
Mobile Agents for QoS Tailoring, Control and Adaptation
over the Internet: the ubiQoS Video on Demand Service

Francesco Baschieri, Paolo Bellavista*, Antonio Corradi
Dipartimento di Elettronica, Informatica e Sistemistica

Università di Bologna
Viale Risorgimento, 2 – 40136 Bologna - Italy

Ph.: +39-051-2093001; Fax: +39-051-2093073
{fbaschieri, pbellavista, acorradi}@ deis.unibo.it

Abstract

Service provision over the Internet has to address the issues of differentiated Quality-of-

Service (QoS) and ubiquitous accessibility. Internet services should take into

consideration the user QoS desiderata together with the various properties of servers

providing replicated/partitioned services and of different access devices/points, from

workstations over high-capacity ATM links to personal digital assistants over packet-

switched 3G mobile phone. The major paper claim is that the provision over best-effort

networks of services with negotiated and controlled QoS requires a distributed support

infrastructure consisting of intermediate active nodes along the path between clients and

servers. The paper deals with the Mobile Agent (MA) technology as suitable for

implementing this active infrastructure and, in particular, presents the MA-based design

and implementation of the ubiQoS Video on Demand (VoD) middleware. At

negotiation time, ubiQoS establishes an active path between the requesting client and

the proper VoD server to tailor the quality of VoD flow depending on user profile and

device characteristics. At provision time, ubiQoS dynamically controls the offered QoS

level to adapt locally when and where network resource availability changes.

Keywords: Quality of Service Management, Middleware, Mobile Agents, Video on
Demand, Mobile Computing, Adaptability, Heterogeneity.

Areas of Interest: Multimedia Computing, Agents on the Internet, Mobile Computing.

                                                
* Please consider Paolo Bellavista as the author responsible for paper correspondence.



2

1 Introduction

A constantly growing number of users tend to access Internet services from ubiquitous points

of attachment via an enlarging set of heterogeneous devices. Users tend to require

differentiation and tailoring of Quality of Service (QoS), based on personal preferences and

class of usage, by considering accounting aspects such as business/economic/free-of-charge

QoS levels. The diffusion of mobile telecommunications and of mobile access to the Web,

such as the NTT DoCoMo i-Mode and the Wireless Application Protocol (WAP) [1], widens

further the heterogeneity of Internet client devices. Terminals span from traditional

workstations and PCs, to laptops, personal digital assistants and smart phones, with

wired/wireless continuous/intermittent connectivity. Any category of users/devices requires

its proper QoS level and should be charged differently for received services.

In addition, the commercial competition among service providers and the necessity to

achieve scalability over global networks force to consider service scenarios where it is

common to have a group of servers capable of answering client requests. The choice of a

specific server should consider client QoS requirements, but also the current conditions of

server load and of network resource congestion. This is basic to estimate at negotiation time

the possibility to achieve and maintain a specified QoS level at provision time over a best-

effort network infrastructure [2].

Both service providers and network operators recently call for technologies, mechanisms,

and tools to support Internet services with differentiated QoS, and to record, control and grant

the QoS level provided at runtime. In the last years, several research efforts have investigated

ad-hoc protocols at the network layer [3]. These solutions achieved interesting results for

limited networks, but tend to clash with the best-effort model of the Internet. In addition, they

require that intermediate routers traversed by service flows implement specific ad-hoc

protocols. This constraint is likely to produce a long process of acceptance and diffusion.

There are also other specialized low-level solutions that take into account QoS for specific

targets, such as for ATM and for satellite connections [4]. As a general consideration,

network-layer solutions work at a level of abstraction where it is difficult to embed some

properties required for Internet service provision, such as application-specific adaptation and

secure billing [2].



3

Recent research has pointed out the suitability of a distributed infrastructure consisting of

intermediate nodes that play an active role along the path between clients and servers [5, 6].

Service provision should involve not only server hosts able to coordinate themselves to

answer to client requests, and not only clients capable of both proposing profile information,

such as device properties and user preferences, and enhancing service interactivity by offering

local computing resources, as in the case of Java applets. Internet services should have the

possibility to exploit also intermediate nodes that take part actively in service provision by

performing operations on traversing service flows. For instance, some intermediate nodes

should offer their storage resources to realize distributed caches of popular VoD contents for

all clients and intermediate nodes of their locality, thus permitting to decrease overall traffic

and service response time.

In addition, intermediate node participation is necessary for a scalable and decentralized

middleware to deal with service provision and management in the open and global Internet

environment [2]. Scalability imposes management decisions locally to the involved network

resources and autonomous adaptation/recovery operations on service components when and

where there are modifications in resource availability.

Mobile Agents (MAs) are a suitable middleware technology to design, develop and deploy

the above described active services, i.e., distributed services where any involved node can

play an active role by operating on service flows [6]. MAs can reallocate dynamically on the

intermediate nodes of the service distribution paths and can exploit code mobility to achieve

the dynamic deployment required in such open and global scenarios. In this way, MAs can

control network resources and perform adaptation locally to the dynamically determined

critical points of the infrastructure, e.g., where there is the need to overcome discontinuities in

bandwidth due to either variations of communication resources or congestion situations.

The paper describes the design and implementation of an MA-based active service

infrastructure, called ubiQoS*, for the QoS tailoring, control and adaptation of VoD flows

over standard best-effort IP networks. The name ubiQoS refers to the twofold ubiquity

dimension of our middleware approach:

                                                
* The MA-based ubiQoS middleware is available at http://lia.deis.unibo.it/Research/ubiQoS/.



4

•  ubiquitous accessibility. ubiQoS allows the reception of VoD flows anywhere, by

tailoring VoD flows to user preferences, client device characteristics and network

bandwidth at negotiation time, and by monitoring the QoS offered at provision time to

perform corrective adaptation operations in response to possible dynamic changes in

resource availability;

•  ubiquitous middleware. ubiQoS tends to diffuse its components in the system. At

negotiation time, middleware components autonomously distribute on the network hosts

along the paths from receivers to sources of VoD flows. When new path segments are

needed during service provision, e.g., in case of fault recovery, ubiQoS components can

also migrate to the required locations without imposing restarting the service.

ubiQoS experimental results show the feasibility of the MA-based middleware approach in

terms of achieved performance. Notwithstanding the Java-based implementation, ubiQoS can

dynamically tailor, control and adapt the offered QoS levels by respecting the time constraints

typical of VoD flows currently exchanged over the Internet.

In the following, the paper supports the claim that MAs are a viable technology to support

active services with controlled QoS over the Internet. Section 3 describes the architecture and

the main components of the MA-based ubiQoS middleware for QoS tailoring, control and

adaptation of VoD flows. ubiQoS is built on top of the SOMA programming framework

whose design guidelines are briefly sketched in Section 4 to provide the needed background

for understanding the ubiQoS implementation insights given in Section 5. Comparisons with

related research activities, conclusions and future work follow.

2 Mobile Agents to Support QoS-aware Active Services

 The development, deployment and management of Internet services should meet the

increasing user expectations and the growing requirements for QoS and dynamicity, and

should face the flourishing heterogeneity in access devices and the globality of provision. In

this context, the traditional end-to-end model of interaction is showing its limitations, thus

suggesting the proposal of alternative scenarios. The network infrastructure should play an

active execution role: for instance, in programmable networks, intermediate nodes operate on

transmitted data and can be programmed by dynamically injecting service/user-specific code

[6]. The approaches and technologies enabling the transition to programmable networks can



5

be roughly classified on the basis of their abstraction level: the terms active networks and

active packets usually identify the approaches that achieve programmability by working

mainly at the network layer, whereas active services tend to pursue network programmability

by adopting solutions at the application layer [5].

Several research activities start to recognize that MAs are a suitable technology for the

implementation of programmable networks, especially when adopting an application-layer

approach [7, 8, 9]. MAs should be considered in the implementation of an active service

infrastructure because MAs are autonomous entities with capacity of coordination, able to

dynamically move to where resources are located, and able to adapt to current system

conditions in a completely asynchronous way with regard to their launching user. The MA

adoption simplifies the achievement of the following active service properties:

•  control decentralization. Cooperating MAs can migrate during service provision and can

take autonomous management decisions based on local resource information. In addition,

MAs can move dynamically to modify service distribution paths, e.g., in case of link

failures or by following possible movements of both users and client devices;

•  user asynchronicity. Agent autonomy permits asynchronicity between user actions and

MA-performed tasks. For instance, MAs can operate service negotiation and active path

establishment also when users/access devices are temporarily disconnected. Differently

from a traditional client/server model, stable connections are needed only for the limited

time required to inject MAs into the network and to receive results. In this way, agent

mobility significantly reduces connection times. This is particularly relevant in mobile

computing where wireless connections exhibit strict constraints on available bandwidth

and communication reliability [10];

•  tailoring. MAs provide an effective mechanism to support service tailoring in response to

dynamically specified user requirements, access device characteristics, and resource

availability at negotiation time. Dedicated agents can retrieve profile information, can

propagate this information to current user access points and can customize service flows,

in dependence of the current access devices and of already admitted service sessions. For

instance, for accesses ranging from a laptop to a light PDA, an active service can decide to

include/discard attachments in downloading e-mail messages;



6

•  adaptability. MAs simplify the adaptation of services in response to modifications in the

availability of involved network resources at provision time [2]. For instance, MAs can

exchange monitoring information and can migrate to obtain a global view of the system

state. This MA coordination builds the shared knowledge that can trigger possible

management operations to correct the achieved QoS (re-negotiation, additional

communication channels, …). QoS control and adaptation work according to strategies

either required by user profiles or decided by administrators depending on user roles.

In addition, MA solutions tend to address new requirements and putting together

infrastructure properties that can significantly facilitate the active service acceptance and can

enhance its effectiveness, such as:

•  location awareness. MAs tend to maintain full visibility of the location of underlying

system resources and to propagate this visibility to the service level. Location awareness

is a basic property to optimize resource usage within a locality [11]. For instance, MAs

can decide to switch to another VoD server if the current one is overloaded and another

one is currently available for a better service either in the same locality or in a near one;

•  security. The MA paradigm introduces not only specific security mechanisms and policies

to deal with untrusted incoming code, but also easily integrates, at the application level,

widespread and standard solutions for secure services. For instance, MA operations on

system resources are controlled depending on permissions associated with authenticated

principals and their proper role [12]. Based on these security mechanisms, any operation

can be allowed, recorded and accounted for responsible users;

•  interoperability. MAs work in an open global scenario and should interoperate with

existing components, from legacy systems to standard Internet services. Many MA

systems achieve interoperability via compliance with general standards, such as CORBA,

and more MA-specific, such as the MA Systems Interoperability Facility (MASIF [13] -

the OMG standard for interoperability between heterogeneous MA platforms) and the

Foundation for Intelligent Physical Agents (FIPA [14] - the standard specification

proposal for agent platforms and communication languages) [15, 16].

Notwithstanding the above properties, one may argue that active services ask only for code

mobility and not for full state migration typical of MAs. In addition, active services usually



7

require a single-hop mobility pattern and not full MA expressive power of specifying and

performing multi-hop migrations. This consideration applies to the simple services commonly

proposed, but the relevance of state migration raises for more complex and connection-

oriented active services that could take advantage of maintaining and moving sessions. This is

evident in mobile computing scenarios where MA-based active nodes should have to work as

proxy of possibly disconnected users/client devices [10]. A reasonable conclusion is that, as

stated in [17], "while none of the individual advantages of mobile agents is overwhelmingly

strong, we believe that the aggregate advantages of mobile agents is overwhelmingly strong".

As a killer application area, several research activities have applied the MA technology to

network and system management because of the possibility of moving management entities

locally to administered resources [18]. For this reason, not so tied to the property of full

mobility, many MA platforms give agents the possibility to access network and system

properties, i.e., to have a certain degree of QoS awareness. In particular, in network

monitoring and management, most MA-based prototypes can interrogate network elements

via standard management protocols such as SNMP and RMON [19, 20]. In case of more

complex service management functions, MAs should have also visibility of

system/application-specific indicators, such as the list of the current threads of an application

and, for each of them, the CPU effective time and the allocated memory. This requirement is

not easy to grant, because most MA platforms are based on Java and the Java Virtual Machine

(JVM) tends to hide kernel-level system properties. However, some work has recently

achieved interesting results in extending monitoring visibility of Java MAs, with/out

modifying the standard JVM [21, 22].

2.1 MA-based QoS Management of VoD Flows

QoS awareness is a key requirement for VoD services and QoS visibility is the property the

active service infrastructure should be built around, so to negotiate and dynamically control

QoS levels over best-effort networks. Two phases can be distinguished:

1. QoS tailoring at negotiation time, and

2. QoS adaptation at provision time.

The preliminary negotiation phase, prior to any service real data flow, can be considered a

static negotiation of the QoS level. Its main goal is to arrive to the choice of the best possible



8

engagement of resources, on the basis of the user profile, the access device and the current

system situation. The first step, in fact, is to retrieve user preferences and access device

characteristics: their transportation is taken care by ad-hoc MAs. Then, the active service

infrastructure should choose the VoD server capable of providing the requested content that

best satisfies QoS requirements according to user and terminal profiles. Once the server is

identified, the infrastructure should lead to the establishment of a server-to-client network

path. The path represents the target for a set of MAs that can be locally installed to negotiate

from there the QoS level any path segment has to maintain and to decide for any required

multimedia scaling operation. The VoD flow distribution is tailored to match client required

QoS specifications, also depending on already admitted service flows and current resource

availability. The active service is implemented in terms of MAs that coordinate among

themselves for its deployment; they are in charge of application-level admission control and

reservation of their local resources. Any MA component accepts new reservations for VoD

flows (or for enhancing the QoS level of already established ones) only if enough resources

are available.

The second dynamic phase is necessary during service provision and is even more

constrained than the first one because of imposed strict deadlines on reaction. Any deviation

from conformity makes the service ineffective and should be avoided because it clashes with

the initially negotiated QoS level. In fact, over best-effort networks, the QoS levels of VoD

flows should change depending on the state of system/network resources along distribution

paths. Therefore, QoS should be controlled at provision time, and changes in resource

availability should trigger adaptation operations to readjust QoS levels. Adaptation can affect

transmitted VoD data (from transcoding to frame resizing, from merging/splitting multi-

layered tracks to reducing frame resolution and rate) but can ultimately modify established

VoD paths. In this case, a new negotiation phase takes place for a possible redistribution of

active MA components. Corrective operations at provision time should take into account

user/terminal profiles to assign different priorities to the possible adaptation alternatives. For

instance, a personal digital assistant with limited display capabilities can suggest lowering

frame resolution instead of decreasing frame rate.



9

2.2 Active VoD Services and Mobile Agents: a Usage Scenario

To show more concretely how MAs can tailor, control and adapt the QoS of VoD flows to

implement VoD active services, Figure 1 presents a possible deployment scenario.

An active service infrastructure answers the scalability issue by permitting to organize

clients, servers and networked resources in hierarchies of locality abstractions. Active service

MAs (and their hosts) can be grouped into domains that usually correspond to (a set of) local

area networks with common administration and management policies. In addition, domains

permit to limit the visibility scope of specific middleware components and their complexity.

Domain 1

user1

Domain 2

SS VoD
server3

Domain 3

SS VoD
server1

VoD
server2

Domain 4

VoD
server4

CS

MA MA

CS

MA SS

MA

SS

link1

SS

MA

MA

link2

active service
MA client stub

active service
MA server stub

active service
MA proxy

negotiated path

provision-time
modified path

CS

user2

Figure 1. The MA-based active infrastructure performs service admission control and tailoring at
negotiation time and VoD flow adaptation at provision time. The same VoD content with different

QoS levels is transmitted to user1 and user2.

At negotiation time, MAs dynamically distribute on the hosts along the VoD path. The

different QoS requirements of user1 and user2 (and of their access devices) have suggested a

high-quality flow to the VoD server and its scaling down at the active service MA in

domain2. At provision time, in case of degradation of link1 bandwidth, after the coordination

of active service MAs in domain1 and domain2, the same MA in domain2 adapts the VoD

transmission for user1 by reducing the frame resolution according to the receiver preference

profile. If there are no resources to adapt QoS by respecting negotiated requirements, e.g., in

case of failure of link2, a new VoD path segment can be established. The infrastructure in

domain3 tries to identify a suitable VoD server in its near domains.  Then, it negotiates with



10

new MA-enabled hosts, and finally restarts the flow transmission, from its interruption point

(if server4 can support random-access to that VoD content). Apart from the time interval to

establish the new VoD path, the server swap is transparent to receiver and to other

intermediate hosting nodes.

3 The ubiQoS Active Service Infrastructure for VoD Services

The solution guidelines previously presented have driven the design and implementation of an

MA-based active service infrastructure, called ubiQoS, for the support of QoS tailoring,

control and adaptation of VoD flows over best-effort interconnections. ubiQoS is built on top

of an MA framework, called Secure and Open Mobile Agents* (SOMA), with the double goal

of testing the suitability of the MA technology in active services and also of verifying an a

posteriori balance of achieved performance and service acceptance. The choice of SOMA is

also motivated by the offered set of middleware facilities that can help the rapid development

and deployment of MA-based Internet services. In particular, SOMA provides extensive

facilities for QoS visibility and handling (SOMA monitoring and QoS facilities), for the

definition of the most suitable trade-off between security level and performance (SOMA

security facility), and for the interworking with other MA platforms, legacy resources/systems

and available preexisting services (SOMA interoperability facility). Section 4 briefly gives

some implementation insights of the SOMA middleware facilities.

Another important point preliminary to the ubiQoS architecture is the adopted basic

protocol: our active service infrastructure exploits the Real-time Transport Protocol (RTP) for

VoD flow transmission [23]. The choice of RTP stems from its complete diffusion in

application-level approaches to QoS and from its relevance in the areas of mobile

communications and multimedia distribution [24, 25]. As any application-level QoS solution,

RTP attempts to meet QoS requirements without modifying the underlying best-effort

network level. The RTP permits to monitor currently available QoS levels and to notify

service components of any modification. RTP has its own control protocol for management

operations, the Real-Time Control Protocol, in charge of handling control information. Most

relevant information items are sender reports, generated by the sources of RTP-based

multimedia flows, and receiver reports, filled by the target VoD clients. All reports include



11

either sender information such as RTP timestamps and the number of packets and bytes

already transmitted or receiver statistics about the flow such as highest sequence number

received, inter-arrival jitter, and fraction of lost packets since last report.

The ultimate goal of the ubiQoS active service infrastructure is to allow ubiquitous

accessibility of VoD services from any device and from any Internet access point, with the

opportune and negotiated QoS level. This goal requires the identification of some functions.

•  Any client request is served after an initial negotiation phase that establishes an active

path connecting the requesting client to a suitable VoD server. The server choice among

the ones that could provide the requested VoD content is driven by a search for a QoS

level at least equal to the required one. The QoS requirements usually stem from the

profiles presented by client users and access devices, with a match operation that takes

into account both. If the provided QoS level is greater than needed, some ubiQoS MAs on

the path can perform down scaling. In this phase, ubiQoS MAs may migrate to

intermediate nodes on the active path to install where needed operations are not yet

available, thus dynamically building the service infrastructure. For instance, any node in

the active path requires the local presence of an admission control agent in charge of

accepting/refusing new VoD flow requests and, in case of acceptance, of reserving local

resources correspondingly. Another example is the necessity of distributing dynamically

some code to operate special VoD flow transformations where needed.

•  The provisioning of QoS-enabled VoD services over the Internet requires not only a static

phase of admission control and reservation but also a dynamic control of resource

availability at provision time and the consequent handling of adaptation operations. These

control phases should be enforced on any segment of the active path, and the MA

technology can be effectively exploited to perform QoS monitoring in any locality

traversed by VoD flows in order to decide locally any corrective intervention. Any local

QoS level degradation should trigger adaptation actions on the VoD served flow by the

ubiQoS MAs adjacent to the congested segments. The active infrastructure can decide to

adapt the transmitted flow, e.g., via format transcoding, by maintaining the path;

                                                                                                                                                        
* SOMA is available at http://lia.deis.unibo.it/Research/SOMA/.



12

otherwise, control MAs should try to establish new path segments either connecting to the

same VoD server or to a less loaded available one.

•  Another guideline to achieve effectiveness and performance is to share VoD contents that

are likely to be required by other clients. ubiQoS organizes distributed caches of

frequently accessed VoD flows to reduce overall traffic and latency and to increase

service scalability. In particular, intermediate active nodes can maintain local caches

depending on the access patterns of the clients in their locality. The amount of space that

an active node should devote to its local cache, the cache refreshing time and the

replacement policy are all choices that strongly depend on the characteristics of the

locality, of its available resources and of the usual clients accessing from its points of

attachment. As a consequence, it is important that administrators have the possibility to

control and modify cache parameters during service provision by specifying a proper

management policy. ubiQoS caching is implemented by MAs that enforce locally the

cache policy defined by the locality administrators.

3.1 The ubiQoS Architecture

There are four main types of ubiQoS MAs that distribute along the active path between the

(possibly multiple) VoD clients and servers for flow provisioning:

1) ubiQoS proxies are in charge of admission control/reservation for incoming/outgoing

flows. They monitor system- and application-level state of local resources and are able to

trigger local QoS adaptation operations. They coordinate with their previous and next

ubiQoS proxies in the active path both in the initial negotiation phase and at provision

time for resource availability changes. In addition, they should organize a global visibility

of neighbor domains and other ubiQoS components within the domain. This helps in

scalability of naming resolution and host/domain specific management decisions.

2) ubiQoS processors are in charge of performing QoS tailoring and adaptation operations

on VoD contents depending on the specific QoS requirements of established sessions. In

response to a new client request, one of this processor is in charge of retrieving QoS

requirements of the user and of her current access device. The processor should carry this

information by migrating to the nodes hosting ubiQoS proxies to establish the active path.



13

The ubiQoS processor reaches one node and then duplicates itself to forward a clone to

the next ubiQoS proxy in the upstream until a suitable VoD server is reached.

3) ubiQoS client stubs forward VoD client requests to ubiQoS proxies and redirect RTP

flows to their local visualization tools in a transparent way, to integrate ubiQoS with

legacy VoD players. At the moment, we have implemented ubiQoS client stubs for Java

Media Framework (JMF) [26] and Mbone vic [27] players.

4) ubiQoS server stubs answer to service requests from ubiQoS components by

encapsulating VoD flows from legacy servers into RTP flows transparently. Up to now,

we have implemented ubiQoS server stubs for JMF data sources.

All above components are implemented as MAs to permit dynamic installation and updating

of existing functions even while the ubiQoS infrastructure is operating. ubiQoS server stubs

migrate and install when and where a new VoD server registers to the ubiQoS infrastructure.

ubiQoS client stubs can move at the new connection of an access device to permit its local

VoD player to receive ubiQoS VoD flows. Proxies are the principal ubiQoS infrastructure

components that monitor and control the resources locally to the active nodes; they install

permanently on new hosts taking part in active paths and their migration is typically single-

hop. On the contrary, ubiQoS processors are session/flow-dependent and transient

components that have to propagate from the client toward the server by carrying the QoS

requirements of client user/device for that specific service flow. Let us note that resource

reservation, adaptation operations and path decisions may depend on previously established

path segments; that makes important the multiple-hop potential granted by MAs.

While client and server stubs mainly play a simple role of VoD flow encapsulation to

facilitate the integration with legacy VoD players and servers, the complexity of ubiQoS

proxies and processors deserves a more detailed description of how they operate to provide

their functionality.

3.2 ubiQoS Components at Work

We can start the description of a typical scenario of ubiQoS operations by stating the roles of

its two main MA components, ubiQoS processors and ubiQoS proxies, with regard to their

protocols and separation of duties. ubiQoS processors play the main role in the initial

admission phase working as carriers for QoS requirements; in provisioning, they directly



14

operate tailoring and adaptation transformations on VoD flows. ubiQoS proxies, instead,

control the currently offered QoS levels and trigger processor operations. In terms of the

adopted protocol, ubiQoS proxies exploit RTCP reports for control duties, while ubiQoS

processors employ RTP to receive/transmit VoD flows.

Any client request for an active VoD service is taken care by one ubiQoS processor in

charge of finding and carrying the full information about QoS requested parameters and

related profiles. Once the whole needed data has been collected, the ubiQoS processor helps

in establishing the active path, by involving all necessary proxies. ubiQoS processors migrate

toward the available ubiQoS proxies in the locality and in close/connected domains to present

there the carried request. It is up to proxies the decision phase by comparing requested QoS

levels and local resource availability.

If the ubiQoS proxy has direct local access to the VoD content with the proper QoS level,

it behaves as the final VoD server in a simple client/server architecture. After the proxies

command the most suitable QoS tailoring operations to the ubiQoS processors on the path, the

VoD active service starts to flow, without any further proxy intervention.

Let us recall that ubiQoS permits caching for performance sake. ubiQoS proxies may

access to the same VoD contents with different QoS levels, e.g., in case a local ubiQoS

processor performs down-scaling operations to tailor the flow to an access device with limited

visualization capabilities. The ubiQoS proxy chooses to cache the flow with the high/low QoS

level depending on the locally enforced cache management policy. These policies are

expressed in a high-level specification language, integrated in the SOMA programming

framework [28].

If the VoD content is not directly available to the local proxy, then the establishment of the

proper active path is carried to a near ubiQoS proxy. The ubiQoS processor responsible for

establishing the active path is cloned and forwarded to the next ubiQoS proxy. The forwarded

processor can have knowledge of the previous path segments and can bring the history of

previous choices. This propagation goes on until a successful match occurs, between

requested information, QoS levels and locally offered VoD contents. At this point, the whole

active path has been successfully established, and all intermediate nodes host the needed

ubiQoS components. Similarly to the chain of ubiQoS processors traversed by the flow, there



15

is an analogous path of ubiQoS proxies that play only a control role and work mainly in

background for caching purposes.

During service provision, ubiQoS processors furnish the necessary transcoding operations:

even if a flow has to traverse a chain of processors before reaching its destination, the

introduced extra latency can be computed initially and taken into account before the service

takes place. In addition, this latency (and the difference in latency of multiple receivers in

case of multicast distribution) is usually not critical in non-interactive multimedia services

such as VoD. In any case, after the initial admission control and if there are no variations, the

whole proxy chain is only devoted to caching.

Location awareness and knowledge of local monitoring information at provision time drive

the adaptation that may occur when the agreed QoS level cannot be maintained. The

processor-based distribution of QoS requirements throughout the whole active path permits

optimal decisions avoiding further negotiations. ubiQoS proxies have the duty of monitoring

currently offered QoS levels and of identifying possible deviations. We claim that locality is

the key for prompt identification: as soon as a proxy ascertains a problem, i.e., any QoS

parameter can no longer be granted, it commands a corrective action to the processor. The

most common situation is a network congestion of the local path segment. The easiest

corrective action is to down-scale the VoD flow to pass around with a reduced quality

provisioning. A more expensive countermeasure is to establish a new different sub-path to

overcome the local problem situation. ubiQoS proxies are in charge of deciding the most

suitable action by taking into account negotiated QoS parameters and user/terminal profiles of

the receiver.

Figure 2 shows how the ubiQoS components cooperate in the service provision scenario

proposed in Section 2. At negotiation time, ubiQoS proxies distribute on all the nodes of the

active path that do not have one yet installed. Two different ubiQoS processors (for user1 and

user2) establish two partially overlapping active paths by migrating and cloning on any

involved active node. It is the user1 ubiQoS processor that performs the VoD flow down-

scaling as specified in user1 terminal profile. At provision time, in case of degradation of

link1 bandwidth, ubiQoS proxies in domain1 and domain2 coordinate and command the user1

ubiQoS processor in domain2 to further reduce frame resolution of user1 VoD flow according

to the receiver profile. In case of failure of link2, a new VoD path segment is established. The



16

ubiQoS proxy in domain3 tries to identify a suitable ubiQoS server stub in close domains.

Then, it starts a negotiation phase with the ubiQoS proxy of domain4 by cloning and

migrating two new ubiQoS processors to this new domain.

Let us finally note that in multicast distribution of the same VoD content, the generated

network traffic significantly decreases: the ubiQoS infrastructure, when ascertaining the

possibility of multiple neighbor targets within a sub-tree of domain localities, can split

packets late, only where necessary, by maintaining path sharing as much as possible.

Domain 1

user1

Domain 2

SS3 VoD
server3

Domain 3

SS1 VoD
server1

VoD
server2

Domain 4

VoD
server4

CS

P P

CS2

P SS2

P

SS4

link1

SS

P

P

link2

ubiQoS
client stub

ubiQoS
server stub

ubiQoS
proxy

user1’s ubiQoS
processor

user2’s ubiQoS
processor

CS1

user2

Figure 2. The ubiQoS infrastructure performing admission control, tailoring and adaptation when
providing the same VoD content with different QoS levels to user1 and user2.

4 The SOMA Programming Framework

SOMA has been designed as a modular and flexible Distributed Processing Environment

(DPE) with a wide set of middleware facilities. SOMA facilities include basic agent functions

and more complex features suitable for the design and development of MA-based Internet

services. The SOMA infrastructure is open and extensible because it permits to integrate

dynamically the programming framework with new agent-based facilities possibly based on

available functions.

Figure 3 depicts the SOMA infrastructure consisting of two facility layers. The Lower

Layer of Facilities (LLF) provides SOMA agent basic functions:



17

•  the naming facility. It maintains and permits to access any entity in the SOMA distributed

middleware. A basic identification mechanism dynamically tags any local/distributed

resource in the system (devices, objects, agents, service components and principals, i.e.,

users/organizations responsible for agent execution) with globally unique identifiers that

do not change even after migration. They are the basis for the realization of the SOMA

naming service that permits to bind to local/distributed resources via a set of different

naming systems, e.g., LDAP-compliant and discovery-based [10];

•  the communication facility. It provides tools for communication and coordination

between possibly mobile entities. When hosted in the same execution locality, agents

interact by means of shared objects, such as blackboards and tuple spaces for tight

cooperation [29]. Otherwise, agents can perform coordinated tasks by exchanging

asynchronous messages that are delivered also in case of migration of the target entity;

•  the migration facility. It supports the transport of one entity that requests to change its

allocation. Agents act on behalf of entities capable of reallocation and can move in the

network either via SOMA native migration methods or via standard interfaces such as the

OMG MASIF over the CORBA Internet Inter-ORB Protocol [13]. Reallocated entities can

be traced also in their new locations by any entity in need of their services;

•  the monitoring facility. It observes resource properties and provides information about

them, from disk free space to currently available network bandwidth, from CPU usage to

heap memory allocated by any agent thread [22]. This facility enlarges JVM visibility of

kernel and application state by integrating with JVMPI [30] and with platform-dependent

monitoring modules via JNI [31].

Upon this basic layer of middleware facilities, SOMA offers an Upper Layer of Facilities

(ULF):

•  the interoperability facility. It allows SOMA agents to interact with all local/distributed

resources, in particular with legacy ones. This facility stresses compliance with common

interoperability standards, such as CORBA for object systems [32] and JDBC for

databases. In the specific MA area, SOMA supports the interoperation with other MA

systems via compliance with the OMG MASIF interface and the FIPA specification;



18

•  the security facility. It protects both MAs and hosting execution localities. Authentication

is based on standard certificates and on the Entrust public key infrastructure.

Authorization extends the Java standard mechanisms for access control. Secrecy is

achieved by integrating the cryptographic libraries furnished by external providers.

Integrity has required the development of MA-specific protocols for the protection of

MAs from the execution environment [16]. Denial-of-service protection is considered a

particular case of on-line QoS control and is enforced by the QoS facility introduced

below;

•  the QoS facility. It exploits the information collected and registered by the monitoring

facility for control, adaptation and accounting of distributed operations performed by

SOMA agents. Monitoring data are employed to control on-line the constraints on

resource consumption imposed to SOMA agents and to adapt QoS-aware services to

current resource availability, e.g., by transcoding multimedia flows in case of network

bandwidth degradation. The security facility is in charge of granting non-repudiable

association of agent bills to responsible users.

Other DPE CORBA DPE

SOMA LLF

Nam
in

g
Com

m
un

ic.
M

ig
ra

tio
n

Network
Element

Layer

Service
Layer

Middleware
Layer

M
on

ito
rin

g

SOMA ULF

In
ter

op
er

ab
.

Sec
ur

ity

QoS

SOMA-based Applications

Network, Systems &
Service Management

Mobile
Computing

Multimedia
Distribution

Figure 3. The SOMA layered architecture of middleware facilities.

In addition to these DPE facilities, SOMA offers locality abstractions to describe any kind of

system interconnection, ranging from simple Intranet LANs to the Internet. Any node hosts at

least one place for agent execution; several places are grouped into domain abstractions that



19

correspond to network localities. In each domain, a default place is in charge of inter-domain

routing functionality and integration with legacy components via CORBA. The mobile place

is the locality abstraction used to support mobile devices: it enhances the normal place with

specific features for automatic reconfiguration when changing domain of attachment [10].

Further implementation details and performance of the SOMA programming framework can

be found in [16].

5 The ubiQoS Implementation

The ubiQoS active service infrastructure requires mechanisms to retrieve dynamically all

system lists: the VoD contents available in the global system, the ubiQoS proxies in the near

ubiQoS domains and the user/device profiles to drive QoS tailoring and adaptation of

provided VoD flows. This information is dynamically obtained by exploiting the SOMA

naming facility that integrates discovery and directory servers. [10] reports a full description

of the SOMA naming implementation, while the paper simply presents some elements

necessary to fully understand how the components of the ubiQoS infrastructure interwork.

SOMA discovery and directory servers provide different naming solutions suitable for

different goals. They differ in visibility scope (respectively, local vs. global), flexibility

(rigidly predefined and simple structure vs. flexible content and organization), and

performance (limited low-level efficient protocols vs. complete high-level searching/

registering operations). LDAP-compliant directory servers store the description of accessible

VoD contents (title, associated keywords, multimedia format and QoS parameters), all

profiles of ubiQoS registered users, and all profiles of recognized access devices, that is the

information globally available in the ubiQoS system. On the opposite, Jini-based discovery

servers permit to access the information visible in a single ubiQoS domain, usually the subset

of VoD contents provided by the VoD servers in that domain, and the list of ubiQoS proxies

either within or close to that domain locality.

User and terminal profiles are represented in a standard form to ensure the necessary

interoperability over the open and heterogeneous Internet environment. In particular, ubiQoS

adopts the Composite Capability/Preference Profiles (CC/PP), a World Wide Web

Consortium standard proposal based on the XML Resource Description Framework (RDF), to

represent profile information and to express exchange protocols. In the telecommunications



20

domain, WAP mobile phones are adopting CC/PP to tailor the provision of Internet services

to their specific characteristics [33].

ubiQoS processors exploit JMF to perform tailoring and adaptation [26]. JMF, the SUN

integrated framework for the management of acquisition, elaboration and visualization of

multimedia flows offers a wide set of filter components to receive multimedia flows (acting as

client receivers), to operate transformations on them, and to forward processed flows (acting

as server sources). Typical transformations include compressions, e.g., reduction of frame

size/rate and of single frame definition, and format transcoding, e.g., from MPEG-1 to H.263

for video. With regards to the transport and control of packet flows, JMF provides

Application Programming Interfaces (API) for interacting with RTP and RTCP, and

propagates visibility of RTCP transmission reports to application components. JMF

components are portable on any platform that hosts a JVM. For performance sake, JMF

processors often exploit local plug-ins available as native components, e.g., Dynamic Link

Libraries for Windows platform and Shared Object libraries for Solaris and Linux. JMF

integrates native plug-ins via the standard Java Native Interface technology to ensure

compatibility of native code invocations for any JVM. Native libraries contain platform-

dependent code and cannot be directly ported to different targets. To achieve portability,

ubiQoS processors exploit the JMF API to retrieve dynamically the list of plug-ins installed

on their hosting execution environment to bind to available native components.

The adoption of the SOMA technology simplifies the deployment of ubiQoS and the

dynamic migration of its components wherever bottlenecks and critical points emerge during

service provision. Bottlenecks can stem from heterogeneity in network characteristics, e.g.,

going from a 622Mbps ATM-based network to a 56Kbps modem link, and from heterogeneity

in terminal capabilities, e.g., locally to WAP gateways that provide Web content to mobile

phones. The default deployment choice is one ubiQoS proxy present (possibly newly installed

at negotiation time) at any domain traversed by the VoD flow.

Our experience with the ubiQoS active service has shown that Java permits on-line QoS

adaptation of multimedia flows at the usual Internet transmission rates. This is possible by

exploiting Just-In-Time compilation techniques, native plug-in codecs, such as the ones

distributed with the JMF and the commercial Cinax Design MediaPalette [34], and "pure

Java" transcoders, e.g., the MPEG one implemented within the ubiQoS project. The



21

distribution of VoD contents encoded in the MJPEG format has exhibited interesting

performance results. MJPEG compresses frames individually, without exploiting similarities

between consecutive frames: this leads to a poor compression factor compared with other

technologies, such as MPEG, but allows much more freedom in specifying encoding

parameters (frame size, compression factor and frame rate) and makes VoD

compression/transcoding operations less CPU-intensive. For instance, ubiQoS processors

running on a 128MB PentiumIII700 host with Microsoft WindowsNT over a 10-Mbps

Ethernet are able to manage up to a dozen of MJPEG flows with frame size up to 320*240

and with frame rate up to 20 Hz.

Figure 4 shows some GUIs for QoS monitoring and control provided to ubiQoS users and

a JMF-based player while receiving an MJPEG flow. ubiQoS proxies usually decide the QoS

level the ubiQoS processors should request to the following proxy in the active path towards

the VoD server. The decision is taken on the basis of QoS requirements in user/terminal

profiles, admission control reservation data, and a cost function with weighted QoS

parameters.

Figure 4. Some visualization and control GUIs provided by the ubiQoS infrastructure: RTCP
sender/receiver reports and QoS monitoring information; QoS parameters and adaptation weights; a

JMF-based player integrated with the ubiQoS client stub.



22

In fact, a whole interval for QoS parameters is usually permitted; the ubiQoS processor

chooses the QoS point depending on the local resource consumption policy. In the current

implementation, it is possible to choose between two simple policies: Best QoS and Lower

QoS. The Lower QoS policy minimizes the local resource consumption, while the Best QoS

policy chooses the QoS point that reserves the maximum local resource usage. In the latter

case, new VoD flow requests can also dynamically modify QoS points of accepted flows by

preempting previously committed resources.

It is also possible to force the ubiQoS processor decision by directly specifying low-level

QoS parameters as depicted in Figure 4. The QoS Setting panel permits to change frame rate,

size, compression factor, and their relative weight in the cost function. At provision time, the

ubiQoS proxy can command the local processor to modify the provided QoS level by moving

in the currently allowed interval by maximizing the cost function. For instance, a device with

limited display capabilities can specify a frame rate weight larger than frame resolution to

indicate a preference in degradation of image quality instead of frequency decrease.

6 Related Work

Many research groups have recently argued about the suitability of programmable networks

for a wide spectrum of Internet services. Programmable networks can help in fast prototyping

and deploying new network-layer protocols, e.g., for congestion control, topology-aware

reliable multicast and virtual private networks [5, 6]. Most recent programmable network

prototypes choose to work at the application-level and can be classified under the category of

active services. In these approaches, network programmability is exploited to deal with

application-specific requirements, as in distributed information filtering and Web caching [7,

35]. Most active service projects implement prototypes on top of the Java programming

environment to facilitate code portability and mobility; some of them explicitly adopts the

MA technology [8, 9].

In the specific application domain of multimedia services, there are a few notable

approaches that exploit intermediate nodes for QoS tailoring, control and adaptation. Baldi et

al. designed an active videoconference service by uploading Java mobile code in active

network routers, thus adopting a network-layer approach [36]. Amir et al. implemented a

Media Gateway service (MeGa) for the adaptive transcoding of multimedia flows [37]. Their



23

work, however, is more focused on algorithms for efficient down scaling and adaptive

bandwidth allocation than on dynamic reconfiguration and code distribution.

The Reflector project is the research activity that has proposed the active infrastructure

most similar to ubiQoS [38]. Reflector is an application-level multimedia distribution system

implemented in C++. It has been designed and deployed mainly to test and verify the

feasibility of distributing low and medium bandwidth VoD flows to thousands of

simultaneous users over the Internet. The Reflector technology had a significant success in the

live broadcast of NASA’s Pathfinder mission. However, Reflector designers learned from

wide-scale deployment experiences the necessity for a better support to dynamic

reconfiguration, code distribution and adaptation to changes in network resource availability.

It is interesting that they are addressing the observed limitations of Reflector by adopting the

MA technology to enhance the system extensibility [39]. To our knowledge, there are no

projects in literature that have addressed the issue of an active service infrastructure, designed

and implemented in terms of Java-based MAs, for QoS-enabled VoD distribution over best-

effort networks.

7 Conclusions and Future Work

The work accomplished within the ubiQoS project has shown the feasibility and the

effectiveness of addressing the QoS issues of VoD services via an infrastructure of active

nodes distributed along the path between VoD clients and servers. This choice seems suitable

to enable QoS differentiation according to user/terminal profiles and to perform domain-

specific flow tailoring, control and adaptation over a best-effort network infrastructure. The

effectiveness of the ubiQoS implementation in terms of SOMA agents depends on operating

close to controlled resources to take locality-dependent management decisions and on

dynamically distributing middleware components at provision time. The experimental results

indicate that the Java technology is mature to provide the basis for the implementation and

dynamic deployment of portable middleware components for on-line QoS adaptation of

multimedia flows at usual transmission rates.

Obtained performance results have encouraged us to continue the work in the ubiQoS

project. In particular, we are focusing on how to extend the ubiQoS active service

infrastructure with accounting functions. The information about resource consumption



24

provided by the SOMA monitoring facility is rich and articulated. However, the overhead

imposed by the on-line control of MA operations can be significantly reduced in case of off-

line consumption analysis for accounting [22]. Along this direction, we are refining the

monitoring information to maintain concise and off-line logs on any SOMA place about user

resource consumption; in addition, an MA-based service to collect and process the log data

either at fixed intervals or when requested by SOMA administrators is under development.

References

[1] J. Krikke, "Graphics Applications over the Wireless Web: Japan Sets the Pace", IEEE Computer
Graphics and Applications, Vol. 21, No. 3, pp. 9-15, May/June 2001.

[2] P. Bellavista, A. Corradi, C. Stefanelli, "An Integrated Management Environment for Network
Resources and Services", IEEE Journal on Selected Areas in Communication, Vol. 18, No. 5,
pp. 676-685, May 2000.

[3] X. Xipeng, L. M. Ni, "Internet QoS: a Big Picture", IEEE Network, Vol. 13, No. 2, pp. 8-18,
Mar. 1999.

[4] N. E. Andersen, A. Azcorra, E. Bertelsen, J. Carapinha, L. Dittmann, D. Fernandez, J. K.
Kjaergaard, I. McKay, J. Maliszewski, Z. Papir, "Applying QoS Control through Integration of
IP and ATM", IEEE Communications, Vol. 38, No. 7, pp. 130-136, July 2000.

[5] K. Psounis, "Active Networks: Applications, Security, Safety, and Architectures", IEEE
Communications Surveys, Vol. 2, No. 1, http://www.comsoc.org/pubs/surveys, 1st Quarter
1999.

[6] H. Yasuda (ed.), Proc. 2nd Int. Working Conf. Active Networks (IWAN’00), Lecture Notes on
Computer Science, Springer-Verlag, Japan, Oct. 2000.

[7] A. Ghosh, M. Fry, G. MacLarty, "An Infrastructure for Application Level Active Networking",
Computer Networks, Vol. 36, No. 1, pp. 5-20, June 2001.

[8] D. Putzolu, S. Bakshi, S. Yadav, R. Yavatkar, "The Phoenix Framework: a Practical
Architecture for Programmable Networks", IEEE Communications Magazine, Vol. 38, No. 3,
pp. 160-165, Mar. 2000.

[9] S. Karnouskos, I. Busse, S. Covaci, "Agent Based Security for the Active Network
Infrastructure", 1st Int. Working Conf. Active Networks (IWAN'99), Springer-Verlag, pp. 330-
344, Germany, 1999.

[10] P. Bellavista, A. Corradi, C. Stefanelli, "Mobile Agent Middleware for Mobile Computing",
IEEE Computer, Vol. 34, No. 3, pp. 73-81, Mar. 2001.

[11] J. Bolliger, T. Gross, "A Framework-Based Approach to the Development of Network-Aware
Applications", IEEE Transactions on Software Engineering, Vol. 24, No. 5, May 1998.

[12] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, "Security in Programmable Network
Infrastructures: the Integration of Network and Application Solutions", in [6].

 [13] GMD FOKUS and IBM Corp., Mobile Agent Facility Specification (MASIF), Joint Submission
supported by Crystaliz Inc., General Magic Inc., the Open Group, OMG TC Document
orbos/97-10-05, ftp://ftp.omg.org/docs/orbos/ 97-10-05.pdf, 1998.

[14] Foundation for Intelligent Physical Agents (FIPA) – http://www.fipa.org/.
[15] IKV++, Grasshopper 2: the Agent Platform, http://www.grasshopper.de/
[16] P. Bellavista, A. Corradi, C. Stefanelli, "Protection and Interoperability for Mobile Agents: A

Secure and Open Programming Environment", IEICE Transactions on Communications, Vol.
E83-B, No. 5, pp. 961-972, May 2000.

[17] R. H. Glitho, "Emerging Alternatives to Today's Advanced Service Architectures for Internet
Telephony: IN and Beyond", Computer Networks, Vol. 35, No. 5, Apr. 2001, pp. 551-563.



25

[18] M. Baldi and G. P. Picco, "Evaluating the Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications", Int. Conf. on Software Engineering (ICSE’98), IEEE
Computer Society, pp. 146-55, Apr. 1998.

[19] B. Pagurek, Y. Wang, T. White, "Integration of Mobile Agents with SNMP: Why and How",
Proc. IEEE/IFIP Network Operations and Management Symposium (NOMS 2000), IEEE Press,
USA, 2000.

[20] D. Gavalas, M. Ghanbari, M. O’Mahony, D. Greenwood, "Enabling Mobile Agent Technology
for Intelligent Bulk Management Data Filtering", Proc. IEEE/IFIP Network Operations and
Management Symposium (NOMS 2000), IEEE Press, USA, 2000.

[21] G. Czajkowski, T. von Eicken, "JRes: a Resource Accounting Interface for Java", Proc. ACM
Conference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’98), USA, 1998.

[22] P. Bellavista, A. Corradi, C. Stefanelli, "Monitor and Control of Mobile Agent Applications",
ACM OOPSLA Workshop on Experiences with Autonomous Mobile Objects and Agent Based
Systems, Minneapolis, USA, Oct. 2000.

[23] T. Braun, "Internet Protocols for Multimedia Communications - Part II: Resource Reservation,
Transport, and Application Protocols", IEEE Multimedia, Vol. 4, No. 4, pp. 74-82, Oct. 1997.

[24] D. Chalmers and M. Sloman, "A Survey of Quality of Service in Mobile Computing
Environments", IEEE Communications Surveys, Vol. 2, No. 2, http://www.comsoc.org/pubs/
surveys, 1999.

[25] A. T. Campbell, "QoS-aware Middleware for Mobile Multimedia Communications",
Multimedia Tools and Applications, Vol. 7, No. 1-2, pp. 67-82, 1998.

[26] SUN Microsystems, Inc. - Java Media Framework API, http://www.java.sun.com/products/
java-media/jmf/

[27] UCL Networked Multimedia Research Group - Mbone Conferencing Applications, http://www-
mice.cs.ucl.ac.uk/multimedia/software/.

[28] N. Dulay, R. Montanari, C. Stefanelli, "Flexible Security Policies for Mobile Agent Systems",
Microprocessors and Microsystems, Elsevier Science, Vol. 25, No. 2, pp. 93-99, Apr. 2001.

[29] G. Cabri, L. Leonardi, F. Zambonelli, "Mobile-Agent Coordination Models for Internet
Applications", IEEE Computer, Vol. 33, No. 2, pp. 82-89, Feb. 2000.

[30] Sun Microsystems - Java Virtual Machine Profiler Interface (JVMPI), http://java.sun.com/
products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.

[31] R. Gordon, Essential Java Native Interface, Prentice Hall, 1998.
[32] P. Bellavista, A. Corradi, C. Stefanelli, "Middleware Services for Interoperability in Open

Mobile Agent Systems", Microprocessors and Microsystems, Elsevier Science, Vol. 25, No. 2,
pp. 75-83, Apr. 2001.

[33] W3 Consortium - Composite Capability/Preference Profiles (CC/PP) Working Group,
http://www.w3.org/Mobile/CCPP/

[34] Ravisent Technologies Inc. - Cinax MediaPalette, http://www.cinax.com/Products/mp.html.
[35] W. Marshall, C. Roadknight, "Provision of Quality of Service for Active Services", Computer

Networks, Vol. 36, No. 1, pp. 75-85, June 2001.
[36] M. Baldi, G. P. Picco, F. Risso, "Designing a Videoconference System for Active Networks",

Proc. 2nd Int. Workshop on Mobile Agents (MA’98), pp. 273-284, 1998.
[37] E. Amir, S. McCanne, R. Katz, "An Active Service Framework and its Application to Real-time

Multimedia Transcoding", Proc. ACM SIGCOMM Conf., 1998.
[38] F. Kon, R. H. Campbell, S. Tan, M. Valdez, Z. Chen, J. Wong, "A Component-based

Architecture for Scalable Distributed Multimedia", Proc. 14th Int. Conf. Advannced Science and
Technology (ICAST’98), pp. 121-135, 1998.

[39] F. Kon, R. H. Campbell, K. Nahrstedt, "Using Dynamic Configuration to Manage a Scalable
Multimedia Distribution System", Computer Communications, Vol. 24, No. 1, pp. 105-123, Jan.
2001.


