELLO
messages with other nodes during a period of H time units. A
non-hidden node v is assumed to be in the continuous neighbor
discovery state, where it wakes up randomly, every TN (v) time
units on the average for a period of H time units, in order to
discover hidden nodes. For the study reported in what follows,
TI = 20, H = 1 and δ = 0.5 are used. When a node is

detected, it joins the segment and learns about its in-segment
neighbors using Scheme 1. A hidden node that detects another
hidden node remains in the initial neighbor discovery state.

Our simulations reveal that when the hidden nodes are
uniformly distributed, the three algorithms proposed in Section
IV yield very similar results. The reason for this similarity is
that the degree estimation errors of the neighbors of every node
cancel each other, and the mean estimation bias approaches 0.
Because of this similarity, in most of the graphs we show only
the results of one algorithm (Algorithm 3).

Figure 7(a) shows the ratios of hidden nodes to the total
number of nodes as a function of time. The initial ratio is
0.05. We can see that after 100 time units, this ratio decreases
to 0.035 for P = 0.3, to 0.025 for P = 0.5, and to 0.015 for
P = 0.7. After 200 time units, the ratios of the hidden nodes
are 0.025, 0.012 and 0.005 respectively. It is evident that these
results are very close to the required ratios.

In the next simulation we start with 50% hidden nodes.
Figure 7(b) shows the change in the average frequency of
HELLO intervals of the segment nodes, as a function of time,
for the same three values of P . We can see that for the smaller
value of P (the lower curve), the frequency is almost 75%
lower than the frequency for the larger value of P . We can
also see that for a given value of P , the average frequency
of HELLO intervals decreases with time. This is because as
the segment grows, more nodes participate in the discovery
process. Similar results are obtained for the case where the
initial hidden node ratio was 0.05, but they can hardly be
observed due to the small changes in the segment size during
the simulation.

Another interesting case is when the hidden nodes are
distributed non-uniformly in the area. To simulate this case,
we randomly select some points as “dead areas,” and assume
that the probability of a node to be hidden increases when
its distance to one of these points decreases. The rationale
here is that bad weather, dust storms, or other environmental
conditions may adversely affect wireless connectivity in some
areas more than in others. Unlike the uniform distribution
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case, here we do see differences between the three estimation
algorithms presented in Section IV.

Figure 8(a) shows the percent of hidden nodes as a function
of time for the three estimation algorithms and P = 0.5.
Unlike in the uniform distribution case, here we can see some
differences between the three algorithms: the second algorithm
is the closest to the required rate (shown by a separate curve),
where the first algorithm discovers the hidden nodes at a rate
slower than the required one.

Figure 8(b) shows the ratio of hidden nodes after T for
networks with different transmission ranges, and hence with
different node average degrees. This graph reveals the flex-
ibility of our scheme and its ability to adjust the wake-up
frequency to the network density. We show this by comparing
our scheme to a trivial scheme that does not take the network
density into account. For the trivial scheme, all the nodes have
the same wake-up frequency. The actual values, which depend
on the wake-up frequency of the nodes, are not important. The
comparison shows that the trivial scheme is too aggressive

in dense networks and not aggressive enough in sparse ones.
Recall that the goal of our scheme is not to discover nodes
as quickly as possible, but to impose an upper bound on the
discovery time while minimizing energy consumption. In light
of this goal, we see that our scheme performs better because its
discovery rate is fixed, and so is its overall expended energy.

The simulation starts with 5% hidden nodes, and each node
in Init is configured with P = 0.5. For all transmission ranges,
our scheme indeed guarantees that after T time units the
percentage of hidden nodes will decrease by half, to 2.5%.
Interestingly enough, the trivial scheme discovers half of the
hidden nodes only when the transmission range is ≈ 0.06.
When the transmission range is shorter, the trivial scheme
discovers a smaller fraction of the hidden nodes. For instance,
for a range of 0.03, the ratio of hidden nodes is reduced from
0.05 to 0.04. When the transmission range is greater than 0.06,
the trivial scheme discovers more nodes during a time period
of T . But this is, of course, with a much greater expense
of energy than required in our scheme. We conclude that our
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algorithm can self-adjust to invest the minimum energy needed
to guarantee the required discovery rate, whereas the trivial
algorithm cannot.

So far we have assumed that the detecting node belongs
to a big segment to which the detected node joins. However,
it is still possible that two nodes in the Init state of Figure 2
will discover each other. These nodes can either stay in the Init
state or switch to the Normal state. It is more efficient to switch
to the Normal state because the overhead of detecting more
neighbors is shared by all of the segment nodes. However, two
of the assumptions made in Section IV are not valid when the
detecting node is not a part of a big segment: the assumption
that the expected in-segment degree of the segment’s nodes
is equal to the expected in-segment degree of the hidden
node, and the (implicit) assumption that the segment’s size
is significantly bigger than the node’s expected degree. For
example, when a single node v in a small segment of size two
detects another node, the expected in-segment degree of the
nodes in the detecting segment is 1. In contrast, by Theorem
1, the expected degree of the hidden neighbor of v is about
1.58.

Figure 9 shows simulation results for the discovery by a
small detecting segment. The transmission range is set to 0.3
of the graph, but similar results have been obtained for other
transmission ranges. It is evident that the desired discovery rate
is achieved for a segment of three or more nodes. For segments
of two nodes, the discovery rate is faster than the desired rate.
In such a segment, the in-segment degree of every node v and
the in-segment degree of v’s neighbor are both 1. Thus, every
in-segment node v estimates the degree of a hidden neighbor
u to be 1, while the actual expected degree of u is 1.58 as
follows from Theorem 1. Our simulations reveal that for a
2-node segment, the in-segment degree of a hidden neighbor
should be taken to be 1.4, in which case the target discovery
rate is achieved, whereas for a larger segment Algorithm 3
should be used. On the basis of these results, we claim that
our algorithms can be used for every segment size, despite
our assumption during the analysis that the segment is “big
enough.”

vαS1
u vu α

S2

vu S3

Fig. 10. Definitions for the proof of Theorem 1

VIII. CONCLUSIONS

We exposed a new problem in wireless sensor networks,
referred to as ongoing continuous neighbor discovery. We
argue that continuous neighbor discovery is crucial even if the
sensor nodes are static. If the nodes in a connected segment
work together on this task, hidden nodes are guaranteed to
be detected within a certain probability P and a certain time
period T , with reduced expended on the detection.

We showed that our scheme works well if every node
connected to a segment estimates the in-segment degree of
its possible hidden neighbors. To this end, we proposed three
estimation algorithms and analyzed their mean square errors.
We then presented a continuous neighbor discovery algorithm
that determines the frequency with which every node enters
the HELLO period. We simulated a sensor network to analyze
our algorithms and showed that when the hidden nodes are
uniformly distributed in the area, the simplest estimation algo-
rithm is good enough. When the hidden nodes are concentrated
around some dead areas, the third algorithm, which requires
every node to take into account not only its own degree, but
also the average degree of all the nodes in the segment, was
shown to be the best.

APPENDIX

The proof of theorem 1:
Proof: Consider Figure 10. Node w is a neighbor of

u only if it resides in the area marked as S3. To find the
probability that this is indeed the case, we have to find the
ratio between S3 and the unit circle area. Now, note that

S1 = r sin α
2 r cos α

2 ; S2 = πr2 α
2π

; S3 = 2(S2 − S1).

Since cos α
2 = x

2r
, where x is the distance between u and v,

then α
2 = arccos x

2r
holds. Hence, we can write:

S1 = x
2 r
√

1 − x2

4r2 ; S2 = r2

2 2 arccos x
2r

.

Thus, S3 = 2r2 arccos x
2r

− xr
√

1 − x2

4r2 .

A neighbor of v is also a neighbor of u only if it lies inside
S3. The probability for this is S3

πr2 . Denote the probability for
such an event as Px, where x is the distance between u and
v. Hence,

Px =
2

π
arccos

x

2r
− x

πr

√

1 − x2

4r2
.

In order to find the probability P that w is a neighbor of
u, we should consider all possible values of x, from 0 to r,
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while taking into account the density function:

P =
1

πr2

∫ r

x=0

2πxPxdx

=
2

r2

∫ r

x=0

x

(

2

π
arccos

x

2r
− x

πr

√

1 − x2

4r2

)

dx

=
2

r2

(
∫ r

x=0

2

π
x arccos

d

2r
dx

)

− 2π

πr2

(

∫ r

x=0

1

πr
x2

√

1 − x2

4r2
dx

)

=
2

r2

2

π

[

−1

2
rx

√

1 − x2

4r2
+

1

2
x2 arccos

x

2r

]r

0

+
2

r2

2

π

[

r2 arcsin
x

2r

]r

0

− 2

r2

1

πr

[

1

8
x(−2r2 + x2)

√

4 − x2

r2

]r

0

− 2

r2

1

πr

[

r3 arcsin
x

2r

]r

0
.

Substituting the integration limits yields:

P =
4

πr2

[

−r2

2

√

1 − 1

4
+

r2

2
arccos

1

2
+ r2 arcsin

1

2

]

− 2

r2

(

1

πr

[

1

8
r(−r2)

√
3 + r3 arcsin

1

2

])

=
4

πr2

[

−1

2
r2

√

3

4
+

1

2
r2 π

3
+ r2 π

6

]

− 2

r2

(

1

πr

[

1

8
r(−r2)

√
3 + r3 π

6

])

= 2

([

− 1

π2

√
3 +

1

3
+

1

3

]

−
[

− 1

8π

√
3 +

1

6

])

= − 1

π

√
3 +

4

3
+

1

4π

√
3 − 1

3

= 1 − 3

4π

√
3 ≈ 0.586503.
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