Abstract:
RF power transfer is becoming a reliable solution to energy supplement of Internet of Things (IoT) in recent years, thanks to the emerging off-the-shelf wireless charging...Show MoreMetadata
Abstract:
RF power transfer is becoming a reliable solution to energy supplement of Internet of Things (IoT) in recent years, thanks to the emerging off-the-shelf wireless charging and sensing platforms. As a core component of IoT, sensor nodes mounted with these platforms can not work and harvest energy simultaneously, due to the low-manufacture-cost requirement. This leads to a new design challenge of optimally scheduling sensor nodes' operation states: working or recharging, to achieve a desirable network utility. We show that the operation state scheduling problem is quite challenging, since the time-varying network topology leads to spatiotemporal coupling of scheduling strategies. We first consider a single-hop special case of small-scale networks. We employ geometric programming to transfer it into a convex optimization problem, and obtain an optimal analytical solution. Then a general case of large-scale multi-hop networks is investigated. Based on Lyapunov optimization technique, we design a State Scheduling Algorithm (SSA) with a proved performance guarantee. Our algorithm decouples the primal problem by defining a dynamic energy threshold vector, which successfully schedules each sensor node to the desirable state according to its energy level. To verify our design, the SSA is implemented on a Powercast wireless charging and sensing testbed, achieving about 85% of the theoretical optimal with quite low time complexity. Furthermore, numerous simulation results demonstrate that the SSA outperforms the baseline algorithms and achieves good performance under different network settings.
Published in: 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)
Date of Conference: 11-13 June 2018
Date Added to IEEE Xplore: 28 June 2018
ISBN Information:
Electronic ISSN: 2155-5494