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Abstract—Vehicular Ad-Hoc Networks (VANETSs) can poten-
tially become a sensing platform. In-network aggregation, a fun-
damental primitive for querying sensory data, has been shown to
reduce overall communication overhead at large. To secure data
aggregation in VANETS, existing schemes mainly rely on digital
signatures. However, generating and verifying such signatures
can cause high computational overhead. More importantly, time-
consuming verifications lead to the vulnerability to signature
flooding attacks in which a receiver cannot timely verify all mes-
sages before their respective deadlines. In this paper, we propose
ASIA as an Accelerated Secure In-network Aggregation strategy
that can accelerate message verifications and significantly reduce
computational overhead while retaining satisfactory security. We
replace the most common tree graph with a directed acyclic
graph as the aggregation structure. Resulting redundancy in
information flow offers the opportunity for misbehavior detection.
Meanwhile, by leveraging time asymmetry, upstream nodes in
the structure can verify downstream messages through the
modified light-weight TESLA scheme. We analyze the security
properties of ASIA and provide evaluation results. We show that
ASIA can largely accelerate message verifications and drastically
reduce computational and communication overhead compared
to existing schemes using the resource-consuming Elliptic Curve
Digital Signature Algorithm.

I. INTRODUCTION

With on-board sensors, a vehicle can constantly sense its
surroundings. Information from sensor readings helps evaluate
road conditions and will be fed to other promising appli-
cations which are not necessarily traffic- or driving-related.
For example, vehicular networks can collect valuable data
for environment monitoring. In this sense, the functionality
and capability of VANETs are extended, which highlights its
characteristics as a vehicular sensing network [1][2].

A VANET as a sensing network may accumulate a large
quantity of data in a short period. One fundamental challenge
is the resulting high transmission overhead in information col-
lection. To reduce communication load and minimize related
cost in querying information from VANETS, data aggregation
has been proposed for use [3][4]. Vehicles can leverage an
on-board unit to communicate data with neighbors so that a
multihop wireless network is constructed to allow queries.

In aggregation, intermediate nodes, instead of simply for-
warding data from downstream nodes, will combine all re-
ceived data to create a single aggregate. For example, to
perform the SUM aggregation, an intermediate node sums up
all sensory readings passed by nodes directly downstream from
it and sends a message containing the aggregation result to its
upstream nodes. While bringing some benefits, the aggregation

scheme offers opportunities for malicious intermediate nodes
to subvert final aggregation results as they can easily manip-
ulate the result when computing an aggregate.

The main goal of this work is to address the security
concerns in data aggregation in VANETs. VANETs have
several unique characteristics that contribute to the difficulties
in designing secure aggregation strategies [5], including highly
dynamic network topology, transitory nature of interactions,
absence of centralized authority and low tolerance for errors.

Existing approaches regard digital signatures as the build-
ing block of secure data aggregation [6][7][8][9]. In IEEE
1609.2 standard [10], Elliptic Curve Digital Signature Al-
gorithm (ECDSA) is used to provide authentication and
non-repudiation. Generating and verifying signatures using
ECDSA, however, leads to high computational overhead on the
On-Board Unit (OBU) that validates messages. A typical OBU
with a 400 MHz processor needs 20 milliseconds to verify one
ECDSA signature. Given that beacon messages are broadcast
every 100 milliseconds [10], a vehicle with more than 5
neighbors around cannot timely verify incoming messages.
Therefore, even in a benign scenario, vehicles are likely to be
overwhelmed, let alone the scenario with malicious neighbors.
This potentially allows signature flooding attacks [11]. Also,
signatures can causes excessive transmission overhead, espe-
cially in aggregation scenario where nodes may concatenate
downstream signatures to create considerably long messages.

Secure aggregation was first studied in the context of
stationary sensor networks. Due to the static topology, sensors
can set up secret symmetric keys among them to facilitate
security mechanisms. In the approach by Perrig et al. [14],
broadcast authentication is guaranteed using TESLA [15] so
that nodes can authenticate messages. To secure aggregation,
each node generates a commitment to its aggregates which
is verifiable to the querier. This scheme has multiple runs
of information dissemination which require a relatively stable
network topology. In the work by Chan et al. [16], authors
assume preloaded symmetric keys at each sensor. We notice
that in these schemes symmetric cryptography is preferred
against signatures to reduce overhead.

To secure aggregation in VANETS, symmetric cryptography
is also applied. Recent research has proposed several alter-
natives to the heavyweight signature strategy. In the scheme
proposed by Dietzel et al. [12], nodes evaluate the trustwor-
thiness of the aggregates using selective attestation and trust
management. Han et al. [13] propose a probabilistic scheme



using the FM-sketch data function and symmetric cryptogra-
phy to generate lightweight authentication codes. However,
these schemes rely on pre-distribution of symmetric keys,
which is considered non-realistic for VANET applications [5].
It incurs key management issues.

In this paper, we propose ASIA as an effective and ef-
ficient scheme for securing data aggregation in VANETS.
Our approach can dramatically accelerate message verifica-
tion because it mainly relies on hash operations which are
several orders of magnitude faster than the digital signature
scheme. It is able to largely reduce both communication and
computational overhead compared to previous strategies.

ASIA consists of two basic security mechanisms: Aggregate
Consistency Check (ACC) and Generation-Skipping Verifica-
tion (GSV). Our idea in designing ACC is providing security
through introducing redundancy into the aggregation data
flow. To this end, we use a directed acyclic graph (DAG)
[17] as the aggregation structure instead of the commonly
used tree graph. When performing aggregation in a DAG,
one node sends its messages to multiple upstream nodes.
Messages with identical content flow through network and
will reach eventually a common node which can compare the
received messages to detect potential misbehavior during the
aggregation process. However, constructing the desired DAG
in VANETS is non-trivial. In our proposed approach, vehicles
will leverage location and speed information already used for
safety applications to facilitate DAG construction.

GSV builds upon TESLA — a lightweight broadcast au-
thentication scheme [15]. It allows upstream nodes in the ag-
gregation structure to directly verify the integrity of messages
from downstream nodes that are two hops away, bypassing the
nodes residing between them. The philosophy of this approach
is time-asymmetry authentication. The timing of message
generation, packet transmission and secret key disclosure can
offer authentication of source and message. In the scheme,
expensive asymmetric cryptography can be avoided for most
of the time.

The main contributions of this work are listed below:

e« We propose two novel security mechanisms for data
aggregation in VANETSs, which are resource-conserving
in terms of both computation and communication, and
enable timely message verification.

o« We describe a complete aggregation framework from
the construction of aggregation structure to the actual
data aggregation phase and provide security mechanisms
throughout various stages.

This paper is organized as follows. In Section II, we describe
our system model and adversary model. A overview of ASIA
is given in Section III. We detail ASIA in Section IV. In Sec-
tion V, we analyze the security properties of ASIA and present
evaluation on its performance in terms of computation and
communication efficiency. Finally, we conclude in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

In this section, we describe our system and adversary model
and several basic assumptions.

A. System Model

In this paper, we consider a general VANET model. Ve-
hicles are equipped with On-Board Unit (OBU) to broadcast
outgoing messages and verify incoming messages. A vehicle
can communicate with peers within its transmission range. To
facilitate communication and security enforcement, vehicles
are partitioned into groups according to certain clustering
rules. Readers can refer to related work [9] for details about
group management. Data aggregation is performed within
each group. The network can thus be described as a general
multihop wireless network consisting of a single querier and
ordinary nodes that will respond to queries [18]. The logical
aggregation structure will be a DAG rooted at the querier.

In the network, let A be a node. In the DAG structure, a
node has n;‘ parents. We denote as p;(A) (i = 1,--- ,n;‘)
one of A’s parents in DAG. All parent nodes constitute a set
P(A) = {pi(A) | i =1,--- ,n/'}. Similarly, we define c;(A)
as child node of A, C(A) as the set of child nodes.

We expect the existence of PKI in VANETSs for key man-
agement. Each vehicle uses only one public/private key pair
at a time. We assume that public/private key pairs are under
tamper-resistant protection and cannot be compromised. The
authenticity can be verified by checking the digital signature
on it and the corresponding certificate issued by a Certificate
Authority (CA). Government agency like Department of Motor
Vehicles or auto manufactures can assume the role of CA to
issue certified key pairs.

We assume that each vehicle is equipped with Global Posi-
tioning System (GPS) device, which can provide meter-level
positioning accuracy and nanosecond-level timing accuracy
[19]. Readings from GPS are shared with neighbors without
being modified or falsified. So each vehicle can continuously
monitor the position and velocity of its neighbors. The IEEE
1609.2 standard instructs vehicles to broadcast (location,
speed) beacon every 100ms. The broadcast can be con-
ducted efficiently and securely [11]. Also, we assume that
information embedded in the beacon messages is authentic.

The precise timing provided by GPS can help achieve
synchronization among vehicles. Synchronization is important
to the realization of certain aspects of our security strategy, in
which we exploit the ‘asymmetry in time’ property of TESLA
to guarantee secure transmission.

It is shown that other aggregation functions can be per-
formed using SUM function as the primitive [14][20]. So we
focus on securing SUM aggregation. In the rest of the paper,
the query function is SUM unless otherwise specified.

B. Adversary Model

Adversaries in VANETSs can distort the final aggregation
result in several ways. In this paper, we focus on the attack
described in Definition 2.1.

Definition 2.1: Aggregate Manipulation Attack: To bias the
final aggregation value, a malicious intermediate aggregator
falsifies sub-aggregation result arbitrarily as long as the fabri-
cated aggregate complies with the definition of the data type.



We do not consider denial-of-service (DoS) attacks which
are not as hazardous as manipulation attacks that can fool vehi-
cles to accept arbitrary reports. We do not consider the attack
in which the attacker manipulates its own sensory readings.
Without trusted computing or trusted execution technology
[21], a misbehaving node can gain full control of its sensors
and other on-board devices. It is able to tamper with local
readings without being detected. However, there is normally
a valid range for most sensory readings. For instance, the
environment temperature takes the value from 0°C' to 50°C.
Attackers can only modify the reading within this range or the
reading will be discarded as an outlier. Given the relatively
large scale of an aggregation group, the effect of falsified
readings on the final result is largely limited. This observation
is formalized in a work by Wagner [20].

We do not limit our study to a single adversary, as multiple
malicious nodes may exist in a real network. Adversaries may
collude to manipulate aggregates without being detected.

III. ASIA VERIFICATION COMPONENTS

In this section, we present the key ideas of our approach
and briefly describe the ACC and GSV mechanisms.

A. Aggregate Consistency Check

In previous work on aggregation security in VANETS, in-
network aggregation is performed based on the tree structure.
One benefit of this structure is its duplicate-free nature that can
prevent double counting. In addition, there are many mature
spanning tree construction algorithms.

In this paper, we propose to use the directed acyclic graph
(DAG) as shown in Fig. 1 to replace the spanning tree as the
aggregation structure. Aggregation in DAG differs in the sense
that each node except the root, rather than sending its message
to only one upstream node, will transmit it to two or more
nodes. Receivers separately compute an aggregate and then
send it with their own reading to a same upstream node which
can thus check the integrity by comparing received messages.

We propose the aggregate consistency check (ACC), which
verifies the aggregates of other nodes using the atomic consis-
tency block (ACB). An ACB is defined by four nodes: A,
pi(A) and p;(A) (4,5 = 1,--- ,n;‘ and ¢ # j) such that
P(pi(A)) N P(p;(A)) is non-empty, and a verifier v;;(A) €
P(p;(A))NP(p;(A)). Then the block is defined as ACB(A) =
{A,pi(A),p;(A),v;;(A)}. An example of ACB is illustrated
in Fig. 1. In a consistency check, v;;(A) compares two
aggregates coming from p;(A) and p;(A).

For example, node A sends its reading 7 to p;(A) and p;(A)
whose own readings are 3 and 8, respectively. Each node then
computes the SUM aggregate which is sent to node D with
its own reading. So v;;(A) will receive (10,3) from p;(A),
and (15,8) from p;(A). By subtracting the reading from the
aggregate, v;;(A) can obtain the actual data from A separately
from these two messages. If p;(A) and/or p;(A) misbehave
fabricating the aggregate, v;;(A) can detect any inconsistency
after the subtraction operation.

Q: querier
A-H: ordinary vehicles
Solid Line: data

flow in tree graph
Dotted Line: links

to covert tree to DAG

Fig. 1. DAG and Atomic Consistency Block: with two data flows originating
from node A and sinking into node D, D can verify the integrity of
aggregates.

One thing the attacker can do is falsify the aggregate and
modify its own reading as well to ensure the subtraction
remain the same. This attack is equivalent to modifying its
own sensory readings. As explained in the adversary model,
the effect of this attack is quite limited.

The DAG offers the possibility of locally detecting mis-
behavior, at the price of complexity in constructing the ag-
gregation structure. We will detail the scheme in Section IV,
describing the method to construct the DAG, the scheme to
solve double-counting problem in DAG, and how to tackle
with potential security threats during DAG construction.

B. Generation Skipping Verification

If p;(A) and p;(A) do not collude when they are trying to
falsify their aggregates, there is strong probability that their
data will result in inconsistency at node v;;(A). If p;(A) and
pj(A) do collude and add a same value to their aggregates.
Then the messages received by v;;(A) may look like (90, 3),
(95,8), which can bypass the current ‘aggregate consistency
check’ security scheme. Given the legitimate aggregates (10,3)
and (15,8), collusive attack ! can totally subvert the final result.

To detect aggregate manipulation attack even with collusion
existing, it is favorable that node v;;(A) is able to directly
verify the reading at A. A straightforward approach is to
establish a shared secret between A and v;;(A). This can
be done with Diffie-Hellman key exchange protocol or any
appropriate method. This method, however, incurs high com-
munication and computational overhead and may be infeasible
in the VANETS scenario.

'n this paper, collusion happens among nodes at the middle tier of a ACB,
in which they falsify aggregates to identical result. While for malicious nodes
at different layers, they can collaborate. For example, nodes at the upper layer
may ignore any inconsistency observed in aggregates from lower layer nodes.
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Fig. 2. TESLA Overview: hash chain construction and message verification.

We propose Generation Skipping Verification (GSV) which
makes it possible that the verifier at the upper end in ACB
can verify the integrity of readings from the source node at the
lower end, even in the presence of possibly malicious nodes at
the middle tier. Symmetric cryptography is used in our scheme
for most time to accelerate message verification and reduce
overhead. We first provide some background knowledge to
help understand GSV.

GSV builds upon TESLA [15] to perform its functionality.
TESLA is a packet loss tolerant broadcast authentication
scheme. As shown in Fig. 2, the sender constructs a self-
authenticating one-way hash chain and publishes the very first
key Ky as the initial commit. The sender transmits the message
at time ¢; and attaches it with a message authentication code
(HMAC). The key K is disclosed at a future time point ¢;. The
receiver can first verify K; by recursively applying the hash
function until obtaining K. Then it can verify the message
using the legal K;. At the setup stage, K is signed with the
sender’s private key and can thus act as the root of trust. The
time-delayed key disclosure is based on a loose, but bounded
clock synchronization between the two involved entities.

In our approach, node A first signs K with its private
key and then broadcasts it to p;(A) and p;(A) which are A’s
immediate neighbors. p;(A) and p;(A) are required to further
broadcast K to their neighbors so that v;;(A) can obtain the
initial commit of A and verify subsequent keys from A.

During aggregation, when A sends a message to p;(A) and
pj(A), it attaches a HMAC keyed with a key in its hash
chain to help receivers verify the integrity of the message.
This message also includes an expiration time, before which
pi(A) and p;(A) are required to send v;;(A) their aggregates
along with A’s message. When the expiration time arrives,
node A releases to p;(A) and p;(A) the key for that HMAC so
that they can authenticate the message to detect any potential
tampering during the transmission. However they are unable to
forge the HMAC they have already presented to v;;(A). p;(A)
and p;(A) are then required to forward the key to v;;(A).
v;;(A) is thus able to verify the integrity of A’s reading.
Moreover, v;;(A) rejects messages from p;(A) and p;(A) that
arrive after the corresponding K; is disclosed.

With the GSV strategy, node v;;(A) can detect the ma-
nipulation attack even if p;(A) and p;(A) collude. In the
following section, we describe in more details the procedure
of the proposed aggregation technique.

Fig. 3. Real-World Traffic: aggregation tree spans in traffic moving direction.

IV. ASIA ALGORITHMIC FRAMEWORK

In this section, we describe ASIA in detail. We provide
the complete aggregation procedure from DAG construction
to aggregate computation.

A. Group Formation and Management

Vehicles in the network are arranged into groups. After the
aggregation is triggered, vehicles first determine the group they
belong to. Grouping is location-based. The road is dissected
into small sections which basically define different groups. A
vehicle equipped with GPS can automatically know its group
by comparing its GPS position to the preloaded road map with
sections indicated [9][22].

B. Location-aware Aggregation Tree Construction

To construct the aggregation structure shown in Fig. 1,
vehicles in each group first construct a spanning tree. They
will face several challenges when trying to construct a prefer-
able tree that can facilitate subsequent procedure. Classic
distributed spanning tree algorithms might generate a random
tree structure whose topology is unexpected. Recall that in
our scheme, the aggregator A should connect to one of its
parent’s siblings C' to generate the ACB. If the spanning tree
is generated without any constraints, the random topology may
result in communication failure between A and C'. They might
be physically far apart from each other and out of transmission
range. A vehicle in the network can increase its transmission
power in case that its desired parent is out of range. Maximum
transmission radius is as high as 250 m [9]. However larger
transmission radius incurs more communication overhead and
more severe contention over the wireless medium. Therefore, it
is not desirable to increase transmission power to reach a far
away parent. The tree construction algorithm should ensure
that logically close nodes in the aggregation DAG are also
geographically close to each other.

Given the features of real world traffic as illustrated in
Fig. 3, vehicles can construct the aggregation tree along the
moving direction of traffic. The tree will not span in arbitrary
directions so that physical locations of vehicles will basically
match their logical positions in the aggregation structure
shown in Fig. 1.
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Fig. 4. Relative Position: determine relative position of neighbors using GPS
information in periodic beacons.

1) Relative Position Detection: Each vehicle needs to de-
termine the relative position between itself and neighbors.
They can leverage the location information embedded in the
periodically broadcast beacon, as illustrated in Fig. 4.

At time 1, A receives beacon message from B and extracts
its location ltBl. The distance between A and B at ¢; can be

calculated as dj = |[I't — 1%]]. At time t5, A obtains the
distance between B’s current position and A’s position at ¢1,
diz = ||If —1%||. By comparing d%% and dj}}, A can

determine B’s relative position. If d'}12 < d'i, B is behind
A If dfﬁ; > df;g, B is in front of A. A maintains a record
of its neighbors regarding the relative position. Each vehicle
will choose the vehicles behind it as parent candidates.

Considered that maximum speed limit on free way is
65mph, one vehicle can move at most 30m in one second.
Beacon message is broadcast periodically every 100ms. A
vehicle can move 3m between consecutive beacons or 6m
between every other beacons. Commodity GPS device can
guarantee 1m level accuracy [19]. Hence, the scheme can
tolerate the imprecision of location information. When traffic
speed drops, vehicles can increase the time interval between
t1 and to accordingly.

If B is very close to A or if B’s speed is much faster so that
B will pass A (assume B is behind A at ¢1) during the interval
between ¢; and ¢,, it might be wrong to state that B is behind
A when d;}f; < df;gl. Vehicles that travel at much higher
or lower speed will not be chosen as parent candidates. The
threshold of the speed difference is correlated with distance,
traffic density and transmission range. Another scenario as
mentioned above is when two vehicles are too close to each
other. Then it might be difficult for A to accurately determine
B’s relative position given the error in positioning. In this
case, however, it is not necessary to infer the relative position.
It has little, if any, negative effect on a successful construction
of the aggregation tree since they are close enough.

2) Lane Identification: Knowing the lane on which neigh-
bors are running, vehicles can construct a more stable tree
structure that maintains better connectivity. In some time, the
carpool lane has much faster traffic while the outermost lane
has slow traffic. Lane number information will be considered
when choosing parent node.

In this paper, we consider the 4-lane freeway shown in
Fig. 5. Lanes are identified as lane number 1,2, 3,4. Lane
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Fig. 5. Lane Identification: identify different lane through trajectories of
neighbors

Procedure 1 Tree Construction: The Initiator
APPLY STAGE:
Input: neighbor_info
Output: parent_candidates
pick parent node candidates
assign preference
broadcast request to neighbors
wait for reply

ACCEPT STAGE:

Input: admission_decision

Output: parent_node
select node with highest preference score
broadcast decision

number 1 is the carpool lane.

Vehicles can use GPS location information to infer the lane
number [11]. As demonstrated in Fig. 5, with location of
neighbors and itself at 3 time points, one vehicle can obtain
the trajectories and thus infer the lane number. We omit details
of the algorithm due to space limit.

Lane identification is helpful when there is ‘significant’
persistent speed difference between traffic on different lanes.
Through velocity information in beacons, each vehicle can
evaluate the average speed of traffic, traffic density and speed
difference. Those factors influence tree structure construction.

3) Tree Construction Protocol: Under the circumstance that
traffic on different lanes move at ‘significant’ different speeds,
to construct an aggregation tree with better connectivity, vehi-
cles in lane number 2 and 3 (Type I) will form the backbone
of the tree. The construction procedure will experience three
stages from apply to admit to accept.

A Type I vehicle sends request to Type I vehicles behind it
to ask them to become its parent candidates. The number of
candidates is decided in accordance with current traffic density.
Each vehicle maintains an adequately large group of neighbors
by adjusting its transmission range so that it has enough parent
candidates. In the request, the sender indicates its preference
over all candidates. Taking into account lane number, relative
distance and speed, a vehicle can determine the preference
value assigned to each candidate. They would generally give



Procedure 2 Tree Construction: The Responder
ADMIT STAGE:
Input: request_list
QOutput: admission_list
wait for incoming requests
select potential child nodes
broadcast admission decision

higher preference to vehicles with same lane number, smaller
distance and similar speed.

Vehicles receiving requests reply acknowledgement to
senders. Whether to accept the request is probabilistic with
the possibility proportional to preference value. The number
of child nodes to admit is also based on traffic density. Last,
the vehicle initiating the request chooses one vehicle as its
parent from those who accept its request.

We suggest that vehicles in lane number 1 and 4 (Type II)
prefer to connect to Type I vehicles as leaf nodes since they
are more likely to create disconnectivity in the aggregation
structure. In extreme situation, vehicles in the carpool lane
move fast while those in other lanes get stuck. Then vehicles
divide into two groups and perform aggregation separately.

Procedures are listed in Procedure 1 and 2.

C. From Aggregation Tree to DAG

Vehicles in each group construct a DAG to perform aggrega-
tion. The DAG is built upon the tree graph. Vehicles construct
a spanning tree first and then transform it into a DAG.

A node X can be aware of its siblings’ presence. This is
because when its parent node P communicates with other
nodes to establish parent-child relation, messages from P is
clear to X so that X can overhear the communication and
figure out who else became P’s child node. With its own
neighbor list, X can know the siblings who are within its
transmission range. X puts them on its sibling_list.
Node X will randomly choose one partner-node from this list
and send out the request.

All child nodes of P are guaranteed to be geographically
close and within the same collision domain in their commu-
nication. This is achieved by our tree construction method.
So at each time, only one node can send or respond to
pairing requests. Any node that received a request and is
still available for pairing will accept the request by default.
Those who already paired up with others would normally
reject any subsequent requests. One node will have no partner-
node if there are odd number of nodes involved in the paring
procedure. So each node sets up a flag rej indicating the
times having been rejected. It is guaranteed to be accepted
in its third attempt. Also, before sending out the request,
each node can make a fresh choice based on the knowledge
it obtains via overhearing. If the candidate on its list is
no longer available, it picks randomly from the rest in the
sibling_1list. The overall flowchart is presented in Fig. 6.

Another approach is to let an individual node act as the cen-
tral controller in the pairing task, and broadcast the decision
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Fig. 6. DAG Formation Flowchart

to its child nodes which forward the message one level below
to their children. The centralize approach is more efficient in
terms of communication overhead. The drawback is controller
might manipulate the pairing result to facilitate collusion.

D. Verification through Time Asymmetry

We give an example to explain the GSV. Consider the
atomic checking structure in Fig. 1. At time ¢;, A sends mes-
sage {A,t;,74, Agga,tf, MAC, (Alltil|rallAggall tit1)}
to B and C, where r 4 is A’s own reading, Agg . is aggregate
computed by A and tF(> t;) is the expiration time for
this message before which it should be received by D. All
information is concatenated and the sender creates an HMAC
over it. B and C must include into their messages to D the
content from A. They cannot forge the HMAC because they
do not have the key K;. A sends K; to B and C at time



tx(> t§’) which is then forwarded to D so that D can verify
the integrity of the aggregate from A.

E. Monitoring by Overhearing

Overhearing happens all through the process from aggrega-
tion structure construction to the completion of an aggregation.
During tree and DAG construction phases, overhearing can
prevent malicious nodes from manipulating the parent-child
pairing process. This advantage increases the difficulty for
colluding nodes to connect to each other and enhances security.

Overhearing also facilitates information sharing among
neighbors, which can benefit vehicles in DAG construction.
For instance, one node can identify its siblings by overhearing
the conversation between its parent node and others.

F. Aggregates Computation

In aggregation through a DAG structure, nodes in the
network first determine whether the aggregation function is
duplicate-sensitive or not. For duplicate-insensitive functions,
data are aggregated as in the tree structure. For duplicate-
sensitive functions, the node at upper end in the ACB should
remove any duplicates when computing the aggregate.

In an alternative approach, suppose one node with data x has
k parents. In aggregation, this node sends z/k to each of its
parents. For aggregation functions such as SUM, the aggregator
does not need to take extra actions. Another advantage of this
scheme is the reduced error caused by single packet loss [17].

V. ANALYSIS

In this section, we analyze the security and performance of
ASIA, both through logical arguments and simulation.

A. Security Evaluation of ASIA

We begin with the a logical evaluation of the security
properties of ASIA.

Under our framework, TESLA provides source authentica-
tion in the broadcast environment without incurring consid-
erable overhead. Message authentication can be guaranteed
by HMAC though there is a delay in verification because
corresponding key is disclosed later. Non-repudiation is not
provided in our scheme. However with the overhearing tactic,
neighbors can monitor conversations and keep a copy of mes-
sages allowing them to reach a local consensus over possible
misbehavior. Alternatively, upon detecting an inconsistency,
the detector can ask the suspect to retransmit the message
signed with its private key. This can help either to correct the
inconsistency or to offer evidence of tampering.

In the scenario where attackers act independently without
colluding, inconsistencies will be detected at benign nodes or
the querier with high probability, regardless of the number of
malicious nodes. There probability that two independent at-
tackers modify their aggregates to the same value is negligible.
The more attackers there are, the lower probability that they
can avoid detection because every pair of adversaries residing
at the middle tier of the ACB (namely p;(A) and p;(A)) need
to generate identical fabricated aggregates.

In the case that some attackers collude, their parent nodes
can observe misbehavior by verifying the downstream mes-
sages from nodes that are two-hop away. However, if all parent
nodes are also malicious, the attack cannot be detected.

We define effective attack set U as the set with minimized
number of colluding/collaborating attackers who can mount
successful attacks without being detected. In the DAG, node
A is said to be below node B if the distance between A and
the the querier () counted by hops is longer than the distance
between B and (). A is said to be below set I/ if A is below
all nodes in /. The set U has the following two properties:

e Any nodes not belonging to U cannot directly verify

messages from nodes below U;
o There exists at least one node that is one hop below U
whose aggregates flow into nowhere other than U.

With these two properties, attackers in U can gain full
control of at least one piece of aggregate. Successful attacks
thus follow. The number of attackers in I/ depends on the local
DAG topology. To increase this number, GSV can be upgraded
so that more upper level nodes can directly verify downstream
messages. Node D in the ACB is supposed to further send its
parent nodes the initial commit of A.

To mount a successful attack, colluding attackers must
ensure that their logical positions in the aggregation structure
satisfy the properties of /. This cannot be completely deter-
mined on their own. They would try their best to stay close
to enjoy higher probability of mutual connection during the
DAG construction and they definitely accept the requests from
associates. However, benign neighbors may disrupt their plan.
Benign nodes may win the contention to gain priority claiming
a desirable parent node and/or sibling node. Corresponding
attackers receiving the request cannot simply reject it because
other nodes around keep overhearing the medium and can
identify policy-incompliant actions.

To see how ACC and GSV combine to thwart attacks,
consider the instantiation of DAG in Fig. 1. If A and G
collude, both B and C' can verify the aggregate from H and
thus detect the attack. If B and G collaborate, C' can detect
misbehavior by comparing the data from G and A. If A, G
and B misbehave, C, D and F can notice the attack. The only
way to bypass the security scheme is to let all of A, B, G and
H collude/collaborate. They constitute the effective attack set
in this instantiation.

We next provide a simulation study to validate our claims. In
our setting, attackers are assumed to be distributed uniformly
and randomly throughout the group. An agreement about
manipulating the aggregate exists and is known to all attackers
so that every attacker adds the same value to the aggregate
when they are tampering with the result. Therefore, their
independent manipulations actually constitute collusion if their
logical locations in DAG happen to satisfy the requirements
of the effective attack set U.

Simulation parameters and corresponding sample values
are listed in Table I. The network and security parameters
correspond to parameters used in previous VANET simulation
studies [23][24], and the lane width is standard in the USA.



TABLE 1
SIMULATION PARAMETERS

Parameter Value

Length of Road Segment 1000 m

Lane Width 3.7 m

Max Speed Limit 120 km/h or 75 mph

Number of Vehicles 50 — 150

MAC/PHY 802.11

Radio Propagation shadowing model

Public Key Size 256 bits

Signature Size 512 bits

SHA-1 Size 160 bits

ECDSA Generation Time 7 ms

ECDSA Verification Time 22 ms

Hash Operation Time 1 ps
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Fig. 7. We evaluate the ratio of attackers as the minimum fraction of the
group that must collude in order to achieve a 5% probability of success in
manipulating the aggregate.

The road segment which defines the aggregation group is
1000 m long. The number of vehicles in one segment varies
from 50 to 150, and this number can also indicate the traffic
density. Vehicles move according to random traffic pattern.
The maximum speed limit is 34 m/s. To simulate realistic
road traffic, we use SUMO [25] to generate trajectories for
each vehicle. In this simulation, we have 20 instantiations of
traffic for each number of vehicles.

To evaluate the robustness of our scheme against the ag-
gregate manipulation attack, we define the minimum ratio of
attackers that is required to meet a 5% probability of the
existence of an effective attacker set U in the DAG. Fig. 7
illustrates the simulated ratio of attackers with error bars
representing the standard deviation over the 20 trials. The ratio
of attackers required decreases from 38% to 34% as traffic
density goes up. Two factors contribute to the difficulty of
mounting a successful attack. First, malicious nodes need to
be clustered nearby, which is not easy to achieve in a random
distribution. Second, any geographically close nodes would
have a difficult task in forming the desired logical connections.

B. Performance Evaluation

In performance evaluation, we assess the latency, compu-
tational overhead and communication overhead of ASIA. We
use the same parameters as previous including those in Table I.

In VANETSs with highly dynamic topology, latency is an im-
portant figure to reflect the efficiency of aggregation structure
construction. We evaluate the latency for tree construction, tree

07r = Time elapsed after tree construction

-« Time elapsed after DAG construction|
L |-e-Time elapsed after one aggregation
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Fig. 8. We evaluate the latency of various stages of the ASIA scheme,
indicated as the total time to completion.
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Fig. 9. We evaluate the sender’s computational overhead using ASIA relative
to that of the approach using ECDSA.

to DAG conversion, and one run of aggregation. As shown in
Fig. 8, latency rises as the number of vehicles increases. More
traffic in the segment implies more contention for wireless
medium access, and longer delay naturally follows. There are
several factors leading to the latency including contention and
retransmission in wireless communication; radio propagation;
and message generation and verification. In our scheme, we
use HMAC instead of a digital signature to provide source
and message authentication, which reduces the latency of
packet generation and verification phases. Meanwhile, HMAC
is smaller in size and thus consumes less time to transmit.
This two benefits will be clear as we present the improve-
ment on computational and communication efficiency. After
construction, the DAG structure can support multiple runs of
aggregation operation. We can see from Fig. 8 that it takes
relatively less time to complete an aggregation procedure, so
additional runs do not significantly alter the overall latency.

Vehicles have constrained computational resource which
may be exhausted by extensive computation, especially in the
case of signature generation and verification. A typical OBU
with 400MHz processor requires 20 ms to verify one ECDSA
digital signature, the basic security primitive employed in the
IEEE 1609.2 standard. We compare our scheme with the ap-
proach in which ECDSA is used to provide authentication and
message integrity, and the aggregation is performed through a
tree structure [9]. We refer to this scheme as ‘All-Sig’.

We evaluate the computational overhead of aggregation
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Fig. 11. We evaluate the communication overhead using ASIA relative to

that of the approach using ECDSA.

structure construction to the complete of 10 runs of the
aggregation operation. Fig. 9 shows the sender’s computational
overhead in ASIA to that of the All-Sig approach. We can
observe a drastic decrease in computational overhead, less than
15% of that required for ECDSA.

Fig. 10 similarly shows the receiver’s computational over-
head. The ratio of computation against the All-Sig strategy is
less than 10%. The additional savings at eh receiver side is
because signature verification is more time consuming than
generation. In DAG structure, one sender sends its message
to multiple receivers, increasing the verification task load at
receiver, but, the net effect still favors the receiver.

Fig. 11 compares the communication overhead between
ASIA and the All-Sig approach. The total communication
overhead of ASIA is only 18% — 31% of that of the All-Sig
approach, and it drops with the growth in number of vehicles.

VI. CONCLUSION

In this paper, we investigate secure and efficient data
aggregation in VANETSs as a sensing platform. We propose
ASIA as an aggregation strategy using a directed acyclic
graph instead of a spanning tree as the aggregation structure.
We propose two security mechanisms, aggregate consistency
check and generation-skipping verification, both leveraging
the DAG structure. Our mechanisms rely primarily on sym-
metric cryptography, enabling timely message authentication
and providing significant reduction in both computational
and communication overhead compared to signature-based
schemes. Our evaluation demonstrates that the more robust

aggregation structure provides strong protection against the
aggregate manipulation attack, even with a significant number
of colluding attackers.
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