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Abstract—Transparent authentication (TA) schemes are those
in which a user is authenticated by a verifier without requiring
explicit user interaction. By doing so, those schemes promise
high usability and security simultaneously. The majority of
TA implementations rely on the received signal strength as an
indicator for the proximity of a user device (prover). However,
such implicit proximity verification is not secure against an
adversary who can relay messages over a larger distance.

In this paper, we propose a novel approach for thwarting relay
attacks in TA schemes: the prover permits access to authentica-
tion credentials only if it can confirm that it is near the verifier.
We present STASH, a system for relay-resilient transparent
authentication in which the prover does proximity verification by
comparing its approach trajectory towards the intended verifier
with known authorized reference trajectories. Trajectories are
measured using low-cost sensors commonly available on personal
devices. We demonstrate the security of STASH against a class
of adversaries and its ease-of-use by analyzing empirical data,
collected using a STASH prototype. STASH is efficient and can
be easily integrated to complement existing TA schemes.

I. INTRODUCTION

User authentication is necessary in order to regulate access
to data or physical objects. The predominant approach still
relies on the use of passwords which suffers from drawbacks
in terms of both usability and security [3]. Effective and
secure alternatives to password-based authentication have yet
to emerge [2]. This has sparked the development of transpar-
ent authentication (TA) with systems exploiting characteristic
cues such as behavior [31]], biometrics [25]], or environmental
context [28]]. Zero-interaction authentication (ZIA) is a class of
TA schemes [3]] that relies on a verifier VV to authenticate a user
when a prover device P associated with the user is nearby. In
ZIA schemes V typically verifies the proximity of P by mea-
suring either the strength of radio signals emitted from P over
some short range wireless channel, e.g. BlueProximity [24], or
the time required to transmit messages over that channel, e.g.
“keyless entry and start” systems for cars. However, these TA
schemes remain vulnerable to relay attacks [9]], [[10]], where the
attacker relays messages between P and V when they are not
co-located, leading to V falsely concluding that P is nearby.

There are several known defense techniques against these
attacks such as distance bounding protocols [4] and compari-
son of ambient contexts between P and V [11]], [28]. However,
these methods are faced with deployment challenges. In effect,
context-based relay attack defense systems have unclear secu-
rity guarantees [23]]. Additionally, distance bounding methods
require precise timing, and 1 ns measurement error can affect

the estimated distance by 30 cm. Therefore, additional hard-
ware and low-level software changes seem necessary.

In this paper we propose a novel approach to thwart
relay attacks on proximity-based transparent authentication
systems. We present STASH, a system that enforces proximity
verification by P to an intended V before allowing access to
the credentials used in the authentication protocol. The method
uses P’s on-board micro-electromechanical system (MEMS)
sensors to measure its approach trajectory towards ) and
compares it with authorized reference paths. A central design
principle in STASH is to rely only on sensors monitoring
‘P’s own movement (e.g. accelerometer and gyroscope) rather
than on sensors that measure environmental factors that can
be manipulated or falsified (e.g. GPS, radio signal emission,
or ambient properties). We built STASH as an Android ap-
plication and used it to gather trajectory data of 20 different
routes in two cities (totaling 123 km). Using this dataset, we
demonstrate that STASH has acceptable false reject (FRR) and
false accept (FAR) rates.

Commodity devices provide low-cost MEMS sensors that
are noisy, include bias terms and miss data. Designing STASH
to work on commodity devices raised several technical chal-
lenges leading to questions like “how to effectively represent a
trajectory using only accelerometer/gyroscope measurements?”
and “how to best compare two trajectories?”’. Additionally, an
energy budget examination of portable devices is necessary to
understand the feasibility of STASH. In this paper, we address
these challenges and evaluate the resulting system systemically.
Briefly, our contributions are the following:

e  We propose using prover-side proximity verification
to resist relay attacks against proximity-based trans-
parent authentication systems (Sections [[I] and [ITI).

e  We design and implement a concrete system, STASH,
incorporating this idea by addressing several chal-
lenges in measuring prover’s approach trajectory and
using it to determine proximity to verifier (Section II).

e By systematically analyzing trajectory data in two
cities, we demonstrate the security and usability
of STASH (Section [[V). We also show that STASH’s
average energy consumption is low: we estimate that
under typical usage conditions, the battery drain due
to STASH over the course of a work day is in the
range of 4%-7% of battery capacity. (Section [V-G).



II. CONCEPT AND ASSUMPTIONS
A. System Model

Figure [I|illustrates the basis of proximity-based transparent
authentication. The goal of this model is to enable confirmation
from the verifier V that a user U/ is nearby. For this purpose,
U has a personal device P and authentication is then based on
a challenge-response protocol using a previously established
security association, e.g. a shared symmetric key between P
and V. However, in addition to verifying authenticity of P, V
also verifies its proximity to P, a process which is vulnerable
to relay attacks.

| Prover P | | Verifier V |
| [
‘ Sense proximity ‘

{challenge, V}

response

Verify proximity to P
Verify response

accept/reject

Fig. 1.  Transparent authentication: challenge-response protocol triggered
upon sensing proximity of P to V. The proximity verification component
introduced in our approach is shown as a red dashed box.

To protect against those attacks, we improve this model
by having P regulate access to the authentication credentials
through first verifying its proximity to V. In particular, we
propose that P does this proximity verification by examining
its approach trajectory towards V. If proximity verification
fails, U is asked to explicitly confirm she is near V.

Application scenario: premise access control. We target
a scenario where a person U{ accompanied by P routinely
approaches an access controlling barrier V. After transparently
authenticating P, V will open the barrier to let U pass. If
proximity verification fails, I/ may still open the gate through
explicit proximity confirmation using P. Examples for such
scenario are: a person U on a vehicle P such as a bicycle,
wheelchair or car requiring easy and fast access through a
gate or door V at her home or workplace.

B. Adversary Model

We consider an adversary A who has deployed a wireless
relay providing him with Dolev-Yao [6] capabilities. Although
A can control the message flow between P and V), he can-
not break the cryptographic protection of a secured channel.
Nevertheless, by relaying the challenge and response and thus
artificially extending the range of the wireless channel, A can
successfully bypass the proximity verification since ) will be
measuring the relay device’s signal strength rather than P’s.
Even if time of flight is used to estimate the distance, off-
the-shelf hardware is not precise enough to provide a secure
estimate of the distance between two devices. Attacks like
this are actively being exploited as demonstrated for several
scenarios [9]], [LLO].

We do not consider adversaries who gain physical access
to P. Continuous user authentication techniques, such as
biometric authentication [20] can ensure it is the legitimate
user who is in possession of the the device. We also assume
that the device has not been infected with malware which can
be ensured using platform security and anti-malware tools.

C. Design Goals and Challenges

Goals. We set the following goals for our relay-resilient
proximity verification system:

R1. Usability: Transparent authentication must minimize
explicit user action. If trajectory comparison fails
when U is in fact near V, U will be required to fall
back to explicit proximity confirmation. Our system
should therefore minimize the false reject rate.

R2. Security: The system should not incorrectly conclude
that U/ is near V even in the presence of a relay.
Therefore it should minimize the false accept rate.

R3. Efficiency: The computational and energy costs of
proximity verification should be small to not diminish
the user experience.

R4. No external signals: Since .4 can control ambient
properties, proximity verification should not depend
on any external signals.

RS. Local decision-making: Proximity verification must
be carried out entirely within P.

There are two rationales for Rj5| One is privacy: data
collected for proximity verification should not be exposed to
any third party. The other is deployability: a local solution can
be seamlessly integrated into any proximity-based transparent
authentication scheme by only modifying P without having to
change the protocol and thus the implementation of V.

III. STASH ARCHITECTURE

We now describe STASH, our system that uses prover-side
proximity verification to prevent relay attacks.

A. Trajectory Representation

i
P 1

Fig. 2. 'P’s approach trajectory towards )V is described by a set of primitives
needed to reach V. In this example, the primitives are move 2, left 90°, move
3, right 30°, move 1, left 90°, move 1, right 30°, move 7, left 90°, move 2.

To satisfy requirement RE], we avoid external, insecure,
data sources like GPS [26] or ambient sensor modalities and
rely only on gyroscope and accelerometer to capture user’s
movement. We represent a trajectory as a temporally ordered
sequence of discrete primitives consisting of segments of
movement interleaved with left or right turns derived from
angular information. (See Figure 2] for an example.)

An intuitive way to represent a trajectory is as a sequence
of coordinates, like in dead reckoning [15]. However, a one-
dimensional sequence of primitives is more robust to sensor
noise than a two-(or even three-) dimensional coordinate: the



impact of a missed turn on the resulting sequence is less than
it is on the result of a dead reckoning algorithm.

Using sensor data, we recognize two streams of primitives:
(M/S,t;) symbols (for “movement” or “stationary” at time ;)
are generated at a fixed rate and (L/R, t;) symbols (turn “left”
or “right” at time ¢;) are generated opportunistically whenever
a turn is detected. The two streams are then combined into one
sequence, with turn events taking precedence. The overall sys-
tem has three essential parts: primitive generation, trajectory
comparison and authorized trajectory updating.

B. Primitive Generation

Turn primitives. By exploring different sampling rates and
sensors, we concluded that a 20 Hz sampling rate is sufficient
to detect turns with a precision of 15°. To achieve this, we
project the gyroscope to ground direction, obtain the heading
angle by integrating the angular speed and then record turns
when the 2s sliding window standard deviation of the heading
angle is above a threshold (¢; = 3°). However, sudden
gravity shiftsﬂ cause errors in turn estimation: we disregard
gyroscope data as unreliable in such situations. To remove
drift in MEMS gyroscopes, we use a high-pass filter, where
gyroscope measurements smaller than 8.6°/s are exponentially
weighted down. Fine-grained beginnings and ends of turns are
found where the sliding window standard deviation is above
a smaller threshold (o3 = 1°). The turn detection system
assumes that P has reliable gravity estimates: P could for
instance be integrated into a vehicle or firmly attached to the
body to avoid disturbing the gravity direction. In this paper we
collect data by integrating P with a bicycle.

Movement primitives. To identify movement, we use a logis-
tic regression (LR) algorithm [17] that continuously predicts
movement mode at one second intervals. The prediction is
done on-the-spot, and does not take previous prediction results
into account. In reality however, two successive events are
dependent. We additionally use a Hidden Markov Model
(HMM) [[7] to capture this dependency.

In HMMs, probabilities to move between hidden states are
modeled with a first-order Markov chain. Each hidden state
gives a cue about itself by emitting a primitive at any given
time. In our case, we want to determine movement primitives
(M or S) by observing the output of LR. We use HMM
Viterbi algorithm [7] to smoothen the observations into the
most likely sequence of primitives. Finally, we determine the
representative primitive for each five measurements as the most
frequent among the five. This scheme gives us a continuous
stream of one M or S primitive in five seconds intervals.

C. Trajectory Comparison

We differentiate between two types of trajectories. Ref-
erence paths are previously authorized trajectories of a P
towards some verifier V. Candidate paths are trajectories
towards ) perceived by P before a proximity verification
session. These can contain errors introduced through noisy
measurements. To verify proximity to V), P compares the can-
didate path to the reference path. Figure [3] shows our proposed

proximity verification scheme. If the trajectory comparison
succeeds, P continues with the authentication protocol by
computing the response to the challenge and sending it to V.
If trajectory comparison fails, the system falls back to explicit
proximity confirmation by U. Successful explicit confirmation
implies that P’s candidate path can be added to the trajectory
repository as an authorized trajectory: a reference path.

| Trajectory challenge
comparison ¢ .

Trajectory
\_repository

F 3

update
trajectory

compute false
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Fallback: Explicit
location confirmation
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abort
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Fig. 3. Prover-side proximity verification. P compares the current candidate
path against reference paths in the repository. P computes the response to V’s
challenge if the candidate path matches a reference path. The user is asked
for explicit proximity confirmation if this check fails.

Candidate and reference paths are represented as sequences
of characters as discussed in Section [[TI-A] Trajectory compar-
ison is therefore a similarity comparison between strings. We
evaluated several string matching metrics and chose to use
Needleman-Wunsch (NW) similarityE] [[Z], which is a combi-
nation of the longest common sub-sequence and edit distance
algorithms. In NW terminology, both insertions and deletions
are called gaps. We chose the parametrization: match +1,
mismatch -2 and gap -1. Matches can be seen as evidence and
mismatches counter-evidence that two sequences are related.
Before comparison, S symbols are removed and timestamps
(t;) are used to trim strings to the same temporal length.

Instances of the same reference path will differ due to noise
from various sources. Therefore, we need to establish a deci-
sion threshold that determines how much noise is acceptable. If
the similarity score is higher than the threshold, the candidate
path is accepted. Otherwise it is rejected. This introduces a
trade-off between usability (FRR) and security (FAR). An ini-
tial threshold that has a good FAR/FRR trade-off is determined
prior to deployment as discussed in Section

D. Updating Reference Paths

Once the system is deployed, we use feedback from
failed and successful trajectory comparison attempts to adjust
the decision threshold. The initial threshold might under-
or overestimate the variation in future instances of a given
reference path r. The decision threshold should be adjusted

!Gravity in Android is a software sensor (a low-pass filter on raw accelerom-
eter data) which takes a few seconds after an orientation change to stabilize.

2Needleman-Wunsch had the best FAR/FRR trade-offs among the tested
algorithms on our dataset in Section



to achieve a better FAR/FRR trade-off, either by decreasing
(better usability) or increasing (better security) it.

We call such a path-specific decision threshold a local
threshold. To compute local thresholds for a given r» we need
instances 7, of 7 and instances i; of reference paths towards
other verifiers V. These are used to calculate within- and
between-class similarities. When a user U starts using STASH
we do not have enough instances %,, iz to compute within-
and between-class similarities. Instances ¢,, will be gradually
collected as the user repeatedly traverses r. We consider two
ways to acquire instances i of paths towards another V:

e  Use trajectories generated from a map for the current
geographic region.

e Collect all trajectories of a given user and create
a generative probabilistic model (Markov chain) to
simulate new reference paths instances.

We choose the latter option in STASH. In the beginning,
STASH will only observe a few instances of a reference path
and any new local decision threshold we obtain would be
severely over-learned. Naively trusting the seen instances risks
a small sample size fallacy. Therefore, we need a way to
model the trustworthiness of the estimated local threshold.
We model the confidence as a mixture model using a convex
combination [17] of the thresholds d; (initial) and d; (local)
with a confidence factor A € [0, 1]:

d= M+ (1= M\)d;. (1)

We call the resulting threshold d a mixed threshold. A common
way to model the confidence in small sample sizes is to
use add-one smoothing [17]. When n is the number of seen
instances of a reference path, we can model A as:

—1
)\(n):nn . 2)

This fulfills our boundary conditions for A: A(1) = 0, implies
no confidence when we have only seen one instance of a
reference path and A(oo) = 1, signifying full confidence with
infinitely many instances. Figure ] shows how the confidence
factor increases w.r.t. the number of reference path instances
seen so far. We use equations |l| and [2| to determine mixed
thresholds throughout this paper. The three thresholds mixed,
local and initial are evaluated in Section
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Fig. 4. The confidence factor A increases with the number of observed
reference path instances. The distance to one halves at every multiple of two.

IV. IMPLEMENTATION AND EVALUATION

To be able to evaluate the performance and resource
requirements of STASH under real-world conditions, we im-
plemented our system on Android (See Figure [g).

A. Prototype for STASH

To optimize power consumption, the device enters sleep
after being stationary for 5 minutes. STASH acquires a wake-
lock [1]] when significant motion is detected to ensure that no
relevant sensor data is lost due to power optimization.

Resource requirements. STASH expects a continuous stream
of raw accelerometer and gyroscope data to extract the current
trajectory. It re-samples the input data to 20Hz before storing
it into a memory buffer (2.3MB/h each with 32bit precision),
which is a fixed circular buffer holding the past hour of
measurements. The values are classified on-demand with LR
and the classification results are stored into a separate circular
buffer (3.6kB/h with 8 bit booleans). By calculating gravity
and linear accelerometer values from raw accelerometer data,
STASH’s memory buffer requirements are brought down to
less than SMB in total. We use weka [12] to model logistic
regression on Android. The data is only smoothed when
trajectory comparison is needed. Once triggered, comparison
is done continuously at one second intervals for a set of ten
attempts by default. If successful, the data is written to disk and
aresponse is generated. Otherwise the authentication attempt is
aborted, whereby explicit proximity confirmation is required.

B. Movement Recognition

To evaluate the accuracy of movement recognition, we
collected a preliminary dataset covering different motion con-
ditions over four hours. We applied noise-based regularization
[17] to reduce potential over-learning. We then evaluated the
resulting LR model using five-fold stratified cross-validation
to separate training and testing data.

Out of ten features, we found that the three most significant
features were the standard deviation of the 5 second and
1 second sliding window of 3D differentiated accelerometer
values, and the peak-to-peak value for the 5 second sliding
window of gyroscope measurements: these corresponded to
58% of the weights of the LR model. Evaluation results for
LR showed a true positive rate of 98% for movement (M),
and 92% for stationary (S). These probabilities are used as
emission probabilities in the HMM, and we use a default value
of 99% probability to switch between hidden states.

C. Experimental Data Acquisition

To evaluate the accuracy of STASH as a whole, we
collected real-world data by repeatedly traversing a series
of routes. The dataset consists of paths corresponding to 20
different, 6 to 12 minute long routes in Espoo and Oxford. In
order to generalize across different devices, we gathered data
from five different device modelf] at 200Hz sampling rate.
We integrated the measurement devices with bicycles to avoid
uncontrolled orientation changes. Each trajectory was repeated
between 7 and 11 times. Routes contain real-world obstacles,
such as traffic lights, gravel, asphalt or cobblestone roads and
crowds. In total, the 7.7 GB dataset consists of the equivalent
of 38.6 hours of recording, collected over a total distance of
123 km.

30nePlus One, Nexus 6, Moto G (gen 2), Nexus 5X and Samsung GS6.
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Fig. 8. STASH classifies movement at one second intervals. Left: Users
can quickly lock V in case of false accepts. Right: Interface for saving
unrecognized paths. The length of the reference path can be adjusted.

D. Path Similarity Thresholds

Separability. For each of 20 unique routes Ry, k €
{1,...,20}, our data contains between 7 and 11 instances i, .
In order to evaluate the within-class similarities of each route
and determine if the Needleman-Wunsch measure supports
consistent classification, we calculated the similarities between
all pairs of instances, trimmed to a duration of 2 minutes. For
each route, this results in at least 21 unique pairwise within-
class, and 1595 unique pairwise between-class, similarities.

Figure [5] shows an example of within-class and between-
class similarities for one such route in our dataset, with all
other routes showing similar behavior. In an ideal noiseless
case, all instances i of a route R are identical, but in real-
world data, sensor noise results in a spread of similarities.
While there is an overlap of within-class and between-class
similarities in the score range [18,21], most within-class and
between-class cases are separated, confirming that Needleman-
Wunsch is indeed a good measure of similarity.

Determining the initial threshold. As described in Sec-
tion[[I] decision thresholds that STASH uses are adapted based
on the number of instances of a reference path seen so far.
When only a single instance has been authorized by the user,
STASH uses the initial threshold; as more instances are seen,

Error rates vs. « (with corresponding

Choosing a reference path-specific threshold 18 decision threshold). Large « values result in low
FRR, while small « results in low FAR.

Fig. 7. Training set FAR (red) and FRR (blue) for
20 routes (20 graphs). Training set for each route
consists of paths of all other routes pooled together.
EER is achieved at 18 in all graphs.

their similarities to the reference path are used to compute a
local threshold, and subsequently the mixed threshold, which
is a combination of initial and local thresholds that depends
increasingly less on the initial threshold as the number of seen
instances of a reference path increases.

We can compute the threshold with respect to a chosen
trade-off between FAR and FRR by minimizing the combined
error rate & - FRR + (1 — a) - FAR for a specific value of
the trade-off parameter . Figure [ shows optimal achievable
FARs and FRRs for poolecﬂg reference paths. For each value
of «, the minimum combined FAR/FRR is found by varying
the decision threshold. In scenarios where the usability of the
system is more important, larger v values should be used.

The decision threshold is naturally tied to the length L of
the reference path. In order for STASH to make a classification
decision for a candidate path given only one instance of a
reference path, we need to determine a function for the initial
threshold that depends on the length of the reference path L.
We did this by searching for the value d;, that minimizes the
combined error rate for o € {0.1,0.2,...,0.9} for reference
path lengths L € {1,2,...,6}. This gave us 6 dependent-
independent variable pairs per «, i.e. 9 linear regressions
[17]. We found that the relationship between optimal decision
threshold and the length of the path is affine. Figure [6] shows
that a* = 0.5 is closest to equal error rate. Setting o™ to 0.5,
we obtained the decision thresholds for pooled scores as:

D*(L) = 9.69L — 1.40 3)

These are rounded to integers such as: D*(1) = 8, D*(2) = 18
and D*(5) = 47. These particular decision thresholds serve
as examples on how initial thresholds are calculated, and we
use them in our STASH prototype. However, in order to give
an unbiased estimate of system performance, we do not use
exactly these values in the remainder of system evaluation, as
this might lead to over-fitting.

Instead, we calculate decision thresholds for each refer-
ence path separately, using the leave-one-reference-path-out
method, which we use for all subsequent analysis (a training
set is constructed using 19 reference paths; it is used to

4We aggregated all reference-path specific within-class distances to one
group, and all reference-path specific between-class distances to another group.



TABLE 1. MEAN AND STANDARD DEVIATION OF FAR/FRR USING
ONLY THE INITIAL DECISION THRESHOLD INDIVIDUALLY FOR 20 PATHS.

[ L (min) | FAR [ FRR ]
TOmin | 0.064 £0.057 | 0.137 £0.143
20 min | 0.043 +0.048 | 0.039 %+ 0.102
3.0 min | 0.073+0.085 | 0.047 £ 0.107
40min | 0.072+0.074 | 0.061 + 0.133
50min | 0.049 +0.061 | 0.057 & 0.103
6.0 min_| 0.047 +0.070 | 0.040 % 0.081

determine the initial threshold for the remaining reference
path). Figure [/| shows the FARs and FRRs by removing one
and retaining the 19 other reference paths (there are 20 lines
in total). As can be seen, training set error rates below 5% are
achievable for all 20 sets.

The next two sections discuss actual test error rates for spe-
cific paths that use individual and mixed thresholds, evaluated
w.r.t. two different parameters: the reference path length and
the number of instances of a reference path.

E. Impact of Reference Path Length

The mean error rates and standard deviations for our 20
reference paths using the initial threshold with varying refer-
ence path lengths are shown in Table Il FRRs are calculated
over all unique combinations of dividing instances ¢ of routes
R into reference path instances (training) and candidate paths
(testing). FARs are calculated by treating all other instances
15 of routes R as candidate paths. We know the temporal
length of the reference path and require the same length for
each candidate path. Both FAR and FRR drop when increasing
the length of the path from one to two minute, and reach
lowest mean FAR and FRR on 2 and 6 min long reference
paths. Initially, the mean FAR is between 4.3% and 7.3% and
FRR between 3.9% and 6.1% for reference paths longer than
two minutes. However, the variation in FRRs is high between
different reference paths. We see a clear drop at 2 min, but
FARs/FRRs for individual paths do not change significantly
beyond L = 2 min (Wilcoxon signed rank test’)). We thus use
L = 2 min for the rest of the analysis in this paper.

F. Using Multiple Reference Path Instances

Multiple instances of a reference path can be used to
increase security and usability of the system. This is done by
selecting a good representative for the reference path among
the seen instances (the instance at the cluster center - the
medoid) and by adopting a mixed threshold using equations
and [2| (combination of d; and d;). The local decision threshold
is calculated with the same scheme as the initial decision
threshold, by setting o = 0.5. If there are multiple solutions
that provide the same minimum error rate, we use the decision
threshold that is center most among these for a maximum
margin. The difference to the initial threshold derivation is that
we generate paths to estimate the distribution of between-class
similarities using a Markov chain [17]. This is done to prevent
over-learning by only using collected, real world paths.

To evaluate the effects of using the medoid and Equation
to calculate the confidence factor A we plotted the median
FARs and FRRs (per reference path), by varying the number

SNull hypothesis: No change in median FAR (resp. FRR) by increasing
paths’ temporal length. FAR: p-value 0.47, FRR: p-value 0.64. Wilcox zero
treatment, sample size = 79, test statistics 182.5 and 1023.
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Fig. 9.  Increasing the number of instances of reference paths leads to a
median decrease in FAR and FRR. The extent of this effect varies depending
on the used threshold derivation algorithm. Coordinates describe median (FAR,
FRR), numbers describe number of instances used.

of instances and the decision threshold calculation scheme. It
is easier to investigate trends with the median, since it is a
robust estimator that tolerates outliers better than the mean.
Figure [9] shows the median FARs and FRRs for the initial,
local and mixed thresholds using 2 min reference paths. These
represent doing no update, doing a full update or a conservative
update to the decision threshold, respectively. At each update,
the pairwise similarities are calculated between the instances,
and the instance with the largest summed similarity to the
other instances is selected as the medoid. The medoid is
used for calculating the similarity to each new candidate path.
The benefit in using the medoid to represent the reference
path is that only one similarity score needs to be calculated,
and that the score is calculated on the most representative
instance. In Figure [9] circles represent the continued usage
of the initial threshold. The median FRR is zero, but the
FAR does not improve with more instances, because the FAR
depends on the decision threshold, not on the reference path
representative. Using the initial threshold is equivalent to a
constant confidence factor A = 0, no trust in d;.

The squares represents the effect of using only the local
threshold. While FARs are at a similar level as the initial
threshold, median FRRs are significantly worse. With five or
more instances, median FARs drop to a lower level than with
initial thresholds. Using only the local threshold is equivalent
to a constant confidence factor A = 1 (full trust in d;).

Mixed thresholds are derived from initial and local thresh-
old values using equations [I] and 2] and are shown with
pentagons. The mixed thresholds retain the good FRR of
initial thresholds when few reference path instances are seen,
and achieve improved performance similar to local thresholds
when more instances have been observed. Using the confidence
factor in conjunction with medoids to calculate decision thresh-
olds is empirically shown to increase performance on two-
minute paths, dropping the median FAR from 2.0% — 1.5%
when increasing the number of instances from 1 to 5, while the
median FRR increases from 0.0% — 0.3%. Simultaneously,
the mean FAR drops from 4.3% — 3.4% and mean FRR drops
from 3.8% — 2.8%. To further validate our results, we analyze



50% Error rates with 5 reference path instances
b : : : :

; ‘

|

1

|

30% - }

|

20%- b B

15% |- . - -

10% | - Iitet i

5% - . :

74 SR o (e o
2 3

50% T

False Accept Rate

—_
-
1
1
=
.
L.

|1
Lol

30%| . - ! : . - . e

20% |- : - : : - - : -
15% |- . - . . T - . o
I
I

10% - E] S e T - - T
5%t - el - - b
2% by [5] ey

Reference path length (min)

False Reject Rate

Fig. 10. Mixed decision thresholds. Box-and-whiskers plot over FARs and
FRRs of different temporal lengths when STASH has seen five instances of
a reference path. On average FARs are below 3% and FRRs are below 0.5%
when L > 2min.

the results of STASH when five instances are used with mixed
thresholds.

Table [I] shows the resulting mean FARs and FRRs for
different reference path lengths. Mean FARs are in the range
of 2.3% to 5.0% and mean FRRs are in the range of 1.8%
to 3.1% for reference paths longer than 2 min. Both FAR and
FRR are smaller for these paths, and the spreads in FRRs
are significantly lower than in Table [l We find again that
FARSs/FRRs for individual paths do not change significantly by
considering reference paths beyond 2 min (Wilcoxon signed
rank tesf’).

Figure shows box-and-whiskers plots [17] for FARs
and FRRs for our 20 reference paths, evaluated over different
lengths, once five instances have been observed by STASH.
The outer lines of the boxes denote the 75th and 25th per-
centiles, while the line in the boxes denotes the median. The
whiskers denote the range, i.e. maximum and minimum values.
Note that on average, FARs and FRRs are lower than the mean
values reported in Table [[I] For reference paths longer than 2

TABLE II. MEAN AND STANDARD DEVIATION OF FAR/FRR USING
FIVE INSTANCES AND MIXED DECISION THRESHOLDS FOR 20 PATHS.
[ L (min) | FAR [ FRR |
1.0 min 0.141 £ 0.135 0.046 + 0.054
2.0 min 0.034 £+ 0.049 0.028 £ 0.042
3.0 min 0.023 £+ 0.028 0.018 £+ 0.031
4.0 min 0.050 £+ 0.078 0.031 £ 0.050
5.0 min 0.042 £+ 0.058 0.017 £ 0.032
6.0 min 0.030 £+ 0.050 0.015 £+ 0.032

min, median FARs are below 3% and FRRs below 0.5%.
Our implementation of STASH uses mixed thresholds so

that its performance improves with time.

G. Energy Consumption

To evaluate requirement R3] we created a controlled exper-
iment to measure the energy consumption of STASH. We ob-

®Null hypothesis: No change in median FAR (resp. FRR) by increasing
paths’ temporal length. FAR: p-value 0.43, FRR: p-value 0.15. Wilcox zero
treatment, sample size = 79, test statistics 779.5 and 272.

tained 3-hour consumption reports on three different devicesﬂ
ten times each. A control group had no STASH installed, and
did not have WiFi nor mobile connectivity.

Case 1. We model a scenario where an office employee
periodically moves away from her workplace and returns back,
triggering an access control decision. Movement initiates data
collection at full sampling rate. Upon approaching the premise,
and thus V), path recognition is triggered and runs 60 times
Table reports the net contribution of STASH, compared to
the control groupﬂ The increase in energy consumption varies
between devices. On average we recorded a drain of 0.56%
(of total battery capacity) per hour.

TABLE III. NET INCREASES IN HOURLY BATTERY CONSUMPTION
RATES (PERCENTAGE OF TOTAL CAPACITY) AND MILLIAMPERE (CASE 1).
Device %/h mA
Nexus 5 0.41 +0.23 (9.32 £5.22)
Nexus 5X 0.63 +0.33 (17.13 £ 8.92)
Samsung S6 0.61 +0.24 (15.45 £ 6.44)

Case 2. We observed that the largest contributor to battery
usage was the wakelock that ensured sensor measurements
were processed quickly and not lost due to an overflowing
sensor buffer. Therefore, we recorded the energy usage with
wakelock acquired for three hours. This represents the worst
case scenario. The hourly net battery drains for our devices are
shown in Table The mean increase in battery usage varies
across devices, with an overall average of 1.9% per hour. We
believe that the drain increase in Nexus 5X and Samsung S6 is
a result of these devices using different power states efficiently,
causing the consumption in the control group to be lower.

TABLE IV. NET INCREASES IN HOURLY BATTERY CONSUMPTION
RATES (PERCENTAGE OF TOTAL CAPACITY) AND MILLIAMPERE (CASE 2).
Device %/h mA
Nexus 5 0.87 +£0.28  (20.11 + 6.40)
Nexus 5X 2.31 +0.24 (62.28 £ 6.60)
Samsung S6 2.55+0.17 (65.14 £+ 4.33)

Case 3. Energy consumption of smart phone models can vary
significantly for different settings and sensors. On average
users recharge their batteries within an hour of depletion [29].
A study [21] found the average battery life to be nine hours
(11% consumption rate) under favorable circumstances. In a
setting where ¢/ commutes for one hour and does office work
for eight hours, we estimate (using data from Tables [[IT|and [[V)
the additional battery drain due to STASH to be between 4%
and 7%, depending on the phone model. These correspond
to a decrease of approximately 20-40 minutes for a device
with a battery life of nine hours. For comparison, the loss in
battery life when moving from an area with average WiFi to
bad coverage was estimated to be 6.29% [21]].

V. SECURITY ANALYSIS

STASH prevents relay attacks by having P verify its
proximity to V' through prover-side trajectory comparison: if
‘P’s current trajectory (candidate path) matches the authorized

"Nexus 5, Nexus 5X and Samsung GS6. The devices are charged to 100%
before the start of the experiment; the battery level is measured after 3 hours.
8The employee moves for 5 minutes once an hour, repeated three times.

9 Android Debug Bridge provides lower and upper bounds to the battery
usage with 1% granularity. We only show the upper bound estimates here.



approach trajectory (reference path) to )V, P locally decides to
participate in the authentication protocol with V.

To evaluate the security guarantees of STASH, we analyze
our dataset (Section corresponding to a total of 123 km
equivalent to 38.6 hours of movement. We used false accept
rate of trajectory comparison as the measure for security. We
showed that, on average, an adversary has a less then 5%
chance even when STASH has only observed one instance
of a reference path (Table [[). This drops steadily as more
instances are collected so that we can report a rate below 3.5%
in Table [[T on average and 1.5% in median (Figure [9) after 5
path instances.

For a successful relay attack (a) A is required to follow
U in close proximity and (b) P has to be in motion in order
to produce a path recording. In a typical attack scenario, a
thief tries to gain access through V to steal a keyless-entry car
while U and P are stationary which leads to a failing proximity
verification and thus P denying access to the authentication
credentials. In this case STASH successfully improves security
by completely preventing the relay attack.

The security of the trajectory leading to V is inversely
proportional to the likelihood that there exists another route
(not terminating in V) that A could use to mount a relay attack
if U happens to traverse it. The measure for security however
depends on the geographic neighborhood: for instance, a
trajectory with many turns can be considered to be more
complex than a straight-line in most cities but in an old town
that has few straight roads, such a trajectory may be uniquer.
We can incorporate such uniqueness assessment of a reference
path into STASH by analyzing a city’s road data to find paths
that are similar to a given reference path and hence vulnerable
to relay attacks. This is equivalent to the likelihood of the
user unintentionally authenticating to } while she is traversing
some other route not leading to V. This estimate can be used
as a security level indicator.

VI. DISCUSSION AND FUTURE WORK

Why transparent authentication. When trajectory compari-
son fails, STASH will prompt the user for explicit proximity
confirmation as to whether the current candidate path should
be included in the set of authorized reference paths for a given
verifier. The popularity of keyless entry as a premium feature
across different car manufacturers suggest that consumers are
willing to pay for the convenience of transparent authentica-
tion. Google’s Trust API (Project Abacus) [14]] underscores TA
as a trend. STASH’s contribution is to retain the convenience
promised by transparent authentication while significantly en-
hancing resilience against relay attacks.

Verification of return paths. By relying on reference path
instances gathered over time, STASH is currently limited to
scenarios with stationary verifiers. But since STASH represents
trajectories as sequences of primitives it is possible to compare
a reference path that starts from the location of the verifier
to a candidate path that ends at the verifier by reversing the
reference path. This allows transparent authentication even for
mobile verifiers: e.g., when a user parks his car at a new place
and goes to a mall and returns to the car via the same route.
Our evaluation showed promising results, and we leave its
comprehensive analysis for future work.

Prover orientation changes. If P is a portable device like a
smart phone, fast changes in P’s orientation (e.g. taking the
phone out of the pocket) affect turn detection reliability. In our
evaluation, we avoided this by integrating P with a vehicle,
we chose a bike for our experiments.

Additional sequence primitives. While this paper focuses
only on using low-cost internal sensors, STASH can be ex-
tended to use additional primitives besides movement, left and
right turn. If the requirement to use only internal sensors is
relaxed, the system could start detecting presence of specific
wireless networks or indoor short-range beacons; if the user
is indeed taking the same path as was the case when the
corresponding reference path was recorded, then the same
events should be detected at specific locations. Such detected
presences can easily be represented by additional symbols
and seamlessly integrated into the current implementation of
STASH. Additionally, while we currently focus only on a
single movement modality, STASH can be augmented with a
transport mode detection scheme [13] that would add further
entropy and hence uniqueness to generated paths. As such, a
path that includes walking, then taking a bus, and then walking
would be more specific than if all movement intervals are
represented with the same symbol.

VII. RELATED WORK

Trajectory recognition. Trajectory recognition estimates the
location of a user and can be used to enable additional
convenience functions but also to subvert a user’s privacy. The
following techniques do not rely on GPS location information
but use a different way to obtain location ground truth, e.g.
a street map or the timetable of public transportation. After a
correlation between mobile measurements and this information
the system estimate the user’s location.

Gao et al. [8] propose an approach using vehicular speed
and the start location to estimate final destination and path of a
car. By matching these segments to map data they achieved an
accuracy of 500 meters for 24% of traces in the New Jersey and
26% of traces in the Seattle area. Further, Watanabe et al. [30]]
identify a user’s train trips based on inertial measurements.
First, the user’s activity is classified into inside a vehicle,
walking and remaining stationary. Afterwards, the transition
times between the different modes are used to correlate them
with timetables. Each train trip is weighted according to its
popularity to reduce the number of candidates. Their results
show that location detection along train networks is feasible.
The work by Nawaz and Mascolo [[19] explores the significant
transport routes of a user based on gyroscope data. According
to their hypothesis, a route exposes a certain signature based
on angular momentum. They apply dynamic time warping
to account for differences in routes due to traffic conditions.
Our system in contrast ignores stationary phases which makes
time warping unnecessary. As shown by Narain et al. [18],
it is possible to infer routes taken by a user solely based on
permission free on-board sensors, e.g. gyroscope. Hence, to
protect a user’s privacy our approach processes the information
locally without the need of a remote service.

Co-presence verification. The co-location of devices is an
important countermeasure against impersonation and relay
attacks. In some cases it is also used as a second factor



for authentication. Although GPS could be used to assert co-
location in theory, these signals are not authenticated and thus
not trustworthy [26]. A range of alternatives based on context
comparison has recently emerged.

Halevi et al. [11]] propose co-presence detection based on
comparing audio and light. A merchant terminal and mobile
phone probe their environments to compare them to assert co-
location. They evaluate both modalities separately, and achieve
a FAR of 6.5% and a 5% FRR for light while reporting a FAR
and FRR of 0% for audio.

A similar approach to mitigate relay attacks is explored by
Shrestha et al. [22] and Truong et al. [27]. They use natural
environment properties as well as digital signals. Truong et
al. [27] identify WiFi as the dominating feature with a FAR
of 2% and a FRR of 1%. In their approach, Shrestha et
al. conclude that a modality fusion reduces the FRR of up
to 24% and FAR of up to 33% of an individual features
to 3% and 6% respectively. However, in follow-up work
they were able to increase the FAR from 3% to 66% by
manipulating a single modality [23]. Hence, increasing the
number of modalities does not necessarily strengthen security
as it depends on the weights machine learning models assign
to them. A thorough analysis of these algorithms is required
to give sophisticated security guarantees. Karapanos et al. [[16]
use the audio fingerprint of a location as a second factor for
authentication. Their threat model assumes a remote attacker
who obtained the user’s credentials.

VIII. CONCLUSION

We proposed, implemented and evaluated STASH, a novel
approach to prevent relay attacks in transparent authentication
schemes. As STASH is entirely realized on the prover device it
allows easy integration into existing systems while preserving
the user’s privacy at the same time. The performance of our
approach and the negligible resource requirements make it a
valuable extension of current TA schemes.

ACKNOWLEDGMENTS

This work was supported by the Academy of Finland
“Contextual Security” project (274951) and the “CDT Cyber
Security” fund of the Engineering and Physical Sciences
Research Council, United Kingdom.

REFERENCES

[1] Android. Keeping the device awake, 2016.

https://developer.android.com/training/scheduling/wakelock.html.

[2] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes. In IEEE Symposium on Security and Privacy,
SP 2012, 21-23 May 2012, San Francisco, California, USA, pages 553—
567. IEEE Computer Society, 2012.

[3] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. Pass-
words and the evolution of imperfect authentication. Commun. ACM,
58(7):78-87, 2015.

[4] S. Brands and D. Chaum. Distance-Bounding Protocols. In Advances
in Cryptology EUROCRYPT 93, pages 344-359. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993.

[5] M. D. Corner and B. D. Noble. Zero-interaction authentication. In
Proceedings of the 8th annual international conference on Mobile
computing and networking - MobiCom '02, page 1, New York, New
York, USA, sep 2002. ACM Press.

(6]

(71

(8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Dolev and A. C. Yao. On the security of public key protocols.
Information Theory, IEEE Transactions on, 29(2):198-208, 1983.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge
university press, 1998.

B. Firner, S. Sugrim, Y. Yang, and J. Lindqvist. Elastic pathing: Your
speed is enough to track you. arXiv preprint arXiv:1401.0052, pages
975-986, 2013.

A. Francillon, B. Danev, and S. Capkun. Relay Attacks on Passive
Keyless Entry and Start Systems in Modern Cars. Network and
Distributed System Security Symposium, pages 431-439, 2011.

L. Francis, G. Hancke, K. Mayes, and K. Markantonakis. Practical
relay attack on contactless transactions by using NFC mobile phones.
In Cryptology and Information Security Series, volume 8, pages 21-32,
2012.

T. Halevi, D. Ma, N. Saxena, and T. Xiang. Secure Proximity Detection
for NFC Devices Based on Ambient Sensor Data. pages 379-396.
Springer Berlin Heidelberg, 2012.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10-18, 2009.

S. Hemminki, P. Nurmi, and S. Tarkoma. Accelerometer-based trans-
portation mode detection on smartphones. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, page 13.
ACM, 2013.

A. Hern. Google aims to kill passwords by the end of this year —
Technology — The Guardian, 2016.

A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara. A comparison of
pedestrian dead-reckoning algorithms using a low-cost mems imu. In
Intelligent Signal Processing, 2009. WISP 2009. IEEE International
Symposium on, pages 37-42. IEEE, 2009.

N. Karapanos, C. Marforio, C. Soriente, and S. Capkun. Sound-Proof:
Usable Two-Factor Authentication Based on Ambient Sound. In 24th
USENIX Security Symposium (USENIX Security 15), pages 483-498,
2015.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. Inferring user routes
and locations using zero-permission mobile sensors. 2016.

S. Nawaz and C. Mascolo. Mining users’ significant driving routes
with low-power sensors. In Proceedings of the 12th ACM Conference
on Embedded Network Sensor Systems, pages 236-250. ACM, 2014.

V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello. Continuous
User Authentication on Mobile Devices: Recent progress and remaining
challenges. IEEE Signal Processing Magazine, 33(4):49-61, jul 2016.

E. Peltonen, E. Lagerspetz, P. Nurmi, and S. Tarkoma. Energy modeling
of system settings: A crowdsourced approach. In Pervasive Computing
and Communications (PerCom), 2015 IEEE International Conference
on, pages 37-45. IEEE, 2015.

B. Shrestha, N. Saxena, H. T. T. Truong, and N. Asokan. Drone to the
Rescue: Relay-Resilient Authentication using Ambient Multi-sensing.
pages 349-364. Springer Berlin Heidelberg, 2014.

B. Shrestha, N. Saxena, H. T. T. Truong, and N. Asokan. Contextual
Proximity Detection in the Face of Context-Manipulating Adversaries.
Nov 2015. arXiv report /1511.00905 http://arxiv.org/abs/1511.00905.

SourceForge. BlueProximity. https://sourceforge.net/projects/blueproxi-
mity/.

A. Tefas, C. Kotropoulos, and L. Pitas. Using Support Vector Machines
to enhance the performance of elastic graph matching for frontal face

authentication. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 23(7):735-746, 2001.

N. O. Tippenhauer, C. Popper, K. B. Rasmussen, and S. Capkun. On
the requirements for successful GPS spoofing attacks. ACM conference
on Computer and communications security, CCS, page 75, 2011.

H. T. T. Truong, X. Gao, B. Shrestha, N. Saxena, N. Asokan, and
P. Nurmi. Using contextual co-presence to strengthen Zero-Interaction
Authentication: Design, integration and usability. Pervasive and Mobile
Computing, 16:187-204, 2015.



[28] H. T. T. Truong, B. Shrestha, N. Saxena, N. Asokan, and P. Nurmi.
Comparing and fusing different sensor modalities for relay attack resis-
tance in Zero-Interaction Authentication. In 2014 IEEE International
Conference on Pervasive Computing and Communications (PerCom),

pages 163—171. IEEE, mar 2014.

D. T. Wagner, A. Rice, and A. R. Beresford. Device analyzer:
Understanding smartphone usage. In International Conference on
Mobile and Ubiquitous Systems: Computing, Networking, and Services,
pages 195-208. Springer, 2013.

T. Watanabe, M. Akiyama, and T. Mori. RouteDetector: Sensor-
based Positioning System That Exploits Spatio-Temporal Regularity of
Human Mobility. 2015.

G. Xiao, M. Milanova, and M. Xie. Secure behavioral biometric
authentication with leap motion. In 2016 4th International Symposium
on Digital Forensic and Security (ISDFS), pages 112-118. IEEE, apr
2016.

[29]

[30]

[31]

APPENDIX

Algorithm 1 Turn detection with angular data.

Heading angle a(tp) =0
repeat
Update heading angle «(t;)
Update rolling standard deviation for last 2 seconds
Update time when turn begins (tpegin) and ends (tenq)
if turn ends then
d= a(tend) - a(tbegin)
n = |round(d/15°)|
if d > 0 then
add n symbols R
else[d < 0]
add n symbols L

until app closed

Algorithm [I] shows pseudocode for our turn detection al-
gorithm. Gyroscope and accelerometer signals are re-sampled
to 20Hz in STASH. Axis-specific gyroscope noise is set to
zero during stationary time (std < 0.01). Gyroscope events
are realigned to the earth’s frame by projecting along the
gravity direction. The heading angle is acquired by integration
(initial angle zero). Turns (yaw angle differences) are acquired
continuously with Algorithm

10

Trajectories are defined a sequences of M (movement)
and L/R (left/right) primitives. Parameters used in STASH
are shown in Table [Vl Movement is classified with a lo-
gistic regression function every second. A hidden Markov
model smooths the classified result into the sequence of most
likely events. The sequence of movement and turn events are
combined with turns taking precedence. Table [V| summarizes
parameters used in STASH. Trajectory comparison is done
using the Needleman-Wunsch (NW) algorithm.

TABLE V. PARAMETER USED IN STASH.
[ Parameter [ value |

Movement event time 5 seconds

M -event TPR 98 %
S-event TPR 92 %
HMM prior p(M — M) 99 %
HMM prior p(S — S) 99 %
Movement classification frequency 1 second

HMM Viterbi smoothing [ at arrival to V ]

[ Turn event granularity [ 15° |
Gyroscope flatten std thr. 0.01°
Turn detection std thr. 3°
Turn fine-tune std thr. 1°
Needleman-Wunsch match +1
Needleman-Wu. mismatch —2

—1

Needleman-Wunsch gap

Table VI shows the initial decision thresholds in NW
obtained by minimizing the error rate «- FRR+(1—a)-FAR.
A candidate path is accepted if its similarity to a reference path
is higher than the decision threshold. The values are calculated
for the pooled thresholds (see Section [[V-D).

TABLE VI. DECISION THRESHOLDS FOR NEEDLEMAN-W UNSCH
ALGORITHM, W.R.T. TRAJECTORY LENGTHS IN MINUTES. THE R VALUE
FOR THE OLS FIT IS SHOWN IN PARENTHESES.

& D(L)

0.1 10.171L 4 1.400 (r = 0.998)
0.2 10.314L — 0.600 (r = 0.999)
0.3 10.143L — 1.000 (r = 0.999)
0.4 9.543L — 0.067 (r = 0.998)
0.5 9.686L — 1.400 (r = 0.998)
0.6 9.914L — 2.533 (r = 0.998)
0.7 9.771L — 3.533 (r = 0.996)
0.8 8.600L — 1.600 (r = 0.993)
0.9 7.914L — 2.200 (r = 0.989)
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