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Efficient Wireless Security
Through Jamming, Coding and Routing
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Abstract

There is a rich recent literature on how to assist secure communication between a single transmitter and receiver
at the physical layer of wireless networks through techniques such as cooperative jamming. In this paper, we consider
how these single-hop physical layer security techniques can be extended to multi-hop wireless networks and show
how to augment physical layer security techniques with higher layer network mechanisms such as coding and
routing. Specifically, we consider the secure minimum energy routing problem, in which the objective is to compute
a minimum energy path between two network nodes subject to constraints on the end-to-end communication secrecy
and goodput over the path. This problem is formulated as a constrained optimization of transmission power and
link selection, which is proved to be NP-hard. Nevertheless, we show that efficient algorithms exist to compute both
exact and approximate solutions for the problem. In particular, we develop an exact solution of pseudo-polynomial
complexity, as well as anǫ-optimal approximation of polynomial complexity. Simulation results are also provided
to show the utility of our algorithms and quantify their energy savings compared to a combination of (standard)
security-agnostic minimum energy routing and physical layer security. In the simulated scenarios, we observe that, by
jointly optimizing link selection at the network layer and cooperative jamming at the physical layer, our algorithms
reduce the network energy consumption by half.

Index Terms

Wireless security, minimum energy routing, cooperative jamming.

I. INTRODUCTION

Protecting the secrecy of user messages has become a major concern in modern communication networks. Due
to the propagation properties of the wireless medium, wireless networks can potentially make the problem more
challenging by allowing an eavesdropper to have relativelyeasy access to the transmitted message if countermeasures
are not employed. Our goal is to provide everlasting security in this wireless environment; that is, we will consider
methods that will prevent an eavesdropper from ever decoding a transmitted message - even if the eavesdropper has
the capability to record the signal and attempt decryption over many years (or decades). There are two different
classes of security techniques of interest here: cryptographic approaches based on computational complexity, and
information-theoretic approaches that attempt to obtain perfect secrecy. Both have advantages and disadvantages
for the desired everlasting security in the wireless environment.

The traditional solution to providing security in a wireless environment is the cryptographic approach: assume
that the eavesdropper will get the transmitted signal without distortion, but the desired recipient who shares a
key with the transmitter is able to decode the message easily, while the eavesdropper lacking the key must solve
a hard problem that is beyond her/his computational capabilities[1]. Since the eavesdropper is assumed to get
the transmitted signal without distortion, cryptography addresses the key challenge in the wireless environment
of thwarting an eavesdropper very near the transmitter. However, such an approach faces the concern that the
eavesdropper can store the signal, and, then, with later advances in computational capabilities or by breaking the
encryption scheme, obtain the message. The desire for everlasting security then motivates adding countermeasures
at the physical layer that inhibit even the recording of the encrypted message by the eavesdropper that combine
with cryptography to facilitate a defense-in-depth approach [2].

In the information-theoretic approach to obtain perfect secrecy [3], the goal is to guarantee that the eavesdroppers
can never extract information from the message, regardlessof their computational capability. Wyner [4] and
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succeeding authors [5], [6] showed that perfect secrecy is possible if the channel conditions between the transmitter
and receiver were favorable relative to the channel conditions between the transmitter and eavesdropper. In this
so-calledwiretap channel, perfect secrecy at a positive rate with no pre-shared key is possible [4]. This clearly
satisfies the requirement for everlasting secrecy, but it relies on favorable channel conditions that are difficult (if
not impossible) to guarantee in a wireless environment. Hence, information-theoretic secrecy requires a network
design which inhibits reception at the eavesdropper while supporting reception at the desired recipient.

Our work supports both a cryptographic (computational) approach or information-theoretic approach. Per above, it
is advantageous in either case to seek or create conditions so as to inconvenience reception at eavesdropper(s) while
facilitating communication of the legitimate system nodes. This has been actively considered in the literature on the
physical layer of wireless networks over the last decade, with approaches based on both opportunism [7], [8] and
active channel manipulation [9], [10] being employed. Mostof these works have arisen in the information-theoretic
community and considered small networks consisting of a source, destination, eavesdropper, and perhaps a relay
node(s) [8]–[13]. More recently, there has been the active consideration of large networks with the introduction
of the secrecy graph to consider secure connectivity [14]–[16] and a number of approaches to throughput scaling
versus security tradeoffs [17]–[19]. Hence, whereas therehas been a significant consideration of small single- and
two-hop networks and asymptotically large multi-hop networks, there has been almost no consideration of the
practical multi-hop networks that lie between those two extremes. It is this large and important gap that this paper
fills.

Consider a network where system nodes communicate with eachother wirelessly, possibly over multiple hops,
such as in wireless mesh networks and ad hoc networks. A set ofeavesdropperstry to passively listen to communica-
tions among legitimate network nodes. To prevent the eavesdroppers from successfully capturing communications
between legitimate nodes, mechanisms to thwart such are employed at the physical layer of the network. Two
nodes that wish to communicate securely may need to do so overmultiple hops in order to thwart eavesdroppers
or simply because the nodes are not within the reach of each other. While we make no argument about the
optimality or practicality of any specific physical layer security mechanism, for the sake of concreteness, we
focus oncooperative jamming, which has received considerable attention [9]–[13], [20]. In cooperative jamming,
whenever a node transmits a message, a number of cooperativenodes, calledjammers, help the node conceal its
message by transmitting a carefully chosen signal to raise the backgroundnoiselevel and degrade the eavesdropping
channels. Because our general philosophy applies to any physical layer approach, the framework can be extended
to include other forms of physical layer security. However,some of the attractive features of cooperative jamming
that motivated us to study this technique include:

1) Opportunistic techniques [7], [8] that exploit the time-varying wireless channel may suffer from excessive
delays depending on the rate of channel fluctuations. For applications that require security without an excessive
delay, active channel manipulation such as cooperative jamming should be adopted. The price to be paid, in
this case, is the increased interference due to jamming.

2) Multi-antenna systems can also be used to jam eavesdroppers [9], [21]. However, the use of multiple antennas
on every wireless device may not be feasible due to cost and size (e.g., wireless sensors). Cooperative jamming
is a distributed alternative to multi-antenna systems.

3) Node cooperation, while requiring a more complex physical layer, is incorporated in commercial wireless
technologies such as LTE. Thus, we envision that cooperative jamming can be implemented in practice, as
was demonstrated in a limited form (single jammer) in [22].

4) Anonymous wireless communication is a challenging problem. Cooperative jamming can potentially be uti-
lized for wireless anonymous communication, as it creates confusion for wireless localization techniques [23].

In this general case, the main questions are: (1) how to choose the intermediate nodes that form a multi-hop path
from the source node to the destination node, and (2) how to configure each hop at the physical layer with respect
to the security and throughput constraints of the path. Specifically, the problem we consider in this paper is how to
find aminimum costpath between a source and destination node in the network, while guaranteeing a pre-specified
lower bound on theend-to-end secrecyand goodputof the path. The cost of a path can be defined in terms of
various system parameters. In a wireless network, transmission power is a critical factor affecting the throughput and
lifetime of the network. While increasing the transmissionpower results in increased link throughput, excessive
power actually results in high levels of interference, hence reducing the network throughput due to inefficient



3

spacial reuse. With cooperative jamming at the physical layer, transmission power is even more important due to
the additional interference caused by jamming signals if they need to be employed. Thus, in this work, we consider
the amount of end-to-end transmission power as the cost of a path with the objective of finding secure paths that
consume the least amount of energy. In turn, such paths, by minimizing interference in the network, result inhigher
throughput. Note that solutions employing power only at thenodes transmitting the messages (and no cooperative
jamming) are part of the space over which the optimization will be performed; thus, if it is more efficient to not
employ cooperative jamming, such a solution will be revealed by our algorithms.

While it might seem that physical layer security techniquescan be extended to multi-hop networks by imple-
menting them on a hop-by-hop basis, in general, such extensions sacrifice performance or are not feasible. The
eavesdropping probability on a link is a function of the power allocation on that link. A hop-by-hop implementation
is unable to determine the optimal eavesdropping probability and consequently power allocation for each link in
order to satisfy the end-to-end constraints (i.e., the chicken-egg problem). Moreover, a hop-by-hop approach overlaid
on a shortest path routing algorithm might pay an enormous penalty to mitigate eavesdroppers on some links (e.g.,
by routing through a node with one or more links, that, because of system geometry, are very vulnerable to nearby
eavesdroppers). A routing algorithm that is designed in conjunction with physical layer security can selectively
employ links that are easier to secure when it is power-efficient to do so and, in such a way, minimize the impact
of the security constraint on end-to-end throughput.

Our main contributions can be summarized as follows:

• We formulate the secure minimum energy routing problem withend-to-end security and goodput constraints
as a constrained optimization of transmission power at the physical layer and link selection at the network
layer.

• We prove that the secure minimum energy routing problem is NP-hard, and develop exact andǫ-approximate
solutions of, respectively, pseudo-polynomial and fully-polynomial time complexity for the problem.

• We show how cooperative jamming can be used to establish a secure link between two nodes in the presence
of multiple eavesdroppers or probabilistic information about potential eavesdropping locations by utilizing
random linear coding at the network layer.

• We provide simulation results that demonstrate the significant energy savings of our algorithms compared to
the combination of security-agnostic minimum energy routing and physical layer security.

The rest of the paper is organized as follows. Our system model is described in Section II. The optimal link and
path cost are analyzed in Sections III and IV. Our routing algorithms are presented in Section V. Simulation results
are discussed in Section VI. Section VII presents an overview of some related work, while Section VIII concludes
the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider a wireless network with arbitrarily distributed nodes. We assume that each node (legitimate or eaves-
dropper) is equipped with a single omni-directional antenna. AK-hop routeΠ between a source and a destination in
the network is a sequence ofK links connecting the source to the destination1. We use the notationΠ = 〈ℓ1, . . . , ℓK〉
to refer to a route that is formed byK links ℓ1 to ℓK . A link ℓk ∈ Π is formed between two nodesSk andDk on
routeΠ. We assume that every linkℓk is exposed to a set of (potential) eavesdroppers denoted byEk. Whenever
Sk transmits a message toDk, a set of trusted nodes, called jammers, cooperate withSk to conceal its message
from the eavesdroppers inEk by jammingSk’s signal at the eavesdroppers. The set of the jammers cooperating
with Sk to conceal its transmissions fromEk is denoted byJk =

{

J1 . . . , J|Jk|

}

, where|A| denotes the cardinality
of setA. The set of jammers is potentially different for different links. Throughout the paper, we use the notation
(Sk,Dk, Ek,Jk) to identify link ℓk.

In the following subsections, we describe the models considered in this paper for the wireless channel, eaves-
droppers, physical-layer security and end-to-end routing. For notational simplicity, we may drop the link indexk
whenever there is no ambiguity.

1Terms “path” and “route” are used interchangeably throughout the paper.
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A. Wireless Channel Model

Consider the discrete-time equivalent model for a transmission from nodeS to nodeD. Let xS be the normalized
(unit-power) symbol stream to be transmitted byS, and letyD be the received signal at nodeD. We assume
that transmitterS is able to control its powerPS in arbitrarily small steps, up to some maximum powerPmax.
Let nD denote the receiver noise atD, wherenD is assumed to be a complex Gaussian random variable with
E
[

|nD|2
]

= N0. The received signal atD is expressed as

yD =
√

PS hS,D xS + nD, (1)

wherehS,D is the complex channel gain betweenS andD. The channel gain is modeled ashS,D = |hS,D|eθS,D ,
where |hS,D| is the channel gain magnitude andθS,D is the uniform phase. We assume a non line-of-sight
environment, implying that|hS,D| has a Rayleigh distribution, and thatE[|hS,D|2] = 1/dαS,D, wheredS,D is the
distance between nodesS andD, andα is the path-loss exponent (typically between2 and6). This is the standard
narrowband fading channel model employed in the physical layer literature [24], [25].

B. Adversary Model

We limit our attention to passive eavesdroppers as in prior work [9]–[13], [20]. Although there are other forms
of adversarial behavior, their consideration is beyond thescope of this paper.

While the literature on physical layer security often assumes not only eavesdropper locations but also either perfect
(e.g., [10]) or imperfect (e.g., [20]) knowledge at the transmitters and jammers of the complex channel gains of
the eavesdropping channels (i.e., availability of instantaneous eavesdropper channel state information (CSI)), we
consider the more realistic scenario, in which CSI for eavesdropping channels is not available. In addition, our
model requires only the knowledge ofpotentialeavesdropping locations in the network, yet we show that it provides
guaranteed security by employing coding in conjunction with cooperative jamming.

Specifically, we assume that each linkℓk is subject to potential eavesdropping from a set of locations denoted by
Ek =

{

E1, . . . , E|Ek|

}

, where the probability of eavesdropping from locationEi is given byp(Ei) for 0 ≤ p(Ei) ≤ 1.
This is a considerably general model that can be used to represent a wide range of eavesdropping scenarios2. For
example, setting allp(Ei)’s to 1 for a link models multiple eavesdroppers for that link. Other examples include,
for example, military scenarios where the locations of enemy installations are known, or wireless networks where
a malicious user(s) has been detected. In general, for any given link, there is only a limited region around the link
that can be exploited for eavesdropping. By dividing the effective eavesdropping region to a few smaller areas [26],
one can compute the most effective eavesdropping location within each area, and consequently, construct the set
of eavesdropping locations for that link.

C. Physical Layer Security Model

Consider a secure link formed between sourceS and receiverD with the help of jammersJ . For the moment,
we assume that cooperative jamming is implemented at the physical layer to deal with asingle eavesdropperE
located at afixedposition. Later, in Section III, we show how this physical layer primitive can be used to provide
security against multiple eavesdroppers or unknown eavesdropping locations.

When nodeS transmits a message, there are multiple ways in which cooperative jamming by system nodes can
be exploited, ranging from relatively simple noncoherent techniques to sophisticated beamforming techniques [27].
Since theimplementationof beamforming in other contexts, with the same challenges of synchronization in the
wireless environment, is advancing rapidly [28], [29], we assume that the jammers cooperativelybeamforma
common artificial noise signalz to the receiver in such a way that their signals cancel out at the receiver [30]. The
noise signalz is transmitted in thenull spaceof the channel vectorhD = [hJ1,D, hJ2,D, . . . , hJ|J |,D]

T where,hJi,D

denotes the channel gain between jammerJi and destinationD andAT denotes the conjugate transpose of vector
A. Thus, the signal transmitted by the jammers can be expressed assJ = h

⊥
D z, whereh⊥

D is a vector chosen in the
null space ofhD. It follows that the total transmission power of the jammersis given byPJ =‖ h

⊥
D ‖2. Assuming

2Although our model cannot be applied to every possible scenario, it is more general compared to the models in the literature on physical
layer security (see [9]–[13], [20], and references therein).
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that the source node transmits with powerPS , the signals received at the destination and the eavesdropper are given
by

yD =
√

PS hS,D xS + nD,

yE =
√

PS hS,E xS + h
T
Eh

⊥
Dz + nE,

(2)

where,hE = [hJ1,E, hJ2,E, . . . , hJ|J |,E]
T represents the channel gain vector between the jammers and the eaves-

dropper, andnD andnE denote the complex Gaussian noise at the destination and eavesdropper, respectively, with
E
[

|nD|2
]

= E
[

|nE|2
]

= N0.
Although the jammers try to prevent the eavesdropper from successfully receiving the message, there is still some

probability that the eavesdropper actually obtains the message due to the fact that the channel to the eavesdropper
is unknown in our model, i.e., hE and hS,E are unknown. Recalling that the signal-to-interference-plus-noise
ratio (SINR) at the destination is controlled via power control, letγE denote the minimum requiredSINR at the
eavesdropper in order to violate the security constraints of the protocol (e.g. for the cryptographic case, theSINR
above which the eavesdropper can record a meaningful version of the transmitted signal; in the information-theoretic
case, theSINR above which, for a given wire-tap code, the equivocation does not equal the entropy of the message.)
Let SINRE denote theSINR at the eavesdropper. We have

P {SINRE ≥ γE} = P

{

PS|hS,E|2

N0+hT
Eh⊥

Dh⊥
D

T
hE

≥ γE

}

= EhE

[

P

{

PS |hS,E |2

N0 + hEh
⊥
Dh

⊥
D

T
hT
E

≥ γE

∣

∣

∣
hE

}]

= EhE

[

e
−

γEdα
S,E

PS
h

T
Eh

⊥
Dh

⊥
D

T
hE
]

e
−

γEN0dα
S,E

PS ,

(3)

whereEhE
means expectation with respect to channel gain vectorhE. Using the results on quadratic forms [31,

Eq. 14] to calculate the expectation, it is obtained that (IN is the identity matrix of sizeN )

P {SINRE ≥ γE} ≤ e
−

γEN0dα
S,E

PS

|IN +
γEdα

S,E

PS
(
∑

Ji∈J
1

dα
Ji,E

)h⊥
D
h⊥
D

T|

=
e
−N0γE

dα
S,E

PS

1 +
γEdα

S,E

PS
(
∑

Ji∈J
1

dα
Ji,E

)PJ

·

(4)

where the final expression is derived from Sylvester’s determinant theorem:

det(Im +AB) = det(In +BA),

for A andB beingm× n andn×m matrices, respectively, and the fact thatPJ = h
⊥
D

T
h
⊥
D (see (31)).

In the remainder of the paper, we use (4) in equality form to compute the eavesdropping probability for a given
jamming powerPJ . While this results in a (slightly) conservative power allocation, it is sufficient to satisfy the
security requirement of each link.

D. Routing Model

Consider aK-hop routeΠ = 〈ℓ1, . . . , ℓK〉 between a legitimate source and destination in the network.Let L
denote the set of all possible routes between the source and destination. LetC(Π) denote the cost of routeΠ, where
the cost of a route is defined as the summation of the costs of the links forming the route. With slight abuse of the
notation, we useC(ℓk) to denote the cost of linkℓk as well. The secure routing problem is then defined as follows.

SMER: Secure Minimum Energy Routing Problem
Consider a wireless network and a set of eavesdroppers distributed in the network. Given a source and destination,
find a minimum energy pathΠ∗ between the source and destination subject to constraintsπ andλ on the end-to-end
successful eavesdropping probability and goodput on the path respectively.
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Let λ(Π) andλ(ℓk) denote, respectively, the goodput of pathΠ and link ℓk ∈ Π. Thenλ(Π) can be expressed
as

λ(Π) = min
ℓk∈Π

λ(ℓk) ·

Since goodput of a link is an increasing function of the transmission power of the transmitter of that link, a
necessary condition for minimizing power over the pathΠ is given byλ(ℓk) = λ, for all ℓk ∈ Π, i.e., all links
should just achieve the minimum goodputλ. Thus, our power allocation scheme (see Section III) establishes links
that achieve exactly the minimum required goodputλ. Consequently, the constraint on the end-to-end goodput is
satisfied by any path in the network, and hence does not need tobe explicitly considered when solving SMER. As
such, SMER can be formally described by the following optimization problem:

Π∗ = argmin
Π∈L

∑

ℓk∈Π

C(ℓk)

s.t. P {eavesdropping on routeΠ} ≤ π,

(5)

for some pre-specifiedπ (0 < π < 1). The constraint on the route eavesdropping probability inthe above
optimization problem can be expressed in terms of the eavesdropping probability on individual linksℓk that form
the routeΠ, as

∏

ℓk∈Π
(1− πk) ≥ 1− π, whereπk (0 < πk < 1) denotes the successful eavesdropping probability

on link ℓk. We use the following result to convert the above inequalityconstraint to an equality constraint in the
routing problem (5).

Lemma 1:The cost of routeΠ is a monotonically increasing function of
∏

ℓk∈Π
(1− πk).

Proof: Consider a pathΠ between the source and destination nodes. Define the end-to-end secrecy of pathΠ,
denoted byω(Π), as follows:

ω(Π) =
∏

ℓk∈Π

ωk, (6)

whereωk = (1− πk).
First, we show that the link costC(ℓk) is a monotonically increasing function of the the link secrecy ωk for every

link ℓk ∈ Π. Let P (k)
S andP

(k)
J denote the source and jamming powers allocated to the linkℓk, respectively. In

Section III, we show that: (i)P (k)
S is a constant for a given link independent of the link secrecy, and (ii) P (k)

J is a
function of the link secrecy and is given by

P
(k)
J = ck ·

ωk

1− ωk

, (7)

whereck is some constant independent ofωk. Thus, for a fixed linkℓk, the link costC(ℓk) = P
(k)
S +P

(k)
J depends

on ωk only through the jamming powerP (k)
J . Taking the derivative on the link cost with respect toωk results in

the following relation:
d

dωk

C(ℓk) = ck ·
1

(1 − ωk)2
> 0, (8)

indicating that the link cost is an increasing function of the link secrecyωk.
Let C∗(Π) andC(Π) denote the optimal cost of the pathΠ computed by solving the optimization problem (14),

with equality and inequality constraints, respectively. Furthermore, letω∗(Π) andω(Π) denote the corresponding
end-to-end path secrecies. We present a proof of the lemma based on contradiction by assuming that the optimal
path cost with the inequality constraint is less than that with the equality constraint. That is, we assume that

C(Π) ≤ C∗(Π), (9)

while,
ω(Π) > ω∗(Π) · (10)

Next, by manipulating the link secrecy allocation vector[ω1, . . . , ωk, . . . , ωK ], we construct a new link secrecy
allocation vector that satisfies the equality constraint, while having a cost smaller thanC∗(Π). To this end, consider
some arbitrary linkℓk, and replaceωk by a newω′

k as follows

ω′
k =

ω∗

ω
· ωk · (11)



7

Sinceω∗ < ω, it follows thatω′
k < ωk. Consequently, the new cost of the linkℓk with link secrecyω′

k is less than
C(ℓk), which in turn indicates that the new path cost with secrecy allocation vector[ω1, . . . , ω

′
k, . . . , ωK ] is less

thanC(Π). Therefore, we have
C′(Π) < C(Π) < C∗(Π), (12)

and,
ω(Π) > ω′(Π) = ω∗(Π) · (13)

The proof follows by noting that this contradicts the assumption thatC∗(Π) is the minimum cost of pathΠ with
the equality constraint.

Thus, to minimize the cost of the optimal route, the inequality constraint can be substituted by the equality
constraint

∏

ℓk∈Π
(1−πk) = 1−π. On each linkℓk, it is desirable to keep the successful eavesdropping probability

πk close to0. In this case, the product
∏

ℓk∈Π
(1− πk) can be approximated by the expression1−∑ℓk∈Π

πk. By
substituting the approximate linearized constraint in therouting problem, the following optimization problem is
obtained

Π∗ = argmin
Π∈L

∑

ℓk∈Π

C(ℓk)

s.t.
∑

ℓk∈Π

πk = π ·
(14)

In the rest of the paper, we focus on this optimization problem. We first show that the problem is, in general,
NP-hard and then develop exact and approximate algorithms to solve it.

III. SECURE L INK COST

The link cost is composed of two components: (1) the source power, and (2) the jammers’ power. LetC(ℓk)
denote the cost of linkℓk = (Sk,Dk, Ek,Jk) under the constraint of eavesdropping probabilityπk. Then,C(ℓk) is
given by:

C(ℓk) = P
(k)
S + P

(k)
J , (15)

whereP
(k)
S and P

(k)
J denote, respectively, the average source and jammers poweron link ℓk. In the following

subsections, we will compute the optimal values ofP
(k)
S andP (k)

J subject to a givenπk.

A. Source Transmission Power

Assume that the (complex) fading channel coefficienthSk,Dk
is known at the sourceSk of the given link ℓk.

Because we are trying to maintain a fixed rate (and, hence, a fixed received power), the source will attempt to
invert the channel using power control. However, for a Rayleigh frequency-nonselective fading channel, as assumed
here, the expected required power for such an inversion goesto infinity, and, hencetruncated channel inversionis
employed [25, Pg. 112]. In truncated channel inversion, thesource maintains the required link quality except for
extremely bad fades, where the link goes into outage. When a link is in a bad fade, the source will need to wait
until the link improves before transmitting the packet and delay will be incurred. To limit the delay, we maintain a
given outage probabilityρ per link. Then, for a given packet, we need to transmit at rateR = λ/(1−ρ) to maintain
the desired goodputλ. Associated with that rateR is the SINR thresholdγD = 2R − 1 required for successful
reception at the link destination [24].

Let P (k)
S denote the average transmission power ofSk, and letP (k)

S (|hSk,Dk
|2) denote the power used for a

given packet as a function of the power|hSk,Dk
|2 in the fading channel betweenSk andDk. Per above, below

some thresholdτ , the source will wait for a better channel. From the Rayleighfading model employed,|hSk,Dk
|2

is exponential with parameter1/dαSk,Dk
; hence,τ = − ln(1− ρ) · dαSk,Dk

and truncated channel inversion yields:

P
(k)
S (|hSk,Dk

|2) =
{

γD

|hSk,Dk
|2 · dαSk,Dk

, |hSk,Dk
|2 ≥ τ

0, |hSk,Dk
|2 < τ

(16)
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Then, the average power employed on the link is given by:

P
(k)
S =

1

1− ρ

∫ ∞

τ

γD
x

· dαSk,Dk
e−xdx

= γDd
α
Sk,Dk

1

1− ρ

∫ ∞

τ

e−x

x
dx

= γD kρ d
α
Sk,Dk

, (17)

where kρ is a constant that depends on the parameterρ. Hence, for a fixed network parameterρ (which also
determinesγD), the average power consumed on a given linkℓk to achieve the secure goodputλ is proportional
to dαSk,Dk

.

B. Jammers’ Transmission Power

Our physical layer security primitive described in SectionII can provide security only against a single eaves-
dropper at a fixed location. To achieve security in the presence of multiple eavesdroppers or uncertainty about the
location of eavesdroppers, we utilizerandom linear coding3 on each link.

Consider link ℓk between transmitterSk and receiverDk with the associated set of potential eavesdropping
locationsEk =

{

E1, . . . , E|Ek|

}

. TransmitterSk performs coding over|Ek| messages accumulated in its buffer
for transmission toDk. To generate a coded message,Sk selects a random subset of the messages in its buffer
and adds them together (module-2). To recover the original messages, the receiver needs to collect |Ek| linearly
independent coded messages. In order to transmit only linearly independent coded messages,Sk keeps track of the
coded messages it has transmitted so far. Letmi denote thei-th coded message that is being transmitted toDk.
To securely transmitmi, Sk employs the cooperative jamming primitive of Section II assuming that there is an
eavesdropper in locationEi. Since each coded message is hidden from at least one eavesdropping location, it is
guaranteed that an eavesdropper located at locationEi, for all Ei ∈ Ek, will not be able to obtain any information
about the original messages.

In the following subsections, we compute the optimal jamming power per link. The derivation for the case of
multiple eavesdroppers relies on the jamming power computed for the single eavesdropper case.

1) Single Eavesdropper:Because slow frequency non-selective fading is assumed andthe channel to the eaves-
dropper is unknown, there is some probability that the eavesdropper will obtain the message by achieving a received
SINR greater than a thresholdγE . Let πk(|hSk,Dk

|2) denote the probability the eavesdropper achieves SINR greater
than thresholdγE for a given source to destination channelhSk,Dk

(recall that the source power will fluctuate as
hSk,Dk

fluctuates, and this will impact the interception probability at the eavesdropper). Because we want to avoid
placing limitations on the capabilities of the eavesdropper, assume that the eavesdropper receiver is noiseless. Let
P

(k)
J andP

(k)
J (|hSk,Dk

|2) denote the average and instantaneous transmission power allocated to jammers inJk,
respectively. Then, using (4), it is obtained that

πk(|hSk,Dk
|2) = 1

1 +
γEdα

Sk,Ek

P
(k)
S (|hSk,Dk

|2)

(
∑

Ji∈Jk

1
dα
Ji,Ek

)

P
(k)
J (|hSk,Dk

|2)
·

Now, to maintain a givenπk, it is sufficient to maintainπk(|hSk,Dk
|2) = πk across all|hSk,Dk

|2. Under this
condition, recognizing that bothP (k)

S (|hSk,Dk
|2) andP (k)

J (|hSk,Dk
|2) are proportional to|hSk,Dk

|2, we have:

P
(k)
J (|hSk,Dk

|2) = (1/πk − 1)P
(k)
S (|hSk ,Dk

|2)
γE dαSk,Ek

(
∑

Ji∈Jk

1
dα
Ji,Ek

)
, (18)

and, taking expectations yields

P
(k)
J =

1/πk − 1

γEdαSk,Ek
(
∑

Ji∈Jk

1
dα
Ji,Ek

)
P

(k)
S , (19)

3Other forms of coding, such as dividing each message to smaller chunks [32], can be equally incorporated in our algorithm.
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and,

πk =
1

1 +
γEdα

Sk,Ek

P
(k)
S

(
∑

Ji∈Jk

1
dα
Ji,Ek

)

P
(k)
J

· (20)

2) Multiple Eavesdroppers:Recall that our objective is to compute the minimum jamming power for the link.
Let πk(i) denote the successful eavesdropping probability on linkℓk conditioned on having an eavesdropper at
locationEi. The unconditional eavesdropping probabilityπk on link ℓk is then given by the approximate relation
πk =

∑

Ei∈Ek
pk(Ei) · πk(i), wherepk(Ei) is the probability of having an eavesdropper at locationEi. Since

jamming power depends on the location of the eavesdroppers,by optimally allocating jamming power to each
potential eavesdropping location, we can minimize the total jamming power across all eavesdropping locations for
a given link.

The minimum jamming power for linkℓk over all eavesdropping locationsEk is given by the solution of the
following optimization problem:

min
P

(k)
J (i)

∑

Ei∈Ek

P
(k)
J (i)

s.t.
∑

Ei∈Ek

pk(Ei) · πk(i) = πk,
(21)

whereP
(k)
J (i) =

∑

Jj∈Jk
P

(k)
j (i) is the jamming power conditioned on the eavesdropping location Ei, i.e., the

jamming power during the transmission of the coded messagemi. Defineφk(i) as follows

φk(i) =
γE
γSkρ

( dSk,Ei

dSk,Dk

)α
∑

Jj∈Jk

1

dαJj ,Ei

· (22)

After substituting forπk(i) using (20), we obtain the following optimization problem:

min
P

(k)
J (i)

∑

Ei∈Ek

P
(k)
J (i)

s.t.
∑

Ei∈Ek

pk(Ei)

1 + φk(i)P
(k)
J (i)

= πk ·
(23)

The optimization variables in this optimization problem are the jamming powersP (k)
J (i). The Lagrangian for the

link cost optimization problem is expressed as follows

L(P
(k)
J (1), . . . , P

(k)
J (|Ek|), ν)

=
∑

Ei∈Ek

P
(k)
J (i) + ν

(

∑

Ei∈Ek

pk(Ei)

1 + φk(i)P
(k)
J (i)

− π
)

·

Using the Lagrange multipliers technique, it is obtained that

∂L

∂P
(k)
J (i)

= 1− ν
φk(i)pk(Ei)

(1 + φk(i)P
(k)
J (i))2

, (24)

and,
∂L

∂ν
=
∑

Ei∈Ek

pk(Ei)

1 + φk(i)P
(k)
J (i)

− π · (25)

Using (24), we have
pk(Ei)

1 + φk(i)P
(k)
J (i)

=

√

pk(Ei)
√

νφk(i)
· (26)

By substituting in (25), it follows that
∑

Ei∈Ek

√

pk(i)

νφk(i)
= π, (27)
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and, therefore,
1√
ν
=

π
∑

Ei∈Ek

√

pk(i)
φk(i)

· (28)

It is then obtained that

πk(i) =
1

φk(i)

1/
√

pk(Ei)
φk(i)

∑

Ei∈Ek

√

pk(Ei)
φk(i)

πk, (29)

and,

P
(k)
J (i) =

1

πk

√

pk(Ei)

φk(i)

∑

Ei∈Ek

√

pk(Ei)

φk(i)
− 1

φk(i)
· (30)

For a given linkℓk and eavesdropping probabilityπk, we can use (30) to compute the optimal jamming power
allocation for each coded messagemi. Consequently, the average jamming power per message on link ℓk is given
by:

P
(k)
J =

1

|Ek|
∑

Ei∈Ek

P
(k)
J (i)

=
1

πk

1

|Ek|

(

∑

Ei∈Ek

√

pk(Ei)

φk(i)

)2

− 1

|Ek|
∑

Ei∈Ek

1

φk(i)
·

(31)

C. Discussion

1) Colluding Eavesdroppers:While we considered the case of non-colluding eavesdroppers here, our model can
be extended to handle colluding eavesdroppers by requiringthat at least of the coded messages be protected against
all eavesdroppers. LetEk =

{

E1, . . . , E|Ek|

}

denote the set of colluding eavesdroppers. Assume that on link ℓk,
Bk messages are coded together for transmission,i.e., Bk is the length of the coding block. Then, the probability
that a coded messagem is captured by all eavesdroppers is given by

∏

Ei∈Ek
πk(i). Thus, the probability that at

least one message out of theBk coded messages is not received by all eavesdroppers is givenby

1−
(

∏

Ei∈Ek

πk(i)
)Bk

· (32)

To satisfy the link eavesdropping constraintπk, the following relation should be satisfied

1−
(

∏

Ei∈Ek

πk(i)
)Bk

= πk, (33)

which yields
∏

Ei∈Ek

πk(i) = Bk

√
πk · (34)

This constraint can be used in the optimization problem (23)to compute the optimal link cost for the case of
colluding eavesdroppers.

An interesting observation is that

lim
Bk→∞

πk(i) = 1, for all Ei ∈ Ek · (35)

That is, by increasing the length of the coding block, the link cost can be significantly reduced. The cost to be
paid is in terms of increased transmission delay.

2) End-to-End Coding:Rather than looking at individual links in isolation and then performing hop-by-hop
coding, we can perform coding on an end-to-end basis only at the source node. Then by repeatedly finding paths
that are secure against single eavesdropping per link, the source can securely communicate with the destination
through multiple paths. This approach is appropriate if there are only a few potential eavesdropping locations in the
network. If the maximum number of eavesdropping locations per link is m, then the running time of this approach
is m times that of the routing algorithm with single eavesdropping location per link.
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IV. SECURE PATH COST

In this section, using the link cost formulation of the previous section, we formulate the optimal cost of agiven
path Π subject to an end-to-end eavesdropping probabilityπ. The problem essentially is to divideπ across the
links formingΠ so that the path cost is minimized.

A. Optimal Path Cost

Consider a given pathΠ. We find the optimal cost of pathΠ by solving the optimization problem (14). Consider
link ℓk ∈ Π, whereℓk = (Sk,Dk, Ek,Jk). Definexk andyk as follows:

xk =
1

√

|Ek|
∑

Ei∈Ek

√

pk(Ei)

φk(i)
,

and,

yk =
1

|Ek|
∑

Ei∈Ek

1

φk(i)
·

Using the results obtained in the previous subsection, the following relation holds:

πk =
x2k

yk + P
(k)
J

·

By substituting the above expressions in the optimal routing formulation described in (14), the following optimization
problem is obtained for minimizing the costC(Π) of routeΠ:

min
P

(k)
J

∑

ℓk∈Π

P
(k)
S + P

(k)
J

s.t.
∑

ℓk∈Π

( x2k

yk + P
(k)
J

)

= π ·
(36)

The optimization variables in this optimization problem are jamming powersP (k)
J . The Lagrangian for the routing

optimization problem is expressed as follows

L(P
(1)
J , . . . , P

(K)
J , ν)

=
∑

ℓk∈Π

(

P
(k)
S + P

(k)
J

)

+ ν
(

∑

ℓk∈Π

( x2k

yk + P
(k)
J

)

− π
)

·

Using the Lagrange multipliers technique, it is obtained that

∂L

∂P
(k)
J

= 1− ν
x2k

(yk + P
(k)
J )2

, (37)

and,
∂L

∂ν
=
∑

ℓk∈Π

( x2k

yk + P
(k)
J

)

− π · (38)

Using (37), we have
x2k

yk + P
(k)
J

=
xk√
ν
· (39)

By substituting in (38), it follows that
∑

ℓk∈ℓ

xk√
ν
= π, (40)

and, therefore,
1√
ν
=

π
∑

ℓk∈Π
xk

· (41)
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After substitution in (39), the following relation for the optimal eavesdropping probabilityπk on link ℓk is obtained

πk =
xk

∑

ℓi∈Π
xi

π · (42)

For a given routeΠ and end-to-end eavesdropping probabilityπ, we can use (42) to divideπ between linksℓk ∈ Π.
Having computedπk, the optimal power allocated to jammers on linkℓk is given by the following expression:

P
(k)
J =

1

π
· xk

∑

ℓi∈Π

xi − yk · (43)

Using the above expression forP (k)
J , the cost of linkℓk ∈ Π is expressed as

C(ℓk) =
(

(γSkρ) · dαSk,Dk
− yk

)

+
1

π

(

xk
∑

ℓi∈Π

xi
)

· (44)

Consequently, the cost of secure routeΠ is given by:

C(Π) =
∑

ℓk∈Π

(

(γSkρ) · dαSk,Dk
− yk

)

+
1

π

(

∑

ℓk∈Π

xk
)2 · (45)

To this end, for a given routeΠ between the source and destination, the optimal cost ofΠ subject to the end-to-end
eavesdropping constraintπ is given by (45). The optimal cost is achieved by allocatingP

(k)
S andP (k)

J to each link
ℓk ∈ Π using (17) and (43), respectively. Such a power allocation scheme would result in minimum cost, while
guaranteeing that the eavesdropping constraint would be satisfied. Thus, SMER is reduced to finding a path, among
all possible paths between the source and destination, thatminimizes the optimal path cost (45). The following
proposition formally states this result.

Proposition 1: SMER with end-to-end eavesdropping and goodput constraintπ andλ, respectively, is equivalent
to finding a path that minimizes the optimal path costC(Π) as given by (45).

B. Optimal Path Cost Structure

DefineC1(ℓk) andC2(ℓk) as follows:

C1(ℓk) = (γSkρ) · dαSk,Dk
− yk,

C2(ℓk) =
1√
π
·
∑

ℓk∈Π

xk · (46)

Then the optimal path cost (45) can be expressed as

C(Π) =
∑

ℓk∈Π

C1(ℓk) +
(

∑

ℓk∈Π

C2(ℓk)
)2

· (47)

It is important to note that, while theC1(ℓk)’s may assume negative values, the path cost structure in (47) is
monotonous in the number of links,i.e., if a pathΠ̂ is a subset of a pathΠ, thenC(Π̂) < C(Π). This is because
π < 1, and it can be shown that

(
∑

ℓk∈Π
xk
)2

>
∑

ℓk∈Π
yk. Consequently, (47) is minimized by asimplepath.

V. SECURE M INIMUM ENERGY ROUTING

In this section, we investigate the secure minimum energy routing problem, where the cost of a path is given
by (45). We begin by establishing that it is NP-hard. Then, byexploiting the structure of the optimal solution, we
employ dynamic programming to obtain a pseudo-polynomial time algorithm that provides an exact solution. This
means that the problem is weakly NP-hard [33], thus fully polynomial time approximate schemes are possible.
Accordingly, we conclude the section by presenting a fully polynomial time ǫ-approximation algorithm for the
problem, which takes an approximation parameterǫ > 0 and after running for time polynomial in the size of the
network and in1/ǫ, it returns a path whose cost is at most(1 + ǫ) times more than the optimal value.
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A. Computational Complexity

We first show that our routing problem is NP-hard via a reduction from the partition problem.
Theorem 1:Problem SMER is NP-hard.

Proof: We describe a polynomial time reduction of the Partition problem [33] to SMER. Given a set of integers
S = {k1, k2, . . . , kn}, with

∑n
i=1 ki = 2 ·K, the Partition problem is to decide whether there is a subsetS ′ of S

such that
∑

i∈S′ ki = K.
Given an instanceS = {k1, k2, . . . , kn} of the Partition problem, with

∑n
i=1 ki = 2 · K, we construct the

following network. The set of nodes is identical toS. For i = 1 to n − 1, we interconnect nodeki to nodeki+1

with two links, as follows: an “upper” linkℓ(u)i , to which we assignC1(ℓ(u)i ) = 2 ·K · ki andC2(ℓ(u)i ) = 0, and a
“lower” link ℓ

(w)
i , to which we assignC1(ℓ(w)

i ) = 0 andC2(ℓ(w)
i ) = ki.

Lemma 2:The answer to the Partition problem is affirmativeiff the solution to SMER in the constructed network,
i.e., the minimum value of(47) of a path between nodesk1 andkn, equals3 ·K2.

Proof: A pathΠ between nodesk1 andkn consists of a (possibly empty) set of “upper” linksU and a (possibly
empty) set of “lower” linksW. Let Su andSw be, correspondingly, the sets of indices of the links inU and inW,
i.e., i ∈ Su iff ℓ(u)i ∈ U andi ∈ Sw iff ℓ(w)

i ∈ W. Clearly,Su∪Sw = S. The cost of the path, per(47), is given by:

C(Π) =
∑

ℓ
(u)
i ∈U

C1(ℓ(u)i ) +
∑

ℓ
(w)
i ∈W

C1(ℓ(w)
i )

+
(

∑

ℓ
(u)
i ∈U

C2(ℓ(u)i ) +
∑

ℓ
(w)
i ∈W

C2(ℓ(w)
i )

)2
,

=
∑

i∈Su

(2 ·K · ki) +
∑

i∈Sw

0 +
(

∑

i∈Su

0 +
∑

i∈Sw

ki

)2
·

(48)

Consider first the case
∑

i∈Su
ki ≥

∑

i∈Sw
ki. Since

∑

i∈Su
ki +

∑

i∈Sw
ki = 2 · K, denote:

∑

i∈Su
ki = K + δ,

∑

i∈Sw
ki = K − δ, for someδ ≥ 0. Then, from (48), we have:

C(Π) = 2 ·K · (K + δ) +
(

K − δ
)2

= 3 ·K2 + δ2 ·

Consider now the case
∑

i∈Su
ki <

∑

i∈Sw
ki. It follows similarly that

C(Π) = 3 ·K2 + δ2 ·
We conclude that the length of a path between nodesk1 andkn is at least3 ·K2, and, furthermore, that value is
attainediff the setS can be partitioned into two subsetsSu andSw, such that

∑

i∈Su
ki =

∑

i∈Sw
ki, i.e., iff there

is a subsetS ′ = Su of S such that
∑

i∈S′ ki = K, and the lemma follows.
Since the Partition problem is NP-complete [33], the theorem follows.

B. Pseudo-Polynomial Time Exact Algorithm

First, scale the values of theC2(ℓ)’s for any link ℓ in the network so that they are all integers.4 Let B denote an
upper-bound on the sum of theC2(ℓ)’s on any simple path. A trivial bound is given byB = (N − 1) · Cmax

2 , where
N is the number of nodes in the network andCmax

2 is the maximum value ofC2(ℓ) among all network links. In a
network withN nodes,Cmax

2 can be computed inO(N2) time via a brute-force search.
Our algorithm, termed DP-SMER, is listed below. DP-SMER iterates over all values ofC2(ℓ), i.e., C2(ℓ) =

1, 2, . . . , B, and for each value ofC2(ℓ), it minimizes
∑ C1(ℓ). Upon return, the algorithm returns the cost of the

optimal path from sources to destinationd along with the structureΠ that contains the network nodes that form
the path.

Theorem 2:DP-SMER runs in timeO(N2·B), whereN is the number of nodes in the network. Upon completion,
the algorithm returns an optimal solution to Problem SMER.

Proof: The first claim follows by noting that the computational complexity is dominated by an iteration on all
values1, 2, . . . , B, and for each such iteration, iterating on all pairs of nodes.

4The value of “1” is determined by the precision at which we computeC2(ℓ)’s.
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Algorithm 1 DP-SMER (sources, dest.d, networkN ).

/* path cost froms to itself is always0 */
for b = 1 → B do

Cs(b) = 0
/* initial path cost froms to any other node is infinite */
for all ni ∈ N , ni 6= s do

for b = 1 → B do
Ci(b) = ∞

for b = 1 → B do
/* all node pairs can form a link and be neighbors */
for all ni ∈ N do

for all nj ∈ N do
/* update path cost via the neighboring nodes */
if b+ C2(ℓij) ≤ B then

t = Ci(b) + C1(ℓij)
if t < Cj(b+ C2(ℓij)) then

Πj(b+ C2(ℓij)) = i /* set nj ’s parent toni */
Cj(b+ C2(ℓij)) = t /* update path cost */

/* include the “b” component,i.e., C2, in the path costs */
for b = 1 → B do

Ĉd(b) = Cd(b) + b2

/* choose the best value for reaching the destination */
b∗ = argmin

b
Ĉd(b)

return [Ĉd(b
∗),Π(b∗)]

We turn to consider the second claim. First, it can be established, by induction on the values ofb, that, upon
completion of theb-th iteration of the main loop of the algorithm, for all nodesni, Ci(b) is the length of a shortest
path with respect to the metric of theC1(ℓij) values, among all paths between the sources and nodeni, whose
length with respect to the metric of theC2(ℓij) values is preciselyb.5 Furthermore, it is easy to verify that the
values ofĈN (b), computed at the next step of the algorithm, stand for the lengths of the above shortest paths with
respect to the metric considered by Problem SMER.

Now, let Π∗ be an optimal solution (i.e., a path) to Problem SMER, and denote byC∗ its length with respect to
the metric considered by SMER. Furthermore, denoteb∗ =

∑

ℓij∈Π∗ C2(ℓij). It is easy to verify thatΠ∗ is a shortest
path with respect to the metric of theC1(ℓij) values, among all paths between the sources and the destinationd,
whose length with respect to the metric of theC2(ℓij) values is preciselyb∗. Therefore, upon completion of the
above steps of the algorithm, we will havêCN (b∗) = C∗; moreover, sinceΠ∗ is an optimal solution to SMER, it
must hold thatĈN (b∗) ≤ ĈN (b) for all values ofb. The theorem follows.

C. Fully Polynomial Timeǫ-Approximation

As in the previous section, we scale the values of theC2(ℓ)’s for any link ℓ in the network so that they are all
integers and denote byB an upper-bound on the sum of theC2(ℓ)’s on any simple path.

The above pseudo-polynomial solution indicates that SMER is only weakly NP-hard (see [33]), which enables
us to apply efficient,ǫ-optimal approximation schemes of polynomial time complexity, similar to the case of the
widely investigated Restricted Shortest Path problem (RSP, see,e.g., [34] and references therein). The RSP problem
considers a network where each link has two metrics, say “cost” and “delay”, and some “bound” on the end-to-
end delay. Then, for a given source-destination pair, the problem is to find a path of minimum cost among those

5We note that this shortest path may be non-simple,i.e., include loops, due to the potentially negative values ofC1(ℓij)’s; nonetheless, it
is a finite path, and, furthermore, the optimal path returnedby the last step of DP-SMER is guaranteed to be simple, due to the monotonicity
property explained at the end of Section IV.



15

whose delay do not exceed the delay bound. This weakly NP-hard problem admits efficientǫ-optimal approximation
schemes of polynomial complexity,e.g., [34].

We turn to specify our approximation scheme for Problem SMERby a simple employment of any solution to
the RSP problem.6 First, a technical difficulty arises in applying RSP approximation schemes to Problem SMER.
Recall that while link costs as given by (44) are non-negative, C1(ℓ) can be negative for some linksℓ. In RSP,
specifically in the approximation scheme of [34], it is assumed that link costs are non-negative. Nevertheless, we
show that the original network with possibly negative link weights can be safely transformed (i.e., without affecting
the identity of the solution) to an expanded network with non-negative link weights, by employing the following
pre-processing step:

Algorithm 2 Expand_Network (sources, networkN ).

1) Add the source nodes to the expanded network.
2) For each nodeu (u 6= s) in the original network, addN − 1 replicas denoted byu(1), u(2), . . . , u(N − 1)

to the expanded network.
3) For each linkℓsu from nodes to nodeu in the original network, add a link from nodes to nodeu(1) in the

expanded network with the same metrics as for the original link.
4) For each linkℓuv in the original network, whereu 6= s, u 6= d, v 6= s, and for eachh = 1, . . . , N − 2, add a

link between nodeu(h) and nodev(h+1) in the expanded network with the same metrics as for the original
link.

5) For each linkℓ in the expanded network, add some (identical to all links) biasδ ≥ 0 to each link costC1(ℓ)
so that the new link costs would be non-negative.

The following lemmas establish the relation between the shortest paths in the original network and the shortest
paths in the expanded network.

Lemma 3:A path that is shortest w.r.t. the biased metric(C1(ℓ) + δ) among those that obey a bound on the
∑ C2(ℓ) and have preciselyh hops, is also shortest w.r.t. the unbiased metricC1(ℓ) among those that obey the same
bound on

∑ C2(ℓ) and have preciselyh hops.
Proof: Suppose that this is not true. That is, there are pathsΠ andΠ′, both obeying the bound on

∑ C2(ℓ)
and withh hops, in such a way thatΠ′ is a shortest path with the bias yetΠ is shorter without the bias. Therefore,
∑

ℓ∈Π C1(ℓ) <
∑

ℓ∈Π′ C1(ℓ), yet
∑

ℓ∈Π(C1(ℓ)+δ) ≥∑ℓ∈Π′(C1(ℓ)+δ). However, the second inequality can be rewrit-
ten as:
∑

ℓ∈Π C1(ℓ) + h · δ ≥∑ℓ∈Π′ C1(ℓ) + h · δ, which contradicts the first inequality.
Lemma 4:A shortest path from sources to noded(h) in the expanded network has preciselyh hops.

Proof: The proof follows from the fact that thei-th hop on the shortest path froms to d(h) has to go from
some nodev(i− 1) to some nodeu(i) (see the network expansion procedure).

Thus, to compute anǫ-optimal solution to Problem SMER, for every bound on
∑ C2(ℓ), we find the shortest

path withh = 1, . . . , N − 1 hops in the expanded network by repeatedly employing an approximation solution to
the RSP problem. For a given approximation valueǫ > 0, let η = ǫ/3. Furthermore, letL be the smallest integer
for which ⌈(1 + η)L⌉ ≥ B. Our algorithm, calledǫ-SMER, is listed below. In this algorithm,ǫ-RSP refers to an
ǫ-optimal approximation solution for the RSP problem.

In the ǫ-SMER algorithm, for each considered delay bound⌈(1 + η)l⌉, N − 1 instances of the approximation
solution to the RSP problem, for the same bound, are run on theexpanded network: in each instanceh, we consider
s to be the source andd(h) to be the destination. Using Lemma 4, it is straightforward to verify that, in each
instanceh, the RSP approximation obtains a solution that satisfies therequired delay bound with the restriction
that the path haspreciselyh hops (in both the expanded and the original network).

Therefore, per considered bound on theC2(ℓ) metric and per possible number of hops up toN − 1, we get an
ǫ-optimal path with respect to the original metricC1(ℓ) (of precisely that many hops). It follows from Lemmas 3
and 4, that, by comparing all solutions (for all considered bounds on theC2(ℓ) metric and number of hopsh),
we will find a shortestǫ-optimal path that corresponds to anǫ-optimal solution to SMER. This is established next
through the following lemmas and theorem.

6Other solutions, of reduced computational complexity, canbe established, yet their structure is somewhat more complex.
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Algorithm 3 ǫ-SMER (errorǫ, sources, dest.d, net.N ).

Nx = Expand_Network(s, N )
for all ℓ ∈ Nx do

cost(ℓ) = C1(ℓ)
delay(ℓ) = C2(ℓ)

for l = 1 → L do
delay_bound = ⌈(1 + η)l⌉
/* compute the approximateh-hop path */
for h = 1 → N − 1 do

[C(l, h),Π(l, h)] = ǫ-RSP(ǫ, s, d(h),Nx)
/* compute the actual cost as per SMER metric */
Ĉ(l, h) = (C(l, h)− h · δ) + ⌈(1 + η)l⌉2

/* choose the bestl andh for reaching the destination */
(l∗, h∗) = argmin

l,h
Ĉ(l, h)

return [Ĉ(l∗, h∗),Π(l∗, h∗)]

Lemma 5:Let Π∗ be an optimal solution (path) to SMER. Denote byC(Π∗) andC(Π̂), the costs, per the SMER
metric, of the optimal solution and of the solution obtainedby ǫ-SMER, correspondingly. Then:

C(Π̂) ≤ (1 + ǫ) · C(Π∗) · (49)

Proof: Let l̄ be the smallest integer such that
(

∑

ℓ∈Π∗

C2(ℓ)
)2

≤
(

⌈(1 + η)l̄⌉
)2

· (50)

Note that this implies that:

(1 + η)2
(

∑

ℓ∈Π∗

C2(ℓ)
)2

≥
(

⌈(1 + η)l̄⌉
)2

· (51)

Let h̄ be the number of hops ofΠ∗. By construction,Π(l̄, h̄) is an ǫ-optimal approximation for RSP, for “costs”
C1(ℓ), “delays” C2(ℓ), “delay bound”⌈(1 + η)l̄⌉ and preciselȳh hops. Moreover, by (50), the pathΠ∗ obeys this
bound. Therefore:

∑

ℓ∈Π(l̄,h̄)

C1(ℓ) + h̄ · δ ≤ (1 + ǫ)
∑

ℓ∈Π∗

C1(ℓ) + h̄ · δ, (52)

or, equivalently,
∑

ℓ∈Π(l̄,h̄)

C1(ℓ) ≤ (1 + ǫ)
∑

ℓ∈Π∗

C1(ℓ) · (53)

SinceΠ(l̄, h̄) obeys the “delay bound”⌈(1 + η)l̄⌉, we have:
(

∑

ℓ∈Π(l̄,h̄)

C2(ℓ)
)2

≤
(

⌈(1 + η)l̄⌉
)2

· (54)

Combining (51), (53) and (54), we have:

C(Π̂) ≤ C(Π(l̄, h̄))

≤ (1 + ǫ)
∑

ℓ∈Π∗

C1(ℓ) + (1 + η)2
(

∑

ℓ∈Π∗

C2(ℓ)
)2

,
(55)

where the first transition is due to the way thatΠ̂ is chosen. Sinceη = ǫ
3 , for small values ofǫ (precisely,ǫ < 3),

(55) implies:
C(Π̂) ≤ (1 + ǫ) · C(Π∗), (56)
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as required.
Lemma 6:The computational complexity ofǫ-SMER isO(A · 1

ǫ
· log(B) ·N3), whereO(A) is the computational

complexity of the employed approximation scheme for RSP.
Proof: Let M be the number of links in the original network. Each time we employ the RSP approximation

scheme, we would incur a computational complexity ofO(A), whereA corresponds to a network withN nodes
andM links.

For each value ofl = 1 . . . , L, we call the RSP approximation as follows: once for a networkwith N nodes
and O(N) links (i.e., for the network that containss and all theu(1)’s), once for a network with roughly2N
nodes andM links (i.e., for the network that contains, in addition to the above, allthe u(2)’s and links of the
form (u(1), v(2)), once for a network with roughly3N nodes and2M links (i.e., for the network that contains, in
addition to the above, all theu(3)’s and links of the form(u(2), v(3)), and so on up to, once (the(N − 1)-th time)
for a network with roughly(N − 1)N nodes and(N − 2)M links. The aboveN − 1 instances (more precisely, all
but the first, which can be neglected due to smaller complexity) aggregate to:

O
(

A · (2 · 1 + 3 · 2 + · · · +N · (N − 1))
)

= O
(

A ·
N−1
∑

i=1

i(i+ 1)
)

= O
(

A ·N3
)

·
(57)

The proof follows by noting thatL = O(1
ǫ
· log(B)).

Theorem 3:ǫ-SMER is an ǫ-optimal approximation scheme of polynomial complexity. In particular, when
employing the approximation solution of [34] to the RSP problem,ǫ-SMER runs inO(N6·(log logN+ 1

ǫ
)· 1

ǫ
·log(B))

time.
Proof: The RSP scheme of [34] has computational complexity ofO

(

(N ·M · (log logN +1/ǫ)
)

for N nodes
andM links. Depending on the limit on the transmission power at each node, in worst-case we haveM = O(N2),
i.e., all nodes may be neighbors7. The proof then follows from Lemmas 5 and 6.

More efficient versions ofǫ-SMER should be possible, yet our goal has been to show that fully polynomial time
ǫ-approximation schemes (FPTAS) exist for the NP-hard problem SMER.

D. Distributed Implementation

While it is not discussed in this paper, our routing algorithms can be implemented in a distributed manner
following standard techniques of distance-vector routing. Note that the power allocation at the physical layer
is a local operation performed by the transmitting node of each link based on the information from the routing
algorithm and topological information (collected, for instance, through neighbor discovery before running the routing
algorithm).

VI. SIMULATION RESULTS

A. Simulation Environment

We have implemented our routing algorithms in a custom-built simulator to study their performance in a variety
of network scenarios. We simulate a wireless network, in which nodes are distributed uniformly at random in a
square of area5×5 with node densityσ = 3. We also place a number of eavesdroppers in the network with density
σE , as described later. We consider one eavesdropper per link.We keep the number of eavesdroppers considerably
less than that of the legitimate nodes in order to be able to establish secure routes as we put a limit on the maximum
transmission power of each node. Every node has a maximum transmission power that is set in such a way that the
resulting network becomes connected (the absolute value ofthe maximum power does not affect the results). We
choose two nodess andd located at the lower left and the upper right corners of the network, respectively, and
find paths froms to d. We then compute the total amount of energy consumed on each path using different routing
algorithms. The performance metric “energy savings” refers to the percentage difference between total energy used
by different algorithms with respect to the benchmark. For simulation purposes, we setπ = 0.1, σE = 1, N0 = 1,
γD = 0.8, and γE = 0.6, unless otherwise specified. The numbers reported are obtained by averaging over10
simulation runs with different seeds.

7Note that, typically, the network is sparse,i.e., M ≪ N
2, hence the dependency onN is more likeN5.
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B. Simulated Algorithms

In addition to DP-SMER andǫ-SMER, we have also implemented a security-agnostic algorithm based on
minimum energy routing as a benchmark to measure energy savings achieved by our algorithms. The bench-
mark algorithm, calledsecurity-agnostic shortest path routing (SASP), is described below. Note that some of the
optimizations described in Sections III and IV have been incorporated in SASP, making it a considerably efficient
benchmark (see Subsection VI-C).

Algorithm 4 SASP (sources, dest.d, networkN ).

1) Find a shortest path in terms of transmission power between s andd ignoring eavesdroppers. The standard
Dijkstra’s algorithm can be used for this purpose.

2) Use (42) to allocate an optimal eavesdropping probability to each link of the computed path.
3) Use (43) to allocate sufficient power to jammers on each link with respect to the allocated eavesdropping

probabilities in step (2).

C. Results and Discussion

Effect of Eavesdropper Location on Link Cost. For a fixed link between two nodes, the source transmission
power is also fixed as obtained in (17). Thus, the cost of the link depends only on the jamming power which
is a function of the eavesdropper location as given by (31). Fig. 1 shows the cost of establishing a secure link
between sourceS (placed at the center) and destinationD for different eavesdropper locations andπ = 0.001. In
the figure, the color intensity at each point is proportionalto the amount of energy required to establish the link
if the eavesdropper is placed at that point. Clearly, by somemaneuvering around an eavesdropper, a significant
reduction in energy cost can be achieved as the eavesdropperbecomes almost ineffective in some locations. This
is the main idea behind this work.
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Fig. 1: Effect of eavesdropper location on link cost.

Effect of Optimal Secrecy Allocation on Path Cost. For a fixed path subject to an end-to-end secrecy requirement
π, the optimal eavesdropping probability assigned to each link of the path is given by (42), which in turn determines
the optimal jamming power allocated to each link of the path using (43). Specifically, this is how power allocation
is performed in SASP in order to minimize power consumption.Alternatively, a simple heuristic is to divideπ
equally across the links. That is, if the path containsh links, then each linkℓk is allocated sufficient jamming
power to satisfy the eavesdropping probabilityπk = π/h. In Fig. 2, we have depicted energy savings that can be
achieved “solely” by optimal secrecy allocation compared to equal allocation for a fixed path that is computed by
SASP. Interestingly, as the number of eavesdroppers increases or the signal propagation becomes more restricted,
optimal secrecy allocation becomes even more important, achieving energy savings of up to72% (47%) for α = 4
(α = 2) in the simulated network.



19

0.5 0.6 0.7 0.8 0.9 1
35

40

45

50

55

60

65

70

75

Eavesdropper density

E
ne

rg
y 

sa
vi

ng
s 

(%
)

 

 

α=4
α=2

(a) Effect of eavesdropper density.

0.1 0.2 0.3 0.4 0.5
35

40

45

50

55

60

65

70

75

End−to−end eavesdrpping probability (π)

E
ne

rg
y 

sa
vi

ng
s 

(%
)

 

 

α = 4
α=2

(b) Effect of eavesdropping prob.

Fig. 2: Energy savings achieved by optimal secrecy allocation.

Non-uniform Eavesdropper Placement. To gain more insight about the behavior of different routingalgorithms,
in this experiment, rather than randomly distributing eavesdroppers in the network, we strategically place them
close to the line that connects the source and destination. Ideally, SMER andǫ-SMER should avoid the shortest
path that crosses the network diagonally. This is indeed thebehavior observed in the simulations as depicted in
Fig. 3 (‘⋆’ denotes an eavesdropper). As expected, SASP blasts right through the eavesdroppers, while SMER,
0.1-SMER and1.0-SMER route around them resulting in88%, 86% and85% energy savings, respectively.

0 1 2 3 4 5
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5

 

 

DP−SMER
0.1−SMER
1.0−SMER
SASP

Fig. 3: Snapshot of paths computed by different algorithms.

Uniform Eavesdropper Placement. In this experiment, eavesdroppers are placed in the networkuniformly at
random. As seen in Fig. 4, our algorithms consistently outperform SASP for a wide range of eavesdropper densities
and eavesdropping probabilities. In particular, energy savings of up to99% and98% (for α = 4) can be achieved
by SMER and0.1-SMER, respectively.

Effect of Network Size. Fig. 5 shows the energy savings achieved by different algorithms in networks with varying
sizes. The “network dimension” refers to the length of one side of the square area that contains the network nodes.
As observed from the figure, the energy saving is an increasing function of the network size. Interestingly, as the
network size increases, the effect of the propagation environment diminishes in such a way that energy savings for
α = 2 andα = 4 converge to the same numbers as opposed to the previous scenarios. As the network size increases
so does the average length of the path (in terms of the number of hops) between the source and destination nodes.
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Fig. 4: Energy savings with uniform eavesdropper placement.

Those paths that are longer provide more opportunities for energy savings on each link of the path resulting in
increased overall energy savings. This effect works in favor of α = 2 as well asα = 4. However, given the high
values of energy savings forα = 4 (due to longer paths compared toα = 2), the effect of longer paths is more
prominent forα = 2.
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Fig. 5: Effect of network size on energy savings.

Effect of Jamming Set. The cardinality of the jamming set affects the power allocation to jammers. In this
experiment, we change the number of jammers that participate in secure transmissions on each link and compute
the energy savings achieved by different algorithms. Figs.6(a) and 6(b), respectively, show the energy savings
achieved for non-unform and uniform placement of eavesdroppers. Interestingly, in these scenarios, a small number
of jammers, namely2, is sufficient to obtain most of the benefits of cooperative jamming, which should greatly
simplify any practical implementation.

VII. R ELATED WORK

A survey of prior work is presented in this section.

Secure Routing in Multi-hop Networks. While there are numerous works on secure routing in wirelessnetworks
(see,e.g., [35] and references therein), their focus is on preventingmalicious attacks that disrupt the operation of
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Fig. 6: Effect of the jamming set on energy savings.

the routing protocol using application level mechanisms such as authentication and cryptography. The focus of this
paper, on the other hand, is on secure transmission of messages via the most cost-effective paths in the network,
which is orthogonal to the secure routing problem considered in the existing literature.

Wireless Physical Layer Security. The idea behind physical layer security is to exploit the characteristics of
the wireless channel such as fading to provide secure wireless communications. The foundations of information
theoretic security, which is the theoretical basis for physical layer security, were laid by Wyner and others [4]–[6]
based on Shannon’s notion of perfect secrecy [3]. In the classical wiretap model of Wyner, to achieve a strictly
positive secrecy rate, the legitimate user should have someadvantage over the eavesdropper in terms of SNR. Later,
Maurer [7] proved that even when a legitimate user has a worsechannel than an eavesdropper, it is possible to
have secure communication. While some physical layer security techniques allow for opportunistic exploitation of
the space/time/user diversity for secret communications [7], [8], others actively manipulate the wireless channel
to block eavesdroppers by employing techniques such as multiple antennas [21] and jamming [10], [12]. While
some of these techniques have been successfully implemented in practical systems [22], physical layer security is
focused on very special network topologies,e.g., single-hop networks. In this work, we have developed algorithms
to extend these techniques to multi-hop networks.

Scaling Laws in Large Secure Networks. Motivated by [36], recently, throughput scaling versus security tradeoffs
have been investigated in the context of large wireless networks [13], [17]–[19]. Specifically, for cooperative
jamming when the eavesdroppers are uniformly distributed,it was shown that if the number of eavesdroppers
grows sub-linearly with respect to the number of legitimatenodes, a positive throughput for secure communication
is achievable [13].

Security Based on Network Topology. When there is sufficient path diversity in a network, different messages can
be routed over different parts of the network in the hope thatan eavesdropper would be incapable of capturing all
messages from across the network. To exploit network diversity for security, various techniques based on multi-path
routing [37], [38] and network coding [39], [40] have been investigated. While such techniques are suitable for
wired networks, their application in wireless networks is challenging due to lack of path diversity at the source or
destination of a communication session. Moreover, there are considerable complications when splitting a flow among
several paths, in particular, at the granularity of a singlesession. Moreover, network topology, in wireless networks,
is a function of power allocation at the physical-layer and propagation environment,e.g., fading. Nevertheless, our
approach is complimentary to these techniques, by providing a mechanism to find a minimum cost path that is
information-theoretically secure, regardless of the network diversity.
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VIII. C ONCLUSION

This paper studied the problem of secure minimum energy routing in wireless networks. It was shown that while
the problem is NP-hard, it admits exact pseudo-polynomial and fully polynomial timeǫ-approximation algorithmic
solutions. Furthermore, using simulations, we showed thatour algorithms significantly outperform security-agnostic
algorithms based on minimum energy routing. Finally, we note that our work can be potentially extended to
incorporate other secrecy models. Such extensions are leftfor future work.
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