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Abstract—Detecting urban anomalies is of upmost importance
for public order management, since they can pose serious risks
to public safety if not timely handled. However, monitoring large
metropolitan areas requires complex systems that can potentially
lead to elevated costs. In this paper, we discuss the opportunity
of exploiting the mobile network as a supplementary sensing
platform for detecting urban anomalies. To favour the reliable
and low latency anomaly recognition, we rely on a Multi-access
Edge Computing (MEC) architecture, which enables a deep and
detailed mobile traffic characterization almost in real-time and
allows for a performance-responsive service, that is crucial in our
problem.

We focus on urban anomaly detection, by monitoring known
events that gather a high concentration of people. The mobile
network information is collected from LTE Physical Downlink
Control Channel (PDCCH), which contains the radio scheduling
information and has the benefit of being unencrypted and fine-
grained, since the messages are exchanged every LTE subframe
of 1 ms.

To this purpose, we design an anomaly detection system
based on Long Short-Term Memory (LSTM) Neural Networks,
to deal with sequential and recurrent inputs. We demonstrate
that a stacked LSTM architecture is able to identify traffic
anomalies provoked by a rapid growth in the number of
users, when a crowded event takes place nearby the monitored
area. The numerical results show that the proposed algorithm
reaches an F-score = 1 and overcomes the performance of other
state-of -the-art benchmarks.

I. INTRODUCTION

Nowadays most of the population of the planet lives in
towns with a higher and higher concentration of people in
the metropolitan areas. This trend brings evident economic
benefits to citizens, but, several issues for their wellness,
e.g., congested mobility and transportation, air quality and
pollution, social segregation, to name a few, have been raising.
Therefore, such demographic changes require cities to imple-
ment smart strategies for a more sustainable development and
management of metropolitan areas.

In this context, the automatic detection of urban anomalies,
like unexpected crowd gathering, is of upmost importance for
government and public administration [1]. However, urban
anomalies often exhibit complicated forms, and monitoring
heterogeneous sources like traffic flows or public transporta-
tion usage, requires complex sensing systems. Generally, the
collection of such information can be achieved with a remote
sensing platform, composed of a distributed network of sensors

and cameras [2], or, alternatively using crowd-sourcing meth-
ods [3]. However, enabling such complex platforms requires
the direct human intervention and it can be expensive due to
the installation and to the maintenance of the hardware needed
to monitor and report the public status in different parts of the
city.

A viable opportunity to effectively complement the already
available monitoring systems, is to exploit the extreme perva-
siveness of the mobile networks: using the mobile network as a
sensing platform, eliminates the need for additional expensive
hardware and it is valuable in the long-term because of 5G
Ultra-Dense Networks (UDN), which, in the upcoming years,
will boost the ubiquity of the mobile networks [4].

In this paper, we demonstrate how to perform Anomaly
Detection (AD) using mobile network data: to this end, we
leverage a Multi-access Edge Computing (MEC) architecture,
which enables the mobile data processing directly from the
radio access, and the detection of anomalies occurring in an
area covered by one base station. The mobile data is collected
from the LTE Control channel and it is provided to a MEC
server, which promptly processes the information close to the
edge of the network, i.e. at the radio-access, avoiding high
latencies.

The approach we adopt in this work is the following:
we collect the mobile network data by passively sniffing
the unencrypted LTE Physical Downlink Control CHannel
(PDCCH) from base stations in a certain area. We proceed
by identifying a known event (e.g. a football match) that is
expected to generate a large concentration of people in a
certain urban zone. We collect measurements from the target
zone during different days for a sufficiently long period,
and we finally design and use an anomaly detection tool
that is able to identify the anomalous behaviour, during the
targeted event. The identification of such unexpected events is
beneficial in a wide range of contexts, for example, for public
safety purposes, for the optimization of urban planning, and
for network management optimization, to handle e.g. network
congestion issues that may affect the Quality of experience
(QoE) of the users, especially if they are demanding real-time
services.

To this end, we design an anomaly detection (AD) system
based on recurrent neural networks (RNNs), which are the
state-of-the-art learning techniques to cope with sequential
input data, showing outstanding performance, for example, in978-1-7281-2294-6/19/$31.00 ©2019 IEEE



the area of Natural Language Processing (NLP) [5]. We adopt
Long Short-Term Memory (LSTM) neural networks, which
are capable of learning long-term dependencies from the input
time series, while solving the vanishing-gradient problem that
affects standard RNNs.

The presented analysis shows that our proposed algorithm
for AD achieves an F-score of 1 on the considered dataset and
also provides a comparison with other classes of algorithms.
The methodology and the achieved results are novel in the
context of urban anomaly detection. In summary, the original
contributions of the paper are the following:
• Mobile Network as a Sensing Platform: we propose to

exploit the pervasiveness of the existent network to mon-
itor locally the presence of people and to detect potential
anomalies; this method reduces the need of installation
and maintenance of additional expensive hardware;

• LTE Channel Data Collection: we collect unencrypted
LTE PDCCH control data, to analyse the mobile traffic
conditions. This allows for a fine grained analysis since
the messages are exchanged every Transmit Time Interval
(1 ms). Instead of using internal base station information,
the proposed methodology relies on a passive over-the-air
listening of the channel control;

• Anomaly Detection with LSTM Neural Networks and
Comparison: we design an algorithm based on LSTM
neural networks and we tune the training parameters to
obtain a maximum F-score of 1. The algorithm is in-
tended to work in real-time, based on the LTE control data
provided to the MEC server. A comparison with other
state-of-the-art algorithms demonstrates the advantage of
our supervised approach.

The paper is organized as follows: in Section II, we discuss
about the scenario, whereas in Section III, we describe the
dataset collection and we give a brief characterization of
the mobile traffic profile of the monitored base station. In
Section IV, we introduce the anomaly detection framework,
describing in turn each of the adopted steps, including how
we tailor the LSTM architecture for anomaly classification.
Finally, in Section V, we evaluate the proposed algorithm
and we compare the results with state-of-the-art techniques.
The conclusion in Section VI includes final remarks of the
presented work.

II. SCENARIO

We consider a scenario like the one depicted in Fig.1, where
a MEC server is deployed and co-located with a multi-access
RAN, e.g. LTE base stations (eNodeB). The MEC server
coordinates several virtual machines (VMs), which share the
computational efforts to support the traffic load from a limited
number of eNodeBs and it is provided with the LTE network
data. To supply this information to the MEC, one solution is
to create a link to share the internal base station data to the
MEC: however, to get access to the eNodeB information, it is
required the direct intervention of the mobile network operator.

Alternatively, the solution we adopt consists of listening to
the LTE Control Channel information and it can be feasibly
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Fig. 1: Scenario.

performed by external individuals: using the unencrypted data
sent over the LTE PDCCH we can obtain the full scheduling
information about the radio resource usage for that particular
base station. More precisely, it is possible to serve MEC with
Downlink Control Information (DCI) messages, from which
we can derive the resource blocks and the modulation and
coding index assigned to the users together with an user
identifier. This approach presents two main advantages:

1) the collected data does not present any privacy/security
issue, since it relies on the LTE security protocols,
and therefore no additional procedure to preserve user’s
anonymity is required;

2) the passive listening over-the-air does not need additional
expensive hardware to provide the information to the
MEC server and the DCI decoding can be performed
directly using open-source software.

For these reasons, the proposed approach exploits the ex-
istent infrastructure and is feasible in terms of costs and
effectiveness.

III. DATASET

A. LTE Control Channel

Our analysis is based on real measurements, that we acquire
from operative mobile networks in Spain. The data is collected
from the LTE Physical Downlink Control CHannel (PDCCH),
which is used to bring scheduling information to the User
Equipment (UE). In particular, we decode Downlink Control
Information (DCI) messages using an over-the-air sniffer,
which consists of a software-defined radio (SDR), connected
to a PC. The PC performs the decoding of the DCI messages
through the open-source software developed in [6]. We used a
Nuand BladeRF x40 SDR and an Intel mini-NUC, equipped
with an i5 2.7 Ghz multi-core processor, 256 GB SSD storage
and 16 GB of RAM. The main advantages of this methodology
are the following:
• utilizing the LTE control channel data, we passively

obtain the scheduling information of all the connected
users from a network perspective;

• the fine granularity allows for a precise analysis, which
is crucial in time-responsive applications.

Each connected user is identified by a
C-Radio Network Temporary Identifier (RNTI). For each



Fig. 2: Map of Barcelona area where the measurement campaign took place
for the creation of the input dataset. The eNodeB location is denoted by A,
whereas the data collection system is marked as B.

of the assigned C-RNTI, we can extract the following
information:
• Number of allocated resource blocks: in LTE, a Resource

Block (RB) represents the smallest resource unit in time
and frequency that can be allocated to any user. The
number of resource blocks that are assigned to a specific
User Equipments (UE) (NRB), is derived based on the
bitmap included in the DCI.

• Modulation order and code rate: the Modulation and
Coding Scheme (MCS) is a 5-bit field that determines
the modulation order and the code rate that are used, at
the physical layer, for the transmission of data to the UE.

Based on the number of resource blocks and on the MCS
index, it is possible to derive the Transport Block Size (TBS),
that specifies the length of the packet in bits to be sent to the
UE in the current Transmission Time Interval (TTI). The TBS
can be calculated from a lookup table by using MCS and NRB,
as explained in [7].

B. Data Collection

The measurement campaign took place in the city of
Barcelona for one month. We monitored an eNodeB located
nearby the popular Camp Nou football stadium: Camp Nou is
the largest European football stadium and allows up to almost
100 thousand attendance per event. The stadium is located in
a urban residential area of Barcelona, which is characterized
by a high population density. The choice of the eNodeB to be
monitored is made based on the high variability of the traffic
during sports and leisure events, which are hosted periodically
into the stadium.

In this work, we are interested in studying the total traffic
exchanged between the eNodeB and all the connected users.
Thus, we need to aggregate the eNodeB traffic: let T be the
total measurements period; for every second t ∈ T , we define
x(t) as the vector that contains the following information

1) RNTI: the total number of assigned C-RNTI;
2) TBSdown: the total number of transport block size as-

signed in the downlink direction;

3) TBSup: the total number of transport block size assigned
in the uplink direction;

4) RBdown: the total number of resource blocks allocated in
the downlink direction;

5) RBup: the total number of resource blocks allocated in
the uplink direction;

We indicate with D the number of metrics we consider in x(t).
Therefore, the sequence x(t) is a multi-variate time-series,
which includes these metrics that are extracted directly from
the decoded DCI messages and aggregated over all the as-
signed C-RNTI.

C. Mobile Traffic Analysis

The collected dataset allows for a localized characterization
of the mobile traffic, which is exchanged in the area of
the monitored eNodeBs. In Figure 3, we can see the daily
traffic profile derived from the scheduling information about
the transport block size. The profile is typical for residential
areas [8]: night and day periods are easily distinguishable and
it is possible to observe that the traffic peak is reached around
8 pm, when, typically, residents are at the end of their working
day. The profile is obtained as an aggregate of the transmitted
data in the downlink direction (e.g. data sent from the eNodeB
to the UEs), which is more relevant than the uplink in terms
of data volume.

In Fig. 4, we observe the mobile traffic for several days.
The plot includes one match-day, during which a football game
takes place: it is possible to identify a regular daily pattern, but,
also, traffic anomalies, which deviate from the normal behav-
ior. The plots in Fig. 4 show the number of assigned C-RNTIs,
the transport block sizes and the number of allocated resource
blocks, averaged over a 30-minutes window. We recognize
the match-day, due to the presence of prominent peaks. As
observable, the number of C-RNTIs seems to represent a good
indicator for measuring and detecting the traffic variations,
since it is assigned by the eNodeB to temporarily identify the
different UEs.

Based on the previous observations, we establish that the
traffic conditions that the network experiences can be catego-
rized at least into two states, which are identified as normal
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Fig. 3: Daily traffic profile.
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Fig. 4: Traffic profiles including one match day.

behaviour, typical when no football match is scheduled, and
as anomalous behaviour, when the traffic deviates from the
expected behaviour at a given time of the day.

IV. ANOMALY DETECTION FRAMEWORK

The problem of discriminating the anomalous states from a
normal state of the network traffic conditions is classified as
an anomaly (or outlier) detection problem. In this work, we
design an anomaly detection (AD) system based on stacked
Long Short-Term Memory (LSTM) neural networks, which are
capable of tracking long-term dependencies from multi-variate
time-series, while solving the vanishing-gradient problem that
affects standard RNNs. The intuition is that a stacked LSTM
network is able to extract the temporal dependencies of the
mobile traffic patterns and learn to discriminate the anomalies
from the normal pattern.

Since we know the match times and therefore, we know
when the related anomaly occurs, the approach that we use in
this work is supervised. Thus, the AD problem is addressed as
a binary classification problem, where the designed algorithm
is in charge of classifying the network traffic sequences into

two classes: normal or anomalous behaviour. In general,
AD supervised algorithms lead to more accurate results with
respect to other techniques [9].

The whole framework to solve the AD problem is depicted
in Fig. 5; it takes as input the data collected from LTE PDCCH
and it consists essentially of 2 parts: Data Preparation and
Algorithm Learning. The implementation details of both parts
are discussed in the next sections.

A. Data Preparation

The dataset x(t), needs to be preprocessed and labeled
before being input to the AD algorithm. Next we illustrate
the procedure we adopt, consisting into four steps:

1) Data Resampling and Normalization: the sequence x(t)
is resampled using a value ts and standardized by removing
the mean and by scaling to unit variance. This operation
filters the input sequence and normalizes the original curve,
henceforth it helps to identify rapidly the anomalies also by
visual inspection (in Fig. 4 ts = 30 minutes). Hereafter, to
keep simple the notation, we use x(t) to also indicate the
resampled sequence.

2) Data Windowing: the sequence x(t) is split and grouped
using a fixed-length window W . The window is moved each
time by one-step. The value of W defines the number of
time-lags that the LSTM architecture processes to classify the
input as anomalous or normal. This also determines the input
length to the first LSTM layer.

The multi-variate sequence can be expressed as
[x(1),x(2), . . . ,x(T )], being T the cardinality of T ,
i.e. T = |T |. After the split, we have N ′ = T − W + 1
sequences x(n′), n′ ∈ [1, N ′]

x(1) = [x(1),x(2), . . . ,x(W )]

x(2) = [x(2), . . . ,x(W + 1)]

x(N ′) = [x(N ′), . . . ,x(T )]

A sequence x has length W and each of its element is
D-dimensional, with D ∈ [1, 5] the number of considered
metrics described in Section III-B. Hereafter, we refer to
the sequence x as samples. Then, we can define X′ the
three-dimensional matrix which contains N ′ sequences x. The
matrix X′ has dimension N ′ ×W ×D.

3) Data Augmentation: One of the most common problems
in supervised classification is the lack of sufficient labeled
data for which the algorithm is able to learn and distinguish
the different classes [10]. This becomes more serious for
anomaly detection, where, by definition, the anomalous be-
haviour appears very infrequently, creating a very unbalanced
ratio between the two classes. Moreover, in order to validate
the algorithm performance, we need to split the dataset into
training and validation sets, which reduces the number of
anomalous samples from which the algorithm can learn (or
validate), making it difficult to obtain meaningful results in a
statistical sense.

To overcome this issue, as done in [11], we can augment
our dataset by replicating the data by a factor F . The objective



Fig. 5: LSTM-AD Framework.

is to have enough samples in both the training and validation
sets. This simple but effective method does not change the
distribution of the anomalous samples (less than 8% in our
case) in the dataset, but allows for statistical measure of the
performance metrics (described in Section V-A), which is
required to evaluate the proposed algorithm.

We obtain X as the repetition of X′: this operation can
be seen as stacking X′ F -times along the first dimension. The
new matrix dimensions are N×W ×D, with N = N ′ ·F . We
choose F = 3 to have a sufficient number of anomalies (> 10)
in the validation set. Similarly to x(n′), we refer to the samples
of X as x(n), n ∈ [1, N ].

4) Labeling: The dataset is labeled under the assumptions
that we know when an anomaly occurs. In our approach,
we define as an anomalous behaviour those traffic patterns
that occur during a football match. As seen in Section III-C,
the network traffic deviates from his normal behaviour when
there is a football game. This approach does not involve
any threshold set or additional manual intervention. Moreover,
this represents the best-effort approach in this case, since we
strictly define what we consider an anomaly.

For each sequence x of X, we assign a label of 1 if any
of its elements is measured during the period of a football
match and 0 in the opposite case. Note that the traffic patterns
associated to the football match can occur at any time-step of
a given x, making the classification problem more complex.

B. LSTM Architecture for Urban AD

The proposed architecture for urban anomaly detection
is shown in the last part of Fig 5 and is based on Long
Short-Term Memory (LSTM) neural networks. The capability
of learning long-term dependencies is due to the structure of
the basic LSTM cells (or units), inclusive of gates that regulate
the learning process (see Fig. 6).

Multiple LSTM cells are concatenated to form one layer of
the LSTM network. Each cell computes the operations on one
time index and transfers the output to the next cell. The number
of concatenated cells indicates the number of observations of
the data, which in our case, corresponds to the window length
W .

In our design, we consider a stacked architecture combining
L = 3 LSTM hidden layers and a final Fully Connected

Fig. 6: Structure of a basic LSTM Memory Cell.

(FC) layer. The L LSTM layers are composed of H = 200
LSTM units, while the last FC output layer is formed by 2
hidden neurons to perform the binary classification. In each
LSTM layer, the hyperbolic tangent (tanh) activation function
is adopted to process the output to be passed to the subsequent
layer. Differently, in the last FC layer, a softmax activation
function produces the final output, which corresponds to the
probabilities of belonging to the anomaly class or to the normal
class. Finally, the classification is performed by picking the
class with the highest likelihood probability. The algorithm is
trained using the binary cross-entropy loss function and it is
optimized using the RMSProp algorithm [12]. Hereafter, we
refer to the proposed algorithm as LSTM-AD.

V. PERFORMANCE EVALUATION

The LSTM-AD algorithm is evaluated for different values
of W and D. In particular, W represents the length of the
observation window, which is equivalent to the number of lags
of the stacked LSTM architecture. Instead, D indicates the
number of parameters collected from the DCI messages that
we need to process for the detection of the anomalies. We have
tested all the possible combinations of the 5 parameters in the
DCI messages described in Section III-B. The objective of this
study is to find the minimum value of D and W for which
we obtain the highest accuracy. Finally, we also compare
our solution with other state-of-the-art anomaly detection
algorithms.

The performance tests have been carried out on cloud
environment using Google Colaboratory, which provides free
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Fig. 7: Scatter plots obtained with PCA of the raw input data vs the hidden features extracted by the last LSTM layer before softmax.

TABLE I: LSTM-AD performance for different configuration of the input data with W = 8.

D N. of Combinations Best Input Combination Precision Recall F-Score Wmin

1 5 [RNTI] 0.96 0.95 0.95 14

2 10 [RNTI,TBSdown] 0.95 0.96 0.96 11

3 10 [RNTI,TBSdown,TBSup] 1.00 1.00 1.00 8
4 5 [RNTI,TBSdown,TBSup,RBSdown] 1.00 1.00 1.00 8

5 1 [RNTI,TBSdown,TBSup,RBSdown,RBSup] 1.00 1.00 1.00 8

hardware acceleration with Tensor Processing Unit (TPU). The
input dataset is split into training and validation sets with a
ratio of 70% - 30% before the replication step. The anomaly
detection algorithms have been implemented in Python: we use
keras library and Tensorflow, as backend, to implement the
LSTM-AD algorithm, while for the unsupervised algorithms
we use the implementation from [13]. In the next section,
we evaluate the results of the anomaly detection system, by
defining, first, the evaluation metrics.

A. Performance Metrics

Defining proper metrics to evaluate the performance in an
AD problem is fundamental: in most cases, in a multi-class
classification problem, the accuracy (measured as the number
of corrected classified samples over the total number of
samples) is enough to explain the algorithm performance.
However, when the classes are formed by an unbalanced
number of samples, like in our case, the accuracy is not
sufficient to evaluate the algorithm, since a blind classification
of all the samples as normal behaviour can lead to a very
high result. For these reasons we introduce additional metrics,
namely precision, recall and F-score:

• Precision P : defined as the ratio between true positives
Tp (the number of samples belonging to that anomaly
class that are correctly classified) and the sum between
true positives and false positives Fp, where Fp represents
those normal samples that are incorrectly classified as

anomalous,
P =

Tp
Tp + Fp

(1)

• Recall R (also known as sensitivity or hit-rate): defined
as the ratio between the true positives Tp and the sum
between true positives and false negatives Fn, which are
the anomalous samples incorrectly classified as normal,
it gives the probability of detection of an anomalous
behaviour,

R =
Tp

Tp + Fn
(2)

• F-Score F is defined as the harmonic mean of precision
P and recall R,

F =

( 1
P + 1

R

2

)−1
= 2

RP

R+ P
. (3)

B. LSTM-AD Algorithm Evaluation

In Fig. 7, we use the Principal Component Analysis (PCA)
to produce the 2D-scatter plots of the raw data (before it
is input into LSTM-AD) and of the hidden features that are
extracted by the last LSTM layer, before the FC softmax layer.
We observe that a linear transformation like PCA is not able to
separate the anomalies from the normal samples and justify the
use of LSTM for our problem. In fact, the features extracted
by the LSTM stacked architecture can definitely facilitate the
estimation of a decision function to separate the two classes.

Fig. 8 gathers the performance results using the metrics that
we previously defined for the anomaly class. The algorithm is



evaluated for different values of W and D. First, we notice
that the precision metric is not sufficient to evaluate the
algorithm alone, since there are almost zero false-positive in
the detection. Instead, from the F-score plot, we can observe
that we obtain an F-score F = 1 when W = 8 and D = 3,
meaning that we need to consider only the information about
the number of C-RNTI and about the transport block size
[RNTI,TBSdown,TBSup]. Table I reports the results for the
best input combination for D varying from 1 to 5 and W = 8.
As shown in Fig. 8 and Table I, increasing the dimension-
ality D it is not necessary, since the information given by
the number the resource blocks allocation ([RBdown,RBup],
D = {4, 5}) is implicitly included in the number of transport
block size assigned.
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Fig. 8: F-score, recall and precision of the LSTM-AD algorithm for different
values of D and W . For each D, the choose the best input combination, as
reported in Table 1.
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Fig. 9: F-score obtained with OC-SVM, PCA and ABOD for different D and
W values.

C. Comparison with state-of-the-art AD

The anomaly detection with non-supervised algorithms is
solely based on intrinsic properties of the data instances. The
advantage is that they do not need the explicit labeling of
the input data. Instead, their approach is to learn only the
characteristics of the normal class and the classification of
the anomalies is performed by comparing the new sample
characteristics with the learnt characteristics.

We choose the following 3 methods as examples of
non-supervised AD algorithms:
• One Class-SVM (OC-SVM) [14] is one of the most

common one-class AD algorithms, and it is an extension
of the Support Vector Machines to the AD problem;

• Angle-Based Outlier Detection (ABOD) [15] calculates
the variance in the angles between the difference vectors
of a point to the other points;

• Principal Component Analysis (PCA), with respect to
the two former algorithms, is mostly used for feature
selection and dimensionality reduction, but a variant of
the PCA has been implemented and used in [16], for
solving different outlier detection problems.

For these algorithms, we use the implementation presented
in [13]: OC-SVM requires a parameter ν, defined as the upper



bound on the fraction of outliers. This parameter regulates
the tradeoff between maximizing the margin and the number
of normal data points within the decision boundary: as done
in [14], we choose a small value for ν (ν = 0.1), since in our
case the fraction of outliers is 8%.

In Fig. 9, we show the F-score of benchmark algorithms
applied to our problem. As expected from Fig. 7a, the PCA
cannot help distinguish the anomalies from the normal sam-
ples, achieving the poorest results in terms of F-score. On the
other hand, OC-SVM and ABOD get positive F-score values
with a maximum of 0.4 and 0.5 for W = 15 and W = 12,
D = 3, respectively, which are much lower compared to
the performances obtained with the LSTM-AD. This analysis
proves that non-supervised algorithms are an alternative for the
AD problem, in case you consider an unlabeled dataset, but
they cannot reach the performance of the supervised approach,
when a labeled dataset is available, as in the present work.

VI. CONCLUSIONS

In this paper, we have presented a novel framework to
capture the mobile network data and to utilize it to perform
the detection of urban anomalies. The data is directly obtained
from real network deployment by listening to the unencrypted
PDCCH, and it is served to a MEC server for elaboration and
processing: our proposal represents a cost-effective solution
since it reuses the existing mobile communication network
platform also for remote sensing purposes and reduces the
need for additional hardware installation costs.

With the proposed methodology, we have created a labeled
dataset and state the urban anomaly detection as a supervised
learning problem. Then, we have tailored a stacked LSTM
architecture to extract the relevant hidden features from the
input data and achieved a F-score equal to 1. A comparison
with state-of-the-art algorithms proves the effectiveness of the
proposed approach.
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