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Abstract—The increasing density of WiFi Access Points
(APs) in metropolitan areas is enabling an opportunistic
model of wireless networking, whereby a “guest” user within
range of one or more wireless APs can gain temporary
Internet access through these APs. In this paper, we address
the problem of TCP throughput prediction for opportunistic
networks. Applications of opportunistic networking can benefit
from such predictions by adapting to prevailing network
conditions. Our approach is different from prior efforts to
model wireless network throughput in that only the two
communicating endpoints participate in the prediction, and no
information about network topology or traffic loads generated
by interfering sources is required. Our goal is to understand
how accurate throughput predictions can be under the above
assumptions. The physical environment considered in our
study includes varying degrees of interference, indoor and
outdoor networks, and nodes that are stationary or moving
at walking or driving speeds. We use throughput predictors
based on time series analysis and machine learning techniques,
as they are well-suited to predicting phenomena with unknown
variables. The prediction accuracy that our methods yield is
cause for cautious optimism. We find that 80% to 100% of
predictions are within a factor of two of actual throughput.
This bound on accuracy means that predictions are useful for
certain applications, because this bound(a) can be achieved
by measurements lasting for as little as 0.3 seconds, and(b)
holds even when nodes are driving at speeds of 15-25 mph.

I. I NTRODUCTION

Over the past decade, there has been a great increase
in the deployment of WiFi Access Points (APs) in homes,
neighborhoods, and public areas. The increasing density of
WiFi APs is beginning to enable a new model of wireless
network connectivity, where a guest user passing through
the range of one or more APs can gain temporary Internet
access. Users of theseopportunistic networks can be station-
ary or mobile, possibly vehicular. A common example of
a stationary opportunistic network isFon, (www.fon.com).
Fon hosts allowFon guests Internet access when the guests
are within range of the hosts’ APs, in exchange for Internet
access via the guests’ APs at the guests’ home location.
The goal of this network access exchange is to eventually
enableFon users to have network connectivity worldwide.
An example of a vehicular opportunistic network is the
CarTel project [1], which has studied the feasibility of
vehicular opportunistic networking by measuring how much
connectivity and bandwidth is available to vehicles driving

through a metropolitan area. TheCarTel project is currently
exploring a variety of vehicular networking applications
such as using vehicular nodes to collect traffic information
at a central server for traffic-aware route planning, and
using cars asdata mules to allow communication between
nodes that would otherwise not be connected, such as sensor
networks deployed in the field and servers that analyze the
sensor data.

A forecast of the throughput an application can expect
in a given opportunistic wireless environment can be quite
valuable. It can help adaptive applications adjust their
parameters according to prevailing network conditions. It
can tell the guest user whether bandwidth-intensive and
time-sensitive applications such as voice over IP and live
video will be able to operate successfully in a given network
environment. In dense wireless environments, knowledge
of expected throughput can allow clients to select the best
AP, i.e., the highest throughput AP, if more than one AP
is within range. TCP throughput prediction can provide
the guest user with the TCP-friendly rate, which is useful
for limiting non-TCP traffic that the guest can introduce
to levels that are not disruptive for the network. This is
an important application, because bounding guest traffic to
benign levels is essential to the success of opportunistic
networks. Guest users have an incentive to respect this
bound, because if they do not, it is unlikely that APs will
allow the open access required for opportunistic networking,
and the opportunistic networking paradigm will fail.

Accurate TCP throughput prediction in wireless environ-
ments is challenging for several reasons. First, physical and
MAC layer behavior has a significant impact on observed
TCP performance. Next, mobile clients that move through
an area can introduce complex interference dynamics. Fi-
nally, the short time span over which predictions in op-
portunistic networks must be made, and sensitivity to the
impact of measurement, further complicate the problem.

A number of recent studies, such as [2]–[6], have con-
sidered the problems of modeling capacity and achievable
throughput on both single-hop and multi-hop wireless paths.
To predict wireless throughput in a given network, these
approaches assume knowledge of the network topology,
such as the number of interfering sources, their traffic
demands, and the quality of the channel between the inter-



fering sources. Our work is different from these studies in
that we assume no direct knowledge regarding the sources
of interference in the network. In any real network, this
information cannot be obtained without extensive passive
monitoring (e.g., [7]) and/or active measurements between
the AP and sources of interference (e.g., [6]) to determine
link quality. Neither capability is available in opportunistic
networks, so our prediction method relies only on commu-
nication between the AP and the wireless client that re-
quests the prediction. Other studies often make simplifying
assumptions about the environment, such as disabling auto
rate fallback, using constant bit rate traffic instead of TCP
and limiting the number of sources of interference: we make
no such assumptions.

In general, high prediction accuracy, rapid generation of
predictions in new conditions, and low measurement over-
head are the goals of TCP throughput prediction. However,
these goals are often in conflict: high accuracy can be
achieved by using heavy-weight measurements or taking
measurements for a longer period of time. Specifically,
rapid generation of accurate predictions is critically impor-
tant for both stationary and mobile opportunistic wireless
environments. The time required to generate predictions will
be part of an application’s latency, so for any interactive
application, a latency of at most 2-3 seconds is acceptable:if
the selection takes much longer, the user could get frustrated
by the delay. The time constraints for generating throughput
predictions for mobile applications are even more stringent
because the mobile client may spend very little time within
the range of an AP. For example, if the mobile client is
traveling at 30 mph and is within the range of an AP for
400 ft, the total time within the range of the AP is about 10
seconds. To be practical,i.e., to be useful to an application,
the prediction would have to be generated in considerably
less than 10 seconds.

We consider the problem of TCP throughput prediction
empirically by taking measurements of wireless client and
AP interactions over a broad range of operating conditions
including varying number of APs in the network, conduct-
ing experiments indoors and outdoors, with client stationary
or moving at walking or driving speeds. In each case,
third party interference is created by systems running load
generators that emulate web-like, bursty cross traffic. We
use two standard methods for generating predictions based
on operating conditions. The first is Exponentially Weighted
Moving Averages (EWMA) which is a standard time series
forecast. The second is Support Vector Regression (SVR),
which is a machine learning-based approach.

The prediction accuracy that our methods yield is cause
for cautious optimism. We find that for all wireless envi-
ronment configurations and all prediction techniques used,
wireless throughput prediction accuracy is lower than wire-
line prediction accuracy reported in the literature. We find
in most of our experiments that only 10% to 30% of predic-

tions are within 10% of actual throughput. In comparison, it
has been reported in the literature that for wireline networks,
50% or more of predictions are within 10% of actual: this
is a factor of 2 to 5 better than wireless prediction accuracy.
However, we also find that 80% to 100% of predictions are
within a factor of two of actual throughput. The factor of
two bound on accuracy means that predictions are useful
for certain (but not all) applications, specially because this
bound can be achieved by measurements lasting for as little
as 0.3 seconds, and because this bound holds even when
nodes are driving at speeds of 15-25 mph.

In summary, we make the following contributions:

• We consider the problem of TCP throughput prediction
empirically in a diverse set of wireless environments
without making simplifying assumptions.

• We develop two predictors for TCP throughput fore-
casting, one based on time series analysis and the other
based on machine learning.

• We provide empirical upper and lower bounds on
the TCP throughput prediction accuracy that can be
achieved using our methods.

• We provide evidence that the inherent dynamism of the
wireless environment limits the level of prediction ac-
curacy that can be achieved in opportunistic networks.

The remainder of this paper is organized as follows.
In Section II, we discuss studies related to our own.
We describe our predictions mechanisms, Exponentially
Weighted Moving Averages and Support Vector Regression,
in Section III. We present details of our indoor and outdoor
experimental environments in Section IV. In Section V, we
describe what measurements we take and how we use them
to construct predictors. In Section VI we present the results
of our experiments and their implications. We summarize
and conclude in Section VII.

II. RELATED WORK

Wireless network performance is a widely-studied area.
Seminal work by Gupta and Kumar [8] presented an
asymptotic analysis of the capacity of general wireless
networks. Bianchi [9] focused on 802.11-based wireless
networks, analytically predicting system throughput based
on 802.11 MAC parameters such as the minimum and
maximum backoff windows. Work by Burmeisteret al.
in [10], [11] models wireless network performance analysis
as a queuing theory problem and considers both TCP and
non-TCP data transfers. Gopalakrishnanet al. [12] predict
wireless throughput using a combination of analytical and
measurement approaches. Another approach to wireless
throughput prediction is through an understanding of inter-
ference in the wireless network: [2]–[5] use either analytical
or measurement-based interference models to predict wire-
less throughput. All these studies differ from ours because
they compute achievable throughput when the number and
location of interfering sources, and their intended traffic



demands, are known. Kashyapet al. [6] study more general
network configurations, however their traffic model is based
on PHY and MAC layer characteristics and they do not con-
sider TCP traffic. All studies mentioned above consider only
stationary nodes while our study addresses TCP throughput
prediction for both stationary and mobile nodes.

The problems of TCP throughput prediction and available
bandwidth estimation have all been studied thoroughly in
the wireline domain. Analytic models for TCP throughput
estimation have been developed based on TCP’s congestion
control algorithm and active measurements of network path
characteristics such as packet loss, round trip time, and
delay [13]–[16]. The problem of available bandwidth es-
timation on end-to-end paths and an active probe-based es-
timation method are described by Jain and Dovrolis in [17].
Additional methods for available bandwidth estimation with
active probe-based measurement include [18]–[20].

He et al. [21] and Mirza et al. [22] present two ap-
proaches to wireline TCP throughput prediction. Heet
al. present a history-based throughput prediction approach,
using moving averages of past throughputs to predict future
throughputs [21]. Two shortcomings of this method are that
it considers only bulk transfers lasting tens of seconds,
and that it is relatively slow to adapt to changing network
conditions. Mirzaet al. improve on Heet. al.’s methodology
by using Support Vector Regression (SVR), a state-of-the-
art machine learning technique, to predict wireline TCP
throughput over a wide range of conditions, including small
and large transfers and quick adaptation to level shifts.

In this work, we borrow from Heet al. and Mirzaet al.
in that we use both moving averages and SVR to predict
wireless TCP throughput. However, the problem of TCP
throughput prediction in the wireless environment is very
different from that in the wireline environment, so we have
to adapt the approaches used by Heet al. and Mirza et
al. considerably. Both approaches take tens of seconds
to generate a prediction. In the wireless environment, a
throughput prediction needs to be generated in 1-2 seconds
to be useful for applications in both the stationary and
drive-by environment, so in this work we target these
short timescales. Due to our focus on short timescales, we
cannot use the active measurement tools [23] and [19] that
Mirza et al. use to obtain path property measurements for
SVR. Another reason we cannot use these tools is because
they are designed around assumptions that only hold true
for the wireline environment,e.g., loss is an indicator
of congestion and queue build-up on the path instead of
interference, so they are unlikely to perform well in the
wireless environment. The state of the art for active path
measurement tools in the wireless domain is currently not
as developed as that in the wireline domain, so we do not
have adequate substitutes for tools such as [23] and [19]
for drive-by TCP throughput prediction.

The development of drive-by communication protocols is

also related to our work. The IEEE 802.11p Task Group is
standardizing a short range communication protocol to be
used in intelligent transportation systems for data exchange
between high-speed vehicles and roadside infrastructure.A
number of research efforts have also focused on understand-
ing the feasibility and performance of drive-by applications
where communication is set up between a mobile vehicle
and a roadside AP. Examples include work by Ott and
Kutscher [24], Gasset al. [25], and in more general settings
in the CarTel project [1]. Unlike our work, the first two
studies look at background traffic-free environments. All
three look at what TCP throughputs are achievable in the
vehicular scenario: our focus is different in that we try to
predict future throughput accurately in a given environment
rather than measuring current throughput.

III. PREDICTION MECHANISMS

What distinguishes our work from existing approaches
to TCP throughput prediction in the wireless environment
(e.g, [5] and [6]) is that existing approaches assume that a
large amount of information, such as network topology and
the sending rates of sources of interference, is available,
while our approach assumes no such knowledge. Having
access to this information allows the existing approaches to
use analytical models to predict wireless TCP throughput.
Since we assume incomplete information about the network
environment, we are unable to use analytical models for
prediction. Hence, we turn to time series analysis and
machine learning to predict throughput. In this section, we
present our time series and machine learning predictors, and
also describe how we evaluate prediction accuracy.

A. Evaluating Prediction Accuracy

We use the metricrelative prediction error E introduced
in [21] to evaluate the accuracy of an individual throughput
prediction. We denote the actual throughput byR and the
predicted throughput byR̂. Relative prediction error is
defined as

E =
R̂−R

min(R̂,R)

Throughout this paper, we use the distribution of the abso-
lute value ofE to report our results.

B. Time Series-Based Predictor

For time series-based prediction, we use the exponen-
tially weighted moving average (EWMA),

R̂i+1 = αRi +(1−α)R̂i,

with an α value of 0.3, because this value is used in both
[21] and [22].



C. Support Vector Regression-Based Predictor

This section introduces Support Vector Regression: for
more details see [26] and [27].

We are interested in predicting TCP throughput based
on observed characteristics of the wireless environment. In
statistical machine learning, this can be considered in a
regression framework.

We call each file transfer an instancex. Usually the
instance is represented by ad-dimensional feature vector
x = (x(1)

, . . . ,x(d))⊤ ∈ R
d . Each dimension is called a fea-

ture. For example, the feature vector can consist of path
properties such as packet loss rate and round trip time
before a transfer. The targety ∈ R of an instancex is
the throughput. Our goal is to train a regression function
f : R

d → R that maps any file transfer instancex to its
throughputy.

To accomplish this, a training set that consists ofn
previous known instance-target pairs(x1,y1), . . . ,(xn,yn) is
required. The training set acts as a teacher to the regression
function. A family of candidate regression functionsF must
also be specified,e.g., the set of all linear functions, or
a Reproducing Kernel Hilbert Space induced by a kernel,
which we use in this study (see [26]). In addition, one
needs a loss functionL( f (x),y) to measure how close a
prediction f (x) is to the actual throughputy. The squared
loss L( f (x),y) = ( f (x) − y)2 is often used. We use the
ε-insensitive lossL( f (x),y) = max(| f (x)− y| − ε,0). This
loss function is standard in support vector regression, and
produces comparable results as the squared loss (see [26]).

Given these input, training a regression function involves
finding a function f ∈ F that minimizes the loss on the
training set, plus a regularization term:

f̂ = argmin
f∈F

C
n

∑
i=1

L(( f (xi),yi)+‖ f‖2
. (1)

The first term is known as the empirical loss. The func-
tion that minimizes the empirical loss “does best” on the
training set. Such a function, however, may not be the one
that produces the most accurate predictions on future test
instances. This is because minimizing empirical loss has
the danger of overfitting the training data, which is but
a small sample with its own idiosyncrasies. One way to
prevent overfitting is to regularizef by its norm‖ f‖2, with
the intuition that we prefer a smoother regression function.
The scalarC balances empirical loss and smoothness off .
The solution to the optimization problem (1) can be found
efficiently using a quadratic program.

Our SVR uses a so-called Radial Basis Function kernel,
which induces a rich candidate regression function family.
The kernel enables learning of highly non-linear, yet well
regularized, regression functions. There are freely available
applications that implement SVR. We use the software
SVMlight ( [28]).

IV. EXPERIMENTAL ENVIRONMENT

In this section we present our indoor (laboratory) and
outdoor (drive-by) experimental environments.

We use 802.11a for our experiments: this allows us to
avoid interference with our department’s and other depart-
ments’ 802.11b/g networks. We use 802.11a channel 36 for
all our experiments.

Figure 1 illustrates the experimental setup for our lab-
oratory experiments. There are four primary components
to the setup: the wireline nodes, the wireless nodes, two
commodity access points (APs), and a monitor node.

The wireline and wireless nodes are connected in a dumb-
bell topology via the APs and a switch. The APs are Cisco
AP1200, running IOS version 12.3(8), with single Rubber
Duck antenna, and integrated 802.11a module/antenna. The
switch is a commodity LinkSys 10/100 16-port Workgroup
Hub. The wireline nodes and switch are connected to the
AP via 100Mbps Ethernet connections. The maximum data
rate for 802.11a is 54Mbps; having 100 Mbps wireline links
insures that the wireless, rather than the wireline, part ofthe
network is the throughput bottleneck.

Fig. 1: Laboratory (indoor) setup for stationary-node and
walking-node experiments.

The wireline nodes are identically configured Sun 4200
AMD Opteron 275 (dual Core) nodes, with 4 GB RAM, In-
tel 82546EB (e1000) chips, running CentOS 5.0. The wire-
less nodes are MacBooks and MacBook Pros with default
vendor configurations. For the wireless network interfaces,
for both indoor and outdoor experiments, the defaults were
(a) no RTS/CTS,(b) auto rate fallback enabled, and(c)
no mac layer fragmentation. We used the default network
interface configurations because in production opportunistic
networks the client nodes will to be heterogeneous and
independently configured by users and/or vendors.



The monitor node is located next to the foreground
wireless node for all experiments. This node is a Dell 700M,
1.6Ghz P4, with a Cisco CB21AG 802.11a/b/g cardbus
adapter. The monitor node does not transmit any packets,
but captures all the packets it sees on a specified channel.
The traces thus collected are used for throughput prediction.

Figure 2 illustrates the setup for the drive-by experiments.
The outdoor setup is different from the indoor setup in three
ways. First, we replaced the Sun 4200 AMD Opteron nodes
(the wired nodes) with Powerbook G4 and MacBook Pros
because the Sun nodes were rack-mounted machines and
hence not portable. Second, instead of using a MacBook
Pro as the foreground wireless node, we used a 1 Ghz VIA
Nehemiah node, with 512MB RAM, Netgear WAG311 with
integrated 5 DBi antenna, running Gentoo 1.12.9, which is
a 2.6.20.7 Linux kernel. The antenna extended the range of
the wireless signal sufficiently to allow us to communicate
with the AP while driving to a distance of approximately
400 ft in each direction. Third, we mounted the AP 20 feet
above the ground to stay within line of sight of the car for
a greater distance.

We used a portable generator to power our stationary
nodes, which we placed halfway along our driving path,
which was between two parking lots. The wireless fore-
ground node and the monitoring node were placed in the
car; the wireless foreground node’s 5 DBi antenna was
placed on the roof of the car to prevent the body of the
car from lowering the signal strength.

Fig. 2: Setup for the drive-by experiments

We ran two sets of indoor experiments. In the first set,
the foreground wireless node was stationary; in the second
set, the foreground node was moved around in the hallway
next to our lab at walking speed over a distance of 100 ft.
The position of the foreground node in both these scenarios
is illustrated in Figure 1. How far we could move the

foreground node was restricted by the layout of the hallway.
For the outdoor experiments, we drove along a stretch of

road between two parking lots that were approx. 850 ft apart
at speeds between 15 and 25 mph. An athletic field bordered
the road on one side; the other side was bordered by a
residential area. We chose this particular location because
its low vehicular traffic volume allowed us to maintain
driving speeds of 15-25 mph, and having an open field on
one side allowed us to maintain line of sight, and hence
association with the AP, for approximately 400 ft on either
side, compared to approximately 50 ft on either size in
the indoor experiments. We limit the driving distance from
the AP such that we always stay associated with the AP.
When we experimented with driving far enough to get out
of range and then coming back into range, the re-association
time was high: we spent over 80% of our driving time
trying to associate, because the client was scanning channels
on all APs it was receiving beacons from. For vehicular
networking, not just vehicular throughput prediction, to be
feasible, significantly faster association techniques will be
required: coming up with such techniques is beyond the
scope of this paper.

V. EXPERIMENTAL DESIGN

In this section, we describe the details of the traffic
we generate, the measurements we take and how we use
measurements to produce TCP throughput predictions.

In our experiments, communication between wireless
and wireline nodes is pairwise,i.e., during an experiment,
each wireless node sends data to a single, pre-assigned,
wireline node and vice versa. One wireline-wireless pair
is designated the foreground pair: we predict throughput
from the perspective of this node. The other two node pairs
generate background traffic.

Fig. 3: The foreground node measurement protocol used for
all experiments.
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Fig. 4: Prediction accuracy using EWMA and SVR predictors for stationary, walking, and driving wireless nodes.
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Fig. 5: Prediction accuracy using EWMA and SVR Predictors for Large (8MB) transfers from a Stationary Wireless Node.



We experiment with three different data flow scenarios.
First, we download data from the wireline nodes to the
wireless nodes: in this case, the principle direction of TCP
data flow is from the AP to the wireless nodes, and only
TCP ACKs travel in the reverse direction. This is how
wireless clients are typically used. Second, we upload data
from the wireless nodes to the wireline nodes. This max-
imizes contention for the wireless medium in a single-AP
wireless network. In the upload case, there are three nodes,
the wireless nodes, transmitting, while in the download case
only the access point is transmitting for the most part, so in
the upload case there is greater contention for the medium.
Third, we use the 2-AP setup. Here, two APs are within
range of each other, so even in the download case, there is
contention for the medium. For our indoor experiments, in
the 2-AP setup, the background traffic nodes are associated
with the AP inside the lab (AP1), and the foreground node
is associated with the AP in the hallway (AP2), which is
mounted on the ceiling of the hallway (Figure 1). In the
single AP upload and download cases, AP2 is turned off
and all nodes are associated with AP1.

We use Harpoon [29], a flow-level network traffic gen-
erator, to generate background traffic. The traffic is open
loop on/off TCP traffic, with file sizes drawn from a Pareto
distribution and the time between transfers drawn from an
exponential distribution, a pattern that closely resembles
actual Internet traffic [30]. Each background node pair runs
0-6 data transfer threads at any given time: this representsa
user doing a few different things on a laptop simultaneously,
such as browsing the web and downloading software. We set
the maximum number of threads per background node to 6.
This varies the background traffic enough to make predic-
tion non-trivial without overloading the wireless networkto
the point of congestion collapse and near-zero throughput.

Figure 3 presents the measurement protocol we run on
the foreground nodes. We run a series of Iperf transferst
seconds long separated byw seconds of wait time. Since
our focus is on predicting throughput quickly, we uset and
w values of 0.31, 0.42, 0.63, and 1.25 seconds. However, we
also experiment with larger values for comparison. Back-
ground traffic runs continuously, during both the transfer
phase and the wait phase of the foreground traffic.

For each value oft andw, we collect 200 measurement
samples. For SVR-based prediction, the first 100 are used
for training, and the second 100 for testing. For EWMA, the
moving average of the throughputs of the firstk transfers
serves as the prediction for the(k+1)th transfer. For SVR,
the training set is every set ofk consecutive transfers and the
test set is the(k+1)th transfer; given a sequence of samples,
the first training set is made of samples 1 tok and the test
set of samplek+1, the second training set of samples 2 to
k+1 and the test set of samplek+2, and so on.

We use two schemes for SVR, calledSVR-InterTransfer
and SVR-IntraTransfer, as illustrated in Figure 3. InSVR-
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Fig. 6: Throughput timeline for stationary and driving
transfers, for upstream traffic witht = 1.25 sec

InterTransfer, the input feature to the SVR is the throughput
of the kth transfer, and the target,i.e., the value to be
learned, is the throughput of the(k+1)th transfer. InSVR-
IntraTransfer, the throughput of the first half of a transfer
is the input feature, and the throughput of the second half is
the target value. We divide the transfer into halves in terms
of time elapsed rather than bytes transferred.

VI. RESULTS

Figure 4 presents the results of our experiments. We
obtain the relative error of an individual prediction usingthe
formula described in Section III-A. We present our results
as cumulative distributions of relative error. The x-axis of
each graph is the relative error of prediction, and the y-
axis is the fraction of predictions with relative error of x or
lower. A higher y value for a given x value means better
prediction accuracy than a lower value of y.

We begin by looking at the general trends in Figure 4,
and then look at error distribution values in detail.

We first consider the error distribution for each individual
graph. Different lines in a given graph represent combina-
tions of data flow setups (downstream, downstream_2AP,
upstream), and the length of the TCP transfer (0.31, 0.42,
0.63, or 1.25 seconds).1 The overall trend is that, in each

1We present results for only 0.63 and 1.25 second transfers for the
stationary and walking case due to space limitations; results for 0.31
and 0.42 second transfers were similar. We present only upstream results
for drive-by experiments because our downstream traces turned out to be
corrupted.



graph, all lines are clustered relatively close together. This
means that at a given speed and for a given predictor
(EWMA, SVR-InterTransfer, or SVR-IntraTransfer), traffic
direction, number of APs, and transfer duration have little
impact on prediction accuracy.

Next, we compare the different graphs in two ways: the
speed of the wireless client (stationary, walking, or driving),
and the predictor used.

Each horizontal row of graphs represents increased client
speed for a given predictor. The general trend across rows
is that as the client speed increases, the gradient of the lines
becomes less steep,i.e., prediction accuracy decreases. This
is consistent with intuition: as the client speed increases, the
wireless environment becomes more dynamic, so predicting
throughput becomes more difficult.

Each vertical column of graphs represents different pre-
dictors for a fixed client speed. The general trend across
columns is that there is little difference in the gradient of
lines, i.e., prediction accuracy does not change significantly
with a change in predictors. This observation is surprising:
we had expected SVR-based predictors to do better than
EWMA because they are quicker to respond to level shifts
in background traffic. We also expectedSVR-IntraTransfer
to perform better thanSVR-InterTransfer, because it has
more current information about network conditions. One
possible reason forSVR-IntraTransfer doing no better than
SVR-InterTransfer could be TCP slow-start having a large
impact on throughput because our TCP transfers are short,
1.25 seconds or less. To investigate this possibility, we
experimented with larger timescales to minimize the effect
of slow-start on throughput. Specifically, we used 8MB
transfers separated by 15 second wait times. The results are
presented in Figure 5. Once again, we observe thatSVR-
IntraTransfer does no better thanSVR-InterTransfer, so we
can rule out slow-start effects as being the reason why the
relative prediction accuracy ofSVR-InterTransfer andSVR-
IntraTransfer is contrary to expectation.

Next, we consider the absolute prediction accuracy that
is achieved. Here, there is cause for cautious optimism.

The prediction accuracy for wireless opportunistic net-
works using our methods is not comparable to the high
prediction accuracy for wireline networks reported in [22].
For the opportunistic wireless case, typically, 10% to 30%
of predictions are within 10% of actual throughput, and 30%
to 70% of predictions are within 20% of actual throughput.
In comparison, for the wireline case using SVR, 50% or
more of predictions are within 10% of actual [22], which
is a factor of 2 to 5 better than the results we obtain for the
wireless case.

However, in all cases, 80% to 100% of predictions are
within a factor of two of the actual throughput. This bound
on prediction accuracy means that predictions can still be
useful for some purposes, such as TCP-friendly rate calcula-
tion. Applications wishing to use the TCP-friendly rate can

be conservative and assume a factor of two over-prediction,
and still be able to get a reasonable throughput without
overloading the network. The alternative would be knowing
only that available bandwidth is somewhere between 1 and
54 Mbps in an 802.11a or g network, which is a factor of
54, so a factor of two bound is considerably more useful
to an application. Also, the prediction can be made with a
measurement lasting only 0.3 seconds2, which is specially
useful if the node is mobile, because(a) the factor of two
bound holds even for nodes driving at speeds of 15-25 mph,
and(b) prediction time is short enough to be negligible, so
almost all the time within range of an AP can be devoted to
transferring application data. On the other hand,predictions
are not useful for applications such as highest-throughput
access point selection, because the difference in achievable
throughput between candidate APs is generally less than a
factor of two (see, for example, [31]).

Next, we try to understand why it is difficult to achieve
prediction accuracy comparable to the wireline case. We
look at how throughput varies with time in Figure 6, for
both stationary and driving nodes. Time is represented on
the x-axis in terms of transfer numbers, and the y-axis
shows the actual throughput for a particular transfer number.
The main difference between the two graphs in the figure
is that, on average, throughput is higher for the stationary
case compared to the driving case. This is to be expected,
because the average distance between the node and the AP
is greater in the driving case. What is similar about the two
graphs is the high variability of TCP throughput over time,
represented by the sharp peaks and valleys in both graphs.
While there is observable decrease in prediction accuracy
as the speed of a node increases (compare rows of graphs
in Figure 4) this decrease is not very large. For stationary
nodes, 30% to 70% of predictions are typically within 20%
of actual throughput, for walking nodes 30% to 60%, and
for driving nodes 20% to 40%, so the decrease in accuracy
due to movement is about a factor of 1.5. In comparison,
the decrease in accuracy relative to wireline TCP throughput
prediction is a factor of 2 to 5. Also,SVR-IntraTransfer does
no better thanEWMA or SVR-InterTransfer, even though it
has up-to-date path information available to it. All these
observations suggest that TCP throughput in the wireless
environment is inherently variable, regardless of whether
nodes are stationary or mobile.

VII. CONCLUSION

In this paper, we study the problem of TCP through-
put prediction for opportunistic networking for stationary
clients, clients moving at walking speed and clients driving
at 15-25mph. We consider the problem in a variety of wire-
less settings including long and short timescales, one AP

2We assume that the predictors are maintained by the AP, and the client
supplies the current throughput measurement and its location to get a
prediction.



and two AP networks, upstream and downstream traffic. We
use Exponentially Weighted Moving Averages (EWMA)-
based and Support Vector Regression (SVR)-based predic-
tors. We find that for all wireless environment configura-
tions and prediction techniques that were considered, 80%
to 100% of predictions are within a factor of two of the
actual throughput. We believe that this accuracy is sufficient
for making some decisions in opportunistic networks, but
the inherent dynamism of wireless environments presents
significant challenges in making more accurate predictions.
In future work, we will investigate whether one particular
property of the wireless environment, such as bursty cross-
traffic, auto rate fallback or variation in channel quality,
causes this dynamism, or whether it is the result of the
interaction of a number of factors.
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