
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
PROSE: Scalable Routing in MANETs Using Prefix Labels and Distributed Hashing

Permalink
https://escholarship.org/uc/item/0534p8cv

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2009-06-22
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0534p8cv
https://escholarship.org
http://www.cdlib.org/


PROSE: Scalable Routing in MANETs
Using Prefix Labels and Distributed Hashing

Dhananjay Sampath
Computer Engineering Department

University of California, Santa Cruz
1156 High Street, Santa Cruz, CA 95064

e-mail: dsampath@soe.ucsc.edu

J.J. Garcia-Luna-Aceves
Palo Alto Research Center (PARC)

3333 Coyote Hill Road
Palo Alto, CA 94304
e-mail: jj@parc.com

Abstract—We introduce the Prefix Routing Over Set Elements
(PROSE) protocol for scalable routing in MANETs based on the
combined use of prefix labels and distributed hashing. In PROSE,
nodes use neighbor-to-neighbor signaling to label themselves with
prefix labels that provide implicit routing from any node to any
network destination, and nodes implement a distributed hash
table to store the mappings between node identifiers (e.g., a MAC
or IP address) and their prefix labels and allow destinations to
publish their existence and sources to subscribe to their intended
destinations. We show that PROSE provides correct routing
based on prefix labels and that its signaling overhead grows
sub-linearly with the network size. We present simulation and
testbed results that illustrate the benefits of PROSE compared to
traditional MANET routing protocols, and show that the stretch
of the prefix-based routes compared to shortest-paths is smaller
than three.

I. INTRODUCTION

In spite of the many recent advances in hardware and
software, providing seamless connectivity and information to
people and devices on the move remains a big challenge.
We argue that, at least in part, this is due to the scaling
limitations of today’s routing protocols for mobile ad hoc
networks (MANET).

A close look at the MANET routing protocols in use
today reveals that the node addresses used in the forwarding
of data packets (e.g., MAC addresses or IP addresses) are
really names, in that they are constant and assigned to nodes
independently of the relative location of the nodes in the
MANET. Consequently, sources do not have to use a mapping
from the name of a destination to its location. However,
since names are used directly in routing tables, these tables
must be updated as nodes change their relative locations
in the network. Furthermore, since a node address has no
correlation to its relative location in a MANET, the only way
to find and establish a route to a destination is by some form
of destination-driven or source-driven flooding. Destination-
driven flooding is used in proactive routing protocols (e.g.,
OLSR [5]) to disseminate either distances to destinations or
link-state information to all nodes, so that nodes can maintain
a routing entry to each destination. Source-driven flooding is
used in on-demand routing protocols (e.g., AODV [18], DSR
[11]), in which a source floods a route request (RREQ) that
is answered by the destination or nodes with active routes to

it. Clearly, neither approach is efficient for very large or very
dynamic MANETs, because the signaling overhead incurred
in these approaches grows at least linearly with the number of
destinations or links.

The main contribution of this paper is the introduction
of the Prefix Routing Over Set Elements (PROSE) protocol.
PROSE uses a self-organizing prefix labeling of nodes and
the distributed hashing of node identifiers to prefix labels
to integrate naming, addressing and routing efficiently in a
MANET.

Section II presents a summary of the many schemes pro-
posed in the past to make routing in wireless networks more
efficient. These prior works organize a network hierarchically,
limit the rate or distance used to disseminate updates, establish
virtual overlays, use geographical coordinates, or use virtual
coordinates for routing. Interestingly, no prior proposals exist
that combine prefix labels with distributed hashing effectively
for routing in MANETs.

Sections III to VI describe PROSE and its mechanisms.
Nodes use hop-by-hop signaling to assign themselves prefix
labels denoting their location relative to an elected root node
according to a breadth-first coverage of the network. The
prefix labels assigned to nodes implicitly define at least one
route between any two nodes. To allow sources to route
packets to destinations, a distributed hash table (DHT) is
built and maintained in the network to store the mapping
between the unique identifier of each destination (e.g., a MAC
or IP address) and the prefix label assigned to the node.
Each destination uses a common hashing function to map its
unique node identifier to a public prefix label, and forwards
its own mapping towards that public prefix label. A node
with the closest match to the public prefix label becomes the
anchor for the destination node. A source node uses the same
common hashing function to send a request to the anchor of a
destination asking for the actual prefix label of the destination.

The key difference between PROSE and all prior approaches
based on clustering or prefix addresses is that prefixes in
PROSE are assigned using a self-organizing breadth-first
search of the nodes, rather than on the grouping of nodes into
sets or clusters controlled by special nodes or landmarks. Sec-
tion VII analyzes the resulting signaling overhead incurred by
PROSE and shows that it grows sub-linearly with the number
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of network nodes. Sections VIII and IX present simulations
and testbed results illustrating the performance advantages
of PROSE compared to traditional routing in MANETs in
networks ranging from as few as 10 to as many as 500 nodes.
Our results clearly show that incurring limited overhead in
establishing routes that may be longer than the shortest paths
is a much more attractive approach that attempting to establish
shortest paths in MANETs at the expense of large amounts of
signaling.

II. RELATED WORK

Many approaches have been proposed to reduce the amount
of signaling overhead incurred in routing compared to the
traditional proactive and on-demand routing schemes, and we
only cite a few examples for each major category due to space
limitations.

Hierarchical routing schemes reduce signaling overhead by
organizing nodes into clusters (e.g., [13], [21]). The key limi-
tation with clustering (or hierarchical routing) schemes is that
the affiliation of nodes to clusters is easily broken when nodes
move and re-establishing such affiliations involves flooding
that may become too costly. Related approaches attempt to
damp down the propagation of signaling messages as they
travel away from their originating points without creating
clusters (e.g., HSLS [19] and FSR [16]). The limitation of
these approaches is that nodes must still update information
about all destinations. An approach to reducing the amount of
information communicated among nodes is to hash the node
identifiers of destinations into Bloom filters, which are then
used in routing updates (e.g., [1], [2]). The key limitation of
this approach is the existence of false positives, which forces
nodes to verify whether a route to a destination through a
given neighbor is true.

An alternative approach consists of establishing a DHT over
a virtual topology defined on top of the physical network.
Examples of this approach are Kademlia [15], Tapestry [23],
and VRR [3]. The advantage of this approach is that the
DHT size grows only logarithmically with the number of
intended destinations reached over the virtual topology. The
key limitation with approaches based on overlays is that a
virtual link corresponds to a multi-hop path in the physical
network topology. Accordingly, signaling overhead must be
incurred to maintain such links, which becomes excessive in
large MANETs.

Many geographical routing schemes have been proposed
(e.g., GPSR [12], XYLS [6], GLS [14]) using geographical
coordinates for routing, rather than node identifiers. The key
limitation of these schemes is that each node must know its
own geographical location, which in turn requires a positioning
system (e.g., GPS) to inform each node of its location.

Several proposals try to attain the scaling properties of
geographical routing schemes, but without the need for an
external position information service like GPS, by using virtual
coordinates. A number of virtual-coordinate schemes use the
distances that a node has to a set of reference nodes (beacons)

as the location of the node, rather than its geographical loca-
tion. Examples of this approach are Beacon Vector Routing
(BVR) [8] and LCR [4] . The main limitation of this type of
virtual coordinates is that multiple nodes may be assigned the
same virtual coordinates, and there is no inherent uniqueness
to a specific vector of distances to beacons. This results in
either incorrect routing or the use of additional signaling
(including flooding) aimed at resolving false positives.

Many compact routing schemes have been proposed based
on the notion of interval routing, in which a depth-first search
approach is used to label nodes with intervals of identifiers
in a way that the route between any two nodes is implicit
from their intervals. Tribe [22] is an example of this approach.
Tribe partitions a finite address space into ”control regions”
corresponding to finite continuous intervals of addresses. The
key limitation of all schemes based on interval routing is that
they are not applicable to MANETs, because the addition or
deletion of any node or link requires the relabeling of large
portions of the network.

The clear alternative to a depth-first assignment of labels
is to implement a breadth-first strategy. DART [7] is a recent
example of this type of routing. In DART, nodes are assigned
”routing addresses” corresponding to leaves of a prefix address
tree, such that the leaf nodes of every subtree in the prefix ad-
dress tree form a connected subgraph in the network topology.
Hence, DART amounts to establishing clusters of nodes based
on prefix address trees. The key limitation of this approach
is that substantial relabeling of nodes must occur when nodes
move or links and nodes fail, which is the same node-to-cluster
affiliation problem present in hierarchical routing.

III. PROSE OPERATION

PROSE routes packets from sources to destinations by the
assignment of prefix labels to nodes, and the dynamic mapping
of unique node identifiers (NID)(e.g., MAC or IP addresses),
to prefix labels.

PROSE builds and maintains a labeled directed acyclic
graph (LDAG) rooted at a distributively elected node called
the root node. The election of a root node is similar to the
election of a root in the distributed spanning tree algorithm.
Neighbor-to-neighbor signaling packets propagate from the
root node throughout the network on a breadth-first search
manner. This results in each node receiving a prefix label from
the same elected root. A node announces to its neighbors its
own prefix label and the prefix labels it assigns to its children
in the LDAG, and stores the prefix labels it hears from all
its neighbors. In this paper, we assume that a node advertises
to its neighbors only the smallest prefix label that is assigned
by its parents. Figure 1 shows an example MANET in which
node A is the elected root.

Clearly, a source must know the prefix label of its intended
destination for prefix routing to be effective. However, storing
all the mappings of NIDs to prefix labels at one (e.g., the core)
or just a few nodes would lead to bottlenecks and single-
points of failure. Accordingly, nodes build and maintain a
distributed hash table (DHT) to store the mappings throughout
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Fig. 1. PROSE operation: Node A is the root; node C is the anchor of node K; node N requests the prefix label for node K and then routes directly to it.

the network, and carry out publish-subscribe operations using
soft-state signaling that uses prefix labels to route packets to
specific nodes.

Each destination uses a consistent hashing function that
takes as input its NID and returns its public prefix label,
which states the location where its mapping should be stored.
The node with a prefix label closest to the public prefix
label becomes the anchor for the destination. A destination
then publishes its presence in the network by sending its
own mapping (i.e., NID and prefix label) to its anchor (see
Figure 1(a)). To find a destination and subscribe to it, a source
uses the same consistent hashing function with the destination
NID as input. The source then sends a request towards the
resulting anchoring prefix label. The anchor of the destination
replies to the source with the prefix label of the destination, or
forwards the request to the destination. The destination, then
replies directly to the source. The example shown in Figure
1 assumes that the anchor replies to the source. Once the
source and destination have each other’s prefix labels, they
can communicate directly (see Figure 1(c)). From the figure,
it is clear that PROSE supports multipath prefix routing, i.e,
multiple paths may be used from source to destination (e.g.,
nodes A, B, E and G have multiple prefix paths to node K
in Figure 1(c)).

The LDAG serves as a ’churn-tolerant’ resilient structure
that defaults to a node with the closest prefix label when a
request for an exact match fails. The routing algorithm that
routes over the LDAG follows a greedy strategy. When it
encounters a local minima, it chooses the next hop with the
lowest NID. Given that nodes have prefix labels, the choice of
NID does not affect the path to the destination. A node uses
the maximum matching prefix logic of the routing algorithm
to choose its next hop.

IV. ROUTING OVER PREFIX LABELS

A. Structure of Prefix Labels
Let Σ be the alphabet containing a finite number of symbols

and Σ∗ be the set of all strings over Σ such that |Σ| ≥ 2. Every
node labels its links to each of its neighbors with a letter w
from Σ. If wi represents the letter assigned to the ith link of
any node then, wi "→ {wi ∈ Σ | wi %= wi+1∀i ≤ d − 1},
where d is the degree of the node. Hence, a unique letter is

assigned to each link connecting any node to its neighbors.
The labeling logic labels each node in the LDAG in a breadth
first fashion. Since the LDAG can be organized as a k-ary tree,
with k being the degree of the LDAG, each child (up to k),
is assigned a prefix label Λ as defined below:

Prefix Label: A prefix label Λ for node y is a word in Σ∗

such that Λ =Λ parent ) l′, where Λparent is the prefix label
obtained from the parent and ) is a concatenation operator
where Λparent is concatenated with a unique suffix over k
different choices from Σ to form Λ

It follows from the above definition that the prefix label
of a node Λ, uniquely identifies the node in a given LDAG.
The prefix labels of nodes define a predecessor relation in the
LDAG, represented by a ←↩, such that for any two nodes s
and d in the LDAG:

1) s ←↩ d : s precedes d and hence d can be reached by
traversing the subtrees of s.

2) d ←↩ s : d precedes s and hence d can be reached
upstream from s by traversing s’s ancestors.

3) d ≈ s : d and s are peers provided that |Λd| = |Λs| and
both share a common ancestor. In this case, d can be
reached by traversing up to the common ancestor until
r ←↩ s holds, where r is the common ancestor, and then
down to the closest subtree, while r ←↩ d holds and d
is reached. Therefore, d ≈ s =⇒ r ←↩ s =⇒ r ←↩ d.

4) dr ≈ s : This is a special case of the above, where
|Λd| %= |Λs| and the only common ancestor is the root
node.

Nodes build and maintain an LDAG rooted at an elected
root node using hello messages exchanged among one-hop
neighbors. Each hello message specifies the NID of the root,
a monotonically increasing sequence number assigned by the
root node, the prefix label and NID of the sending node, and
a list of tuples with the assignment of prefix labels to NIDs.
The root election algorithm chooses the node with the largest
one-hop coverage and breaks any tie with the lowest root NID.
As the network begins to self organize with prefix labels, the
labeling process can produce multiple LDAGs. When a node is
at the interface of two such LDAGs, the label of each of them
is compared and the lexicographically larger label is chosen
as the dominant one.

Consider the example in Figure 1. The prefix labels for
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nodes are assigned over the alphabet Σ =0 , 1, 2. The root of
the tree is assigned a letter from Σ and the nodes attached
to the root are labeled 00 and 01 successively. At the next
level, each node is assigned a unique prefix label over the link
combined with the prefix of its parent. Nodes E and M are
labeled 001 and 010, respectively.

B. Routing Procedure

To route to a destination d, node s chooses the link to any of
its two-hop neighbors that offers the maximum length of prefix
label that matches with the prefix label of the destination.
This is simply maximum matching prefix logic, which selects
the next hop using a greedy strategy that considers the two-
hop neighborhood of a node, and can find shorter paths than
the traditional prefix-tree routing by leveraging the richer
path diversity of an LDAG compared to a prefix tree. For
instance if there exists a label in the two-hop neighborhood
that is lexicographically closer to the destination, the next
hop is chosen such that the packet is forwarded to that node
instead of routing via the prefix-tree parent. We ensure that
this greedy strategy does not encounter a local minima by
randomly selecting a next hop when all nodes offer the same
matching prefix.

From the predecessor relation induced by the prefix labels
in the LDAG of a MANET, a given node selects a next hop
to a prefix label according to the four possible cases allowed
by the predecessor relation. The following lemma shows that
PROSE converges to correct routes.

Lemma IV.1. The prefix-based routes built using PROSE are
correct in a connected network with no topology changes.

Proof: By the definition of prefix labels, every node has
a unique prefix label, and the LDAG is free of loops by
construction. Without loss of generality, consider a source s
and a destination d. Because they belong to the LDAG, they
must satisfy one of the four cases of the predecessor relation,
and each node chosen as next hop to d starting with s must
also satisfy the same relation. Because the LDAG is finite and
does not change, there must be at least one loop-free path from
s to d in the LDAG.

However, the topology of a MANET changes constantly
and nodes join or leave the network arbitrarily. This results
in inconsistent labels at the point of churn. To preserve
consistency, we enforce a strict labeling by ordering the prefix
labels using sequence numbers.

Let L represent a tuple (Sa
n,Λa

n), where Sa
n denotes the

sequence number that originates at a and is forwarded by node
n, and Λa

n denotes the prefix label of the current node with
respect to a. S is a monotonically increasing integer, while
Λ is a word in Σ∗. We define an operator ≺ over the set of
ordered-pair of identifiers L. If La

x, La
y are two such tuples

then,

{La
x ≺ La

y | La
x,y ∈ Σ} (1)

if { (Sa
x < Sa

y ) ∨ [(Sa
x = Sa

y ) ∧ (Λk
x % Λj

y)] }

To satisfy the claim that this tuple establishes an ordering
among the nodes, we show that the operator ≺ is anti-reflexive
and transitive over the set Σ∗.

Lemma IV.2. The relation ≺ is a partial ordering of tuples
over Σ∗.

Proof: The first part of the lemma is intuitive, because
two tuples are equal only if both the sequence number and
the prefix label are the same. Hence, La

x ≺ La
y or La

y ≺ La
x,

only one of which can hold and is therefore anti-reflexive.
To prove that transitivity holds, consider three labels and for
convenience call them L1, L2, L3 such that L1 ≺ L2 and L2 ≺
L3. From Equation 1, we see that, S1 < S2 < S3 as the Ss
are monotonically increasing. This implies that S1 < S3. It
follows that, if S1 %< S3 then L1 ≺ L3 only if S1 = S3 and
Λ1 < Λ3 (the comparison for Λ is lexicographic in nature).
Because we know that Λ holds for transitivity, the relation ≺
is an ordering over Σ∗ and establishes a successor-predecessor
relation.

Having shown that the sequenced prefix labels preserve an
ordering, we show in a more general theorem that the routing
algorithm in PROSE converges to loop-free paths, even in the
face of dynamics in the topology.

Theorem IV.3. A prefix routing scheme with sequence num-
bers routes correctly

Proof: From Lemma IV.1 we know that all nodes have a
label and that each node shares a relation with all its one-
hop nodes. From Lemma IV.2 we have that every labeled
node is ordered with respect to the lexicographic length of the
prefix label and a sequence number. Therefore, if the routing
algorithm routes between two nodes, the greedy strategy is
guaranteed to improve some metric (hop count, distance, load,
etc.) towards a destination at each hop. Hence, a prefix routing
scheme with sequence numbers routes correctly, even in the
face of changing topologies.

V. BUILDING A DHT
As we stated before, to avoid bottlenecks and single-points

of failure, the mappings of NIDs to prefix labels should be
disseminated throughout the network. PROSE uses a consistent
hashing function to accomplish this objective. Each destination
publishes its existence by sending a publish request to the
node whose prefix label best matches the result obtained by
hashing the NID of the destination, which we call the anchor
of the destination. A publish request is a tuple consisting of
the NID and prefix label of a node. A source wanting to
communicate with a destination sends a subscription request
to the node whose prefix label best matches the result obtained
by hashing the NID of the intended destination (i.e., the anchor
of the destination). A subscription request consists of the NID
and prefix label of the source and the NID of the intended
destination. The anchor can either reply to the request from
the source or forward the request to the destination, depending
on the nature of the source-destination exchange. In this paper,
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we assume that the anchor replies to the source of a mapping
request.

PROSE uses soft-state signaling in the dissemination of
publish and subscription requests, in that sources and des-
tinations are responsible for the success of their requests,
and anchors service them on a best-effort basis. To save
bandwidth, requests to different anchors are aggregated in the
hello messages exchanged among nodes. To cope with the
changes in the topology of the network, destinations update
their anchors periodically, and events that change the prefix
label of a node trigger an update. An update refreshes the
mapping stored at anchors. Additionally timers at source nodes
and anchors are maintained to refresh these mappings and
ensure that any stale information is removed.

VI. ADAPTING TO NETWORK DYNAMICS

The prefix labels assigned to nodes are updated as the
topology changes.We discuss how PROSE adapts to these
changes by describing the actions taken in the event that nodes
and anchors are relabeled.

A. Node Relabeling

Nodes acquire a new label when they reposition themselves
in the network. Depending on the type of node, the network
organizes itself differently. Further, the relabeling event is
atomized into a join or a leave event. A join event is handled
similar to the initial labeling process, as described before,
irrespective of the type of node. Each node acquires a label
from the node that is its immediate predecessor at the point of
join. On the other hand, a leave event is handled differently for
different type of nodes. If the node that leaves is a leaf node,
then no further nodes are affected by this event. However, if
the departing node is an internal node, then the adaptation is
more involved. This is primarily owing to the construction of
the LDAG, wherein the labels of the subtree are derived from
prefixes of some ancestor. However, while the prefixes might
change owing to repositioning, the suffixes remain unique in
the entire subtree.

To further understand how an internal node leave is handled,
consider three nodes x, y and z as shown in Figure. 2. These
three nodes are peers and have the same parent p and the
whole LDAG is rooted at some node r. Let p’s most recent
label be kαp and its children’s be kαpx, kαpy, kαpz. Also
assume that there is some path between the three subtrees such
that a node in each subtree can reach an arbitrary node in its
peer-subtree in addition to the path through its parent. Now if
node p were to fail or leave, the following steps are initiated
to ensure that rest of the network remains largely unaffected:

• Each child - kαpx, kαpy, kαpz initializes a routine to
discover its peers (of which it was entirely aware) using
routes other than the failed one.

• As it discovers paths, the peer with lowest global iden-
tifier, say kαpx elects itself as a secondary-root and
attaches the prefix label of its lost parent as its own prefix.

• Once a secondary-root is setup, the remaining peers
continue using their unchanged prefix labels but route
to other peer-subtrees using alternative routes.

• If a node were to join any of the peers, say kαpx and has
shorter paths to all of its peers then the secondary-root
relinquishes its position and a new root is reinstated. The
new root node sends an update with a larger sequence
number to ensure that its shorter paths are not a result of
a loop in the network.

B. Anchor Relabeling

Assume that some node with label kαx is the designated
anchor for node y in the network. Node y proactively updates
its anchor with its current label. If node kαx fails or moves
to another location in the network, or if no node with such a
label exists, then a node in some subtree with the maximum
matching prefix is designated as the secondary-anchor. Note
that the secondary-anchor is logically in the path towards the
anchor. To exemplify, if a node with label kαx were to go
down and the prefix of this label were kα, then the last node
actively engaged in providing directory service is in the subtree
α. In the worst-case scenario, the scheme backs up to the
root node, because no other node has a closer prefix to the
destination currently being sought. If another node joins as
a child to the same parent and acquires a label that matches
more closely to the anchor, proactive updates from the node
automatically expire the parent node as an anchor and route
to the new anchor.

In the case of transient topologies, resetting the prefix labels
of an entire subtree can cost as much as the number of nodes
in that subtree. In the event that a child node is unable to
reach any of its peers, or becomes completely disconnected, it
initiates a relabeling process. The relabeling begins either with
the prefix of a known subtree or with a new LDAG rooted at
the disconnected peer. This is determined by setting a hold-
timer. The hold-timer waits for a certain amount of time to
allow for the link to reconnect. When the hold-timer expires
it assumes disconnection and begins the label reset process.

C. Adaptive Update Timers

It is critical to clamp the updates and aggregate event
messages to reduce the amount of propagation. Here we
describe an intelligent timer that determines if an update
needs to be sent within a certain hold-down time and this
decision is made based on the topological and prefix label
changes that occur within the neighborhood of the node. Each
node is bootstrapped with a hold-down time (δ). When the
δ timer expires, a node transmits a hello message with the
corresponding payload. Within δ if a node detects topological
changes, it aggregates these changes and determines if number
of changes crosses a certain threshold (Tδ). The threshold is
in turn determined by the number of changes in the two-hop
neighborhood. Another threshold is defined for the number
of mappings and upon detecting changes in mappings greater
than the mapping-threshold (Tm), an update with the new
mappings is sent. If Pδ is defined as the probability of the
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topological threshold being reached and Pm be defined as the
probability of the mapping threshold being reached, then the
overall timer function can be characterized as

∆ = δ − {Pδ · δTδ + Pm · δTm}

VII. COMPLEXITY ANALYSIS

For the purposes of our analysis, we model a MANET
network as a graph G(V,E) where V is the set of vertices
representing the network nodes and E is the set of edges that
correspond to the physical link between the nodes. Links are
assumed to be bi-directional and link costs are non-negative.
We further make the assumption that G is a random geometric
graph (RGG) [17] such that the nodes are placed uniformly
at random and independently of each other. Two nodes are
connected if and only if they are within a radius of r of each
other. The radius corresponds to the radio range of the actual
physcial nodes. Nodes are allowed to join or leave the network
arbitrarily. The radius of the threshold value of distances in
the RGG is set to Rc =

√
((ln(n)) + 0(1)/(pi ∗ n)) [9] so

that the nodes are connected. This gives us the property [10]
that the diameter of the network is given by

√
(ln(n)/n).

Also, in a RGG we can approximate the number of one-hop
neighbors of any given node as ln(n), where n in all of the
above expressions is the number of nodes in the network.

To understand the overhead complexity incurred in PROSE,
we begin by identifying the signaling overhead contribution
of each mechanism used in the protocol. We compute the
signaling overhead in terms of messages transmitted over the
entire network.

The hello messages used in PROSE are sent periodically and
on an event-driven basis among one-hop neighbors. Hence, we
compute the resulting overhead as the sum of two separate
terms. From our model, the number of one-hop neighbors can
be represented as ln(n) and therefore the cost of this phase,
network-wide is Cp1 = (fm(t− te)+ fm(te))(n ∗ ln(n) ∗ δh),
where n is the number of nodes in the network, δh is size
of the hello message exchanged and fm is a function of the
chosen mobility model. This function fm describes the number
of events that trigger changes in the topology. The first term
represents the frequency of the periodic update triggered. Note
that each time an event based update is sent, the periodic timers
are reset. The second component purely captures the event-
driven updates.

Each destination node in the network sends a message
to its anchor node and refreshes the stored mapping. The
periodic timer for this update is much larger than the timer in

the neighbor-to-neighbor message exchange. This component,
however, has two distinct cases. In the worst-case scenario
when the anchor is situated at the diametrically opposite end
of the network, the message travels across. Hence, it is a
function of the diameter of the network. A more common
case, however, is the average path length that the message has
to travel. Due to the prefix labels, this path length is lesser. In
the worst case, the cost of this part of PROSE is:

Cp2 = (n/γ)(fm(t′ − t′e) + fm(t′e))(
√

n/ln(n))

where γ reduces the number of nodes to ones in the common
subtree. γ represents the factor of nodes within the common
matching subtree. The expression in the average case is Cp2 =
(n/γ)(fm(t′ − t′e) + fm(t′e))lnd(n), where d is the average
degree of the network.

The third component of signaling overhead in PROSE
corresponds to the subscription requests, which involves an
exchange that increases constantly based on the traffic sources
and in any case increases the above expression by a small
constant factor (γ + k).

An additional component of overhead is incurred when
a label reset occurs owing to disconnected components. If
the rate of resets in the network is defined as η then this
component becomes Creset = (nη/γ)(

√
n/ln(n)), and in the

worst case and in the average case Creset = (nη/γ)(lnd(n)).
To see how PROSE saves in terms of signaling overhead

compared o traditional routing schemes, let us now compare
these expressions with that of a link-state protocol such as
OLSR, and an on-demand routing protocol like AODV. The
first component of the total cost in the case of link state
grows much faster than in PROSE, because each link-event is
propagated n2 instead of n∗ln(n) times. Though in a link-state
protocol the second component Cp2 is non-existent. However,
this trader-off is much costlier for link-state updating, because
the second phase of PROSE only increases the signaling
overhead by a factor of O(n). In the case of on-demand routing
protocols, constantly moving nodes cause the second term of
the total cost to shoot up. On-demand protocols have to flood
the entire network in the worst case and do so for each event.
This means that the flooding reaches π ∗ (n/ln(n)) nodes
instead of

√
n/ln(n) nodes. This makes Cp2 a O(n2) term

as well.
Figure 3 shows how slowly the signaling complexity grows

in PROSE as the number of network nodes increases, and that
it clearly outperforms the complexity of traditional link-state
or reactive protocols.

VIII. PERFORMANCE ANALYSIS

To analyze the performance of PROSE, we modeled it in the
Qualnet simulator [20]. Qualnet is a discrete event simulator
that allows high fidelity performance evaluations of network
models.
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Fig. 3. Asymptotic growth of overhead for different protocols.

A. Setup and Benchmarks
Each of the experiments were instrumented with a network

of nodes over a terrain 600m long and 900m wide. Nodes were
placed randomly within a unit block of 5% the dimensions
of the terrain and each of these unit blocks were distributed
uniformly. We chose the random-waypoint mobility model in
which the way points are distributed over some convex region
within the terrain. The velocity distribution was varied from
1 to 10 m/s uniformly and each node paused for a specific
time interval selected from a exponential distribution of mean
30ms.

The radios were instrumented with a CSMA medium access
control and the data rate, sensitivity and power were set to
correspond to the chosen terrain in such a way that under a
static scenario, the entire network remained connected with
minimal interference. No path loss was simulated in the
interest of understanding the protocol behavior without being
mitigated by losses.

We simulated up to 500 nodes in these networks and in each
of these runs, the number of active flows was set to 250 flows.
The interval of each of these simulations were distributed
exponentially with mean equal to 1/20th of the duration of
simulation. Each protocol was also run at separate pause times
from static to continuously mobile scenarios. The performance
of all protocols was observed for different mobility rates with
increasing pause times from 0 to the duration of the simulation.
The duration of the simulation was set as 300s. To remove
any topological artifact (owing to node placement strategy)
we ran the simulations over 10 random seeds and normalized
the results.

We compared PROSE with OLSR and AODV, given that
these are most widely used proactive and on-demand routing
protocols for MANETs, respectively. These protocols demon-
strate opposing design choices and help to understand how
PROSE contributes to reducing stress on the network with the
help of its anchors and prefix labels.

B. Scenarios
In each of our experiments, we use the following metrics in

our comparison: (a) control packets, which measures the total
control overhead packets generated for the given flow in bytes;

(b) latency, which is defined as the delay measured per flow
from one end to the other; and (c) packet delivery ratio, which
is an indicator of successful delivery, defined as the number
of data packets delivered per total number of messages sent.

1) Mobility Scenario: Our first scenario demonstrates the
robustness of PROSE in the face of mobility by comparing the
different protocols under pause times increasing from 0 to 300
seconds in a MANET of 500 nodes. Figure VIII-B4 shows the
results for this scenario. We notice that under smaller pause
times, when nodes move constantly, all protocols suffer from
observably low delivery ratio. OLSR suffers the most, because
LSUs are propagated to the entire network after any topology
change. AODV manages to catch up faster as the rate of
mobility goes down. Since the network is flooded for discovery
of a destination each time, AODV leverages the unexpired
entries in its routing table cache to respond to nodes that are
not moving as fast.

PROSE utilizes anchors very effectively. It achieves almost
15% higher delivery ratio than either OLSR or AODV and
yet has 50% less overhead than the two. The higher delivery
ratio is explained by fewer control messages transmitted,
resulting in lesser congestion across the network. The end-
to-end latency of PROSE is also low under high mobility
because fewer packets are retransmitted. While it is hard to
outperform flooding in terms of latencies, flooding under over-
loaded conditions results in severe performance degradation
and this is where PROSE shows better end-to-end latencies.
The performance of AODV and OLSR come closer to that of
PROSE only in relatively static scenarios.

2) Scalability Scenario: In our second scenario, we show
the performance of PROSE, OLSR and AODV as the number
of nodes varies from 10 to 250. Nodes are mobile at a
constant rate for all experiments with a pause time of 15m/s.
Figure VIII-B4 shows the results for delivery ratio, end-to-end
delay, and control overhead.

PROSE clearly outperforms all the other protocols by
delivering almost 15%-20% more. As the number of nodes
increases, OLSR and AODV scale poorly, while PROSE sig-
naling overhead increases at a far smaller rate. Figure VIII-B4
shows that the number of messages for 100 to 250 nodes
is almost four times that of PROSE. Message aggregation
plays a crucial role here, as the compact representation of
the mappings keep the size of the messages small and helps
to aggressively aggregate information in PROSE. As a result,
even with hold-down timers, the end-to-end latency in PROSE
is 5 seconds lower than in AODV and OLSR because there
are fewer collisions.

3) Churn Scenario: In our third scenario, the network is
static at the start of the simulation and all protocols converge
to stable routing tables. A single node is then moved from
one end of the simulation space to a diametrically opposite
location. We then measure the amount of signaling overhead
incurred. Figure 6(a) shows the overhead incurred in the three
protocols in networks of 10 to 500 nodes after a single node
disruption. In the interval of 10-50 nodes, we see a huge
number of messages being exchanged. PROSE, on the other
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hand incurs a 6 times reduction in the same interval. PROSE
clearly incurs much smaller signaling overhead than the other
two protocols.

4) Path Stretch and Label Resets: Using the traces obtained
from the second scenario, we computed the path stretch (ratio
of prefix paths over the corresponding shortest paths) for
PROSE, and the results are shown in Figure 6(c) where
stretch is plotted against the node degree. The results are very
promising, because the stretch incurred in PROSE ranges from
less than 3 for node degrees of 3 to less than 2 when the node
degree is 8.

While most MANET protocols achieve shortest paths, they
fail to account for the congestion that results from discovering
these paths. In PROSE, we incur a small path stretch of under
3; however, because of the large reduction in signaling over-
head attained with PROSE, it results in significant performance
gains.

Figure 6(b) shows how the prefix label resets are reduced
as the node degree increases. This is an indicator of the fault
tolerant logic at work. Each time a disconnection occurs, nodes
find paths to the peers of the nodes and prevent a label reset
by electing secondary-roots.

IX. IMPLEMENTATION

We designed a prototype of PROSE to demonstrate some of
its characteristics using a testbed. We wrote PROSE in Python,
because it enabled rapid prototyping. The testbed consisted
of 10 nodes and each node in the network was equipped
with a 802.11b/g radio on a Mini-ITX board running Debian.
Each node establishes a UDP connection with the neighboring
nodes to exchange messages. We built our own version of flow
control without explicit acks to leverage the use of the hello
messages. The testbed nodes were deployed within a building
as shown in the figure IX and were placed such that any
source-destination pair was connected over multiple hops. We
evaluated the behavior of PROSE under different scenarios.
As a benchmark, we used the OLSR protocol from [5] for our
comparisons.

Due to space limitations, we briefly discuss a single scenario
to show a proof of concept and also demonstrate some crucial
properties of PROSE. To characterize the effects of mobility,
we studied the scenario where a node is moved to a different
part of the network after 10 minutes of static placement, and
determined the overhead incurred by PROSE and the OLSR
protocol. Table I shows the performance results for the two
protocols. Note that while there is a slight improvement in
the delivery ratio in PROSE, the number of control messages
transmitted when a single node moved is almost four times
less in PROSE than in OLSR.

X. CONCLUSION

We presented PROSE, an approach for scalable routing in
MANETs using the integration of prefix labels and distributed
hashing in a way that differs from all prior schemes proposed
in the past based over DHTs and virtual coordinates. PROSE
scales very well with the number of nodes and in contrast

Fig. 7. Testbed deployment

Delivery Overhead Overhead
Raio single link Total

OLSR 95.224% 63 pkts 5400 pkts
PROSE 97.117% 16 pkts 3100 pkts

TABLE I
IMPLEMENTATION RESULTS

to several prior compact routing schemes it is applicable to
MANETs. The performance results obtained by simulation and
in testbed experiments are very promising. On the one hand,
PROSE incurs very small signaling overhead and a stretch
factor (over the shortest paths that could be attained) below
three, which makes it very attractive for large MANETs. On
the other hand, PROSE provides the same or better delivery
ratios than traditional routing protocols and much better end-
to-end delays.
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