
M obile Agent based realization of a distance evaluation system
Vikram Jamwal and Sridhar Iyer

 KR School of Information Technology, IIT Bombay

 India, 400 076
{vikram, sri}@it.iitb.ac.in

Abstract

 The growth of the Internet has led to new avenues for
distance education. A crucial factor for the success of
distance education is effective mechanisms for distance
evaluation. Existing computer based evaluation
mechanisms, such as Web Based Testing, rely principally
on the client-server model. Such mechanisms usually do
not scale well and also do not fully support features like:
evaluation of subjective questions, delivery of dynamic
content, and off-line examinations. These features are
extremely desirable for distance evaluation and there is a
need for alternate ways of designing such applications.

We propose the use of Mobile Agents for effective
structuring of distance evaluation. Mobile Agents are
autonomous and dynamic entities that can migrate
between various nodes in the network. They offer many
advantages over traditional design methodologies like:
reduction in network load, overcoming network latency
and disconnected operations.

We have designed and implemented MADE, a Mobile
Agents based system for Distance Evaluation of students
who may be spread over large areas. MADE aims to map
closely to real world examination scenarios and
addresses the full gamut of the examination process, viz.,
paper setting, distribution and testing, evaluation and
result-compilation. In this paper we present our
experiences in the development of MADE and show how
Mobile Agents can be leveraged to effectively structure
such large-scale applications.

1. Introduction

The widespread penetration of the Internet has made it
possible to impart education on a larger scale. This has
resulted in new models for knowledge dissemination by
universities and other organizations. Distance evaluation
(DE) of students constitutes a crucial factor for the
success of distance education initiatives.

We consider an examination scenario where a large
number of students are e-evaluated concurrently. A

typical large-scale examination process involves the
following stages: (i) preparation of question papers by
gathering inputs from various paper-setters who may
work at their respective remote locations, (ii) dispatch of
question papers to the examination centers and
distribution to the enrolled students, (iii) collection of
answer papers and their dispatch to the evaluation center,
(iv) evaluation of answer papers by the designated
evaluators, and (v) compilation and publication of the
results.

Most of the present day Internet based evaluations, e.g.
[1], are web centric and employ the client-server
paradigm. They extend the principles of Computer Based
Testing (CBT) to evaluation across wide area networks.
CBT has been deployed for examinations like Graduate
Record Examinations (www.gre.org) and allows for
asynchronous and round-the-year examinations [2].
However, it depends upon a local database of the
questions (typically on a local area network) and does not
scale well for remote testing.

In Web Based Testing (WBT) [3], on the client side
the students download a questionnaire as a web page and
submit the answers back to the server. The server
evaluates the answers and returns the results to the client.
Java Applets and scripting languages like Java Script etc.
are the frequently used techniques to enable front-end
client processing. Common Gateway Interface (CGI)
scripts or Java Servlets are the most often used techniques
for server side processing.

The above techniques use the client-server paradigm
and as such are susceptible to problems due to varying
network characteristics. They present scalability problems
when a large number of users access the server
simultaneously.

In addition there is a need to provide the following
features:
• Comprehensive solution: Paper setting, distribution,

collection, result compilation and publishing are
important parts of the DE application and should be

1.1. DE Application scenar io

1.2. Traditional techniques for DE

1.3. Desirable extensions

well integrated with each other and the rest of
evaluation system.

• Support for subjective questions: Answers that
involve written text or graphical schematics would
normally require manual evaluation by one or more
evaluators. The system should support a workflow of
answer papers among these evaluators.

• Delivery of dynamic content: Questions may need to
be presented to the students using dynamic content in
the form of audio, video, multimedia etc. Sometimes
it might also be necessary to send a tool (e.g. a
compiler for client-side code compilation and testing)
to the students.

• Offline examinations/ operations: Unreliable links,
security and other reasons might require that
students, paper-setters, and evaluators work offline
for certain durations.

• Support for push: There are cases where pushing
information to the users is a better alternative than
the users pulling the information from the servers.
E.g., such a need may arise when some run-time
notices are to be communicated to the students.

Since the existing WBT mechanisms primarily use the
client-server and pull model of distributing information,
we feel that it would be cumbersome to extend them to
provide the above features. Hence, there is a need for
alternate mechanisms.

Over the past few years, the Mobile Agent paradigm
has emerged as a new mechanism for structuring
distributed applications. It promises to alleviate many of
the shortcoming of the client-server approach [4,5,6].
Mobile Agent (MA) is an autonomous piece of software
that can migrate between the various nodes of the network
and can perform computations on behalf of the user [7].
Some of the benefits provided by MAs include reduction
in network load, overcoming network latency and
disconnected operations [8].

For our application, Mobile Agents seemed
particularly useful because they map directly to real life
situations, are dynamic autonomous entities, and can
work in both push and pull modes. We have designed and
implemented MADE, a Mobile Agent based system for
distance evaluation. We used the Voyager framework [9]
to implement our system.

In this paper, we present our experiences with the
design and implementation of MADE. From our
experience, we have identified some key
characteristics/requirements of an application that
determine its suitability for MA based design.

The organization of this paper is as follows. Section 2
provides the architecture of MADE. Sections 3 and 4

present the detailed design and implementation aspects of
MADE respectively. Section 5 and 6 present advantages
gained by using MAs for distance evaluation and gains
for large-scale application-structuring, respectively.
Section 7 concludes with a discussion on challenges that
need to be tackled.

2. M ADE architecture

 MADE is a Mobile Agent based system for distance
evaluation of students. It was designed with a view to map
closely to the real world scenario. Other goals include
automation and integration of the entire examination
process, minimization of infrastructure requirements at
different nodes, and ease of deployment and maintenance.
In MADE we divide the examination process into three
stages: (i) paper-setting, (ii) distribution and testing and
(iii) evaluation and result compilation.

As shown in figure 1, the examination setting process
takes place in a collaborative manner among the paper-
setters who are at different remote locations. Install
Agents are used to install the paper-setting application on
each setter’s machine (Step 1). Each setter prepares a
partial question paper (Step 2). Fetch Agents are
subsequently dispatched to collect these question papers
(Step 3). The Paper Assembler node creates one/more
comprehensive question paper from the partial papers
(Step 4). One of this question papers is sent to the
examination centers at the appropriate time (Step 5).

1.4. Our approach: using Mobile Agents

2.1. Paper setting

Figure 1. Paper setting scenario

Paper Assembler

Comprehensive Question Paper

To Examination Center

= Paper Setter Nodes

= Install Agent

= Fetch Agent

15

3

4

Partial Question
Paper

2

Cloning

As shown in figure 2, this stage involves sending the
question paper to different centers, distribution to students
and the collection of answer papers. The question paper is
dispatched to the different examination centers with the
help of Courier Agents (Step 1a, 1b). The Distribution
Server at each center has a list of candidates enrolled for
that center. It creates Question Agents (one per student)
and dispatches them to each student node in the center
(Step 2, 3). After the designated examination duration or
when the student finishes, each Question Agent returns to
the Distribution Server with the student’s answers (Step
4). The Distribution Server now creates an Answer Agent
for each answer-paper (Step 5), and sends it to the
Evaluation Server.

As shown in figure 3, this stage involves evaluation of
the answer papers, compilation of the results and their
publication. When an Answer Agent reaches the
Evaluation Server, it is supplied with an itinerary of
evaluators (Step 1). The Answer Agent visits various
evaluators, until all the answers are evaluated (Step 2).
Finally the Answer Agent moves to the Publishing Server
where it supplies its results (Step 3). The comprehensive
results are then compiled and published (Step 4).

In the next sections we provide the detailed design and

implementation aspects of MADE.

 Figure 3. Evaluation and result compilation
 scenario

3. M ADE: Detailed design

In this section, we present the design details in MADE
in terms of Mobile Agents used, the main application
components and their interactions.

Paper setting involves: (i) the installation of
application on the paper setter nodes, and (ii) subsequent
fetching of the partial question papers from the paper-
setters.

3.1.1. Application installation on paper -setter nodes.
The paper-setting process is coordinated by a node termed
Paper Assembler. This node is given a list of paper-setters
for each subject.

For installing the paper-setting application at various
nodes, the Launcher object at the Paper Assembler node
instantiates and launches an Install Agent. This agent is
supplied with an itinerary, which consists of the list of
paper-setters that have to be visited. The Install Agent
moves to the first paper-setter’s machine and installs the
Paper Setter Application. The Paper Setter Application
registers itself with the Naming Service. Any object that
wants to communicate with this application in future will
use this reference. If more installations are to be done, the
Install Agent clones itself and moves to the next paper-
setter. In this way the application is installed on all the
paper-setter machines.

3.1.2. Fetching of par tial question paper . The paper-
setters might prepare question paper over several days.
When it is time to collect the question papers, the
Launcher object instantiates a Fetch Agent. This agent
can either be supplied with the full itinerary at the source

2.2. Distr ibution and testing

2.3. Evaluation and result compilation

3.1. Paper setting stage

Figure 2. Distribution and testing scenario

Exam Center
Distribution

Server

Courier Agent brings
Single copy of paper

c9611060

Separate Copy per user

List of
enrolled students

…
…

Each Candidate get a Question Agent

1a

4

3

2

Answered and Returned

5
Answer Agents to
Evaluation Center

1b

Courier Agent to next
Examination Center

c9611060

Automatic Evaluator

Evaluator C

Evaluator B

Results
…
…

Agents collaborate to produce the final result

Evaluation Server

2

4

3

1

Answer Agents

Evaluator A

Publishing Server

or it can build its itinerary dynamically (the information
of next paper-setter is available with the Naming Service
at each paper-setter).

Upon arriving at a paper setter node, the Fetch Agent
queries the Naming Service for a reference to the Paper
Setter Application at that node. The Fetch Agent creates a
Graphical User Interface (GUI) object and attaches it to
the paper-setter’s GUI, dynamically at runtime, as shown
in figure 4. This interface prompts the paper-setter to
submit her questions. Depending upon the response of
paper-setter, the Fetch Agent may go into either of these
states: wait (wait for the submission), or deferred (move
to the new location and come back later). The third option
is to force-fetch i.e. after the expiry of designated
duration, the Fetch Agent can forcibly take away the
partial question paper from the paper-setter.

Paper Assembler

= Paper Setter Nodes

= Fetch Agent

Attach
Agent GUI

= Paper-Setter GUI

Figure 4. Dynamic upgrade of paper-setter’s
 application by the Fetch Agent

Once the Fetch Agent gets a partial question paper, it

moves to the Paper Assembler to submit it. After this the
Fetch Agent’s itinerary consists of the remaining paper-
setters. It keeps polling these paper-setters until all of

them have submitted their questions. A summary of the
components used in paper-setting stage is given in table
1 and the interactions between these components (using
UML notation [10]) are shown in figure 5.

The Paper Assembler assembles the final question
paper after it has received inputs from the various paper-
setters. In the next stage, the question paper needs to be
distributed to various examination centers.

Table 1. Main components used in
 paper setting

 Component Functionality

1 Paper
Assembler

Coordinates various paper-
setters; assembles the final
question paper after receiving
inputs from the paper-setters

2 Launcher Creates and launches the Install
Agent and Fetch Agent; creates
the Paper Assembler
application

3 Install Agent Installs paper setting
application and interface on
remote paper-setter nodes

4 Fetch Agent Collects partial question papers
from the paper-setter nodes

5 Paper Setter
Application

Application used by the remote
setter to set the question paper.

Laun ch er

Paper Setter A pp

Fetc h Ag en t

Ins tall Agent

new InstallAgent()

new FetchAgent()

moveTo(PaperSetter)

[arrived at new node] new paperSetterApp()

Nam ing Ser vic e

register()

moveTo(PaperSetter)

*
Clone() &
moveTo(next RemoteSetter) …

addAgentGUIObject()

removeAgentGUIObject()

new AgentGUIObject()

getApplicationReference()

Figure 5. Component interactions in
 paper setting stage

Dynamic
Upgrade

Which of these planets is nearest to the
sun?

Uranus

Should I wait?

Press <WAIT>

Should I come later?

Press < LATER >

If you are done with the questions,

Press < FINISHED >

Neptune

Mercury

Pluto

Which of these planets is nearest to the
sun?

Uranus

Neptune

Pluto

Mercury

Agent Messages

3.2. Distr ibution and testing stage

This stage involves: (i) distribution of question papers
to the examination centers, (ii) creation of Question
Agents for testing the students and (iii) creation of
Answer Agents from the students’ responses.

3.2.1. Distr ibution of question papers. The Paper
Assembler node creates and launches a Courier Agent
after supplying it with the question-paper object and the
itinerary of various examination centers. This agent
carries only a single copy of a particular question paper.
After supplying a copy of the question paper to the
Distribution Server at an examination center, the Courier
Agent moves on to the next location. Upon completion of
the itinerary, it returns to the Paper Assembler and
terminates. If the number of examination centers is large,
more than one CA may be launched in parallel.

3.2.2. Creation of question agents and testing. The
Distribution Server has a list of the students enrolled for
that center. It maps each machine in the center to a
student and instantiates one Question Agent per student.
Once the Question Agent reaches the student’s machine,
the student can work (or can be made to work) offline for
the duration of test. The Question Agent presents the
questions to the students and records his answers. After
the designated examination duration or when the student
finishes, the Question Agent returns to the Distribution
Server with the answers.

3.2.3. Creation of Answer Agents. The Distribution
Server extracts answers from the Question Agent and
creates an Answer Agent. The Answer Agent is later sent
to the Evaluation Server.

Note that while the Question Agent itself could be sent
to the Evaluation Server, we use a separate Answer Agent
to ensure security and anonymity. For example, student
machines may not be trusted hosts and the use of
Question Agent hides information about the evaluation
process from the student. Similarly, the Answer Agent
hides student details from the evaluators.

A summary of the components used in the distribution
and testing stage is given in table 2 and the interactions
between these components are shown in figure 6.

 Table 2. Main components used in

 distribution and testing

 Components Functionality

1 Courier Agent Delivers the question paper to the
Distribution Servers of all
examination centers.

2 Distribution
Server

Creates Question Agents and sends
them to the students in the center;
creates Answer Agents and sends
them to the Evaluation Server.

3 Question Agent Presents the questions to a student
and carries the answers back to the
Distribution Server

4 Answer Agent carries the answer paper of a
student to the Evaluation Server

P a pe r C o u r ie r A ge n t

A n sw e r A ge n t

Q u e st i o n
P a p e r A ge n t

D i s t r i b u t i o n S e r v e r

m o v e To
(n e x tDis tr ib u tio n S e r v e r)

[a r r iv e a t c e n te r]
w o r kA tCe n te r ()

d is tr ib u te Q u e s ti o n Pa p e r () n ew Q u e s tio n P a p e r A g e n t
(Q u e s tio n L is t)

m o v e To (s tu d e n t)

[a r r iv e b a c k a t th e D is tr ib u tio n S e r v e r]
d is p a tc h A n s w e rs (A n sw e r L is t)

n ew A n sw e rA g e n t (A n sw e r L is t)

m o v e To (Ev a lu a t io n S e rv e r)

* mo v e To
(n e x tDis tr ib u tio n S e r v e r)

…

[a rr iv e a t th e s tu d e n t n o d e]
In t e ra c tW it h S tu d e n t ()

m o v e To (D is tr ib u ti o n S e r v e r)

 Figure 6. Component interactions in
 distribution and testing stage

This stage involves: (i) evaluation of answer papers
and (ii) compilation and publication of results.

3.3.1. Evaluation of Answer Papers. The Evaluation
Server examines the type of answers that an Answer
Agent is carrying to find our whether they can be
machine evaluated or need manual evaluation.

Automatic Evaluations: Some questions, such as
multiple-choice, may be automatically evaluated. The
Answers Agent obtains a reference to an Automatic
Evaluator from the Evaluation Server. The Answer
Agent then moves to the Automatic Evaluator and
requests for an evaluation. The Automatic Evaluator
evaluates these answers and returns the scores to the
Answer Agent.

Manual Evaluations: The Evaluation Server has a set
of Evaluators for each question paper. It prepares an
itinerary for each Answer Agent. The Answer Agent then
moves to each Evaluator to get its answers evaluated.
Once an Answer Agent reaches an Evaluator, it exports a
GUI to the evaluator and prompts her to evaluate its
answers. After getting itself evaluated or after a
designated time, it moves on to the next Evaluator.

3.3. Evaluation and result compilation stage

Initially the Answer Agent visits each Evaluator in the
order specified in its itinerary. After the first round of
evaluations, it visits them dynamically depending upon
the questions that still need to be evaluated.

3.3.2. Publication of Results. When all the answers have
been evaluated, the Answer Agent obtains a reference to
the Publish Server from the Evaluation Server. It then
moves to the Publish Server and supplies its scores. After
all the Answer Agents have supplied their scores, the
Publish Server compiles and publishes the final results.

A summary of the components used in the evaluation
and result compilation stage is given in table 3 and the
interactions between the components are shown in
figure 7.

Table 3. Main components used in
 evaluation and result compilation

 Components Functionality

1 Answer Agent Carries student’s answer paper;
visits the Evaluators to get itself
evaluated and supplies the final
results to Publish Server

2 Evaluation
Server

Coordinates the evaluation
process. All the evaluators
register themselves with this
server. In addition it has
reference to the Automatic
Evaluator and the Publish
Server

3 Evaluator Evaluates answers; may be
automatic / manual

4 Publish Server Accepts individual results of
each Answer Agent and then
compiles and publishes the final
results.

A n sw er A gen t

Ev alu at o r

Ev alu ati on Se rver

Pu b lis h Serv er

get Pub lis hServerIR ef()

publis hR esults (s cores)

new P ublis hServer ()

get Eva lu atorItinerary ()

* m o veT o(n ext E valuator)

m ov eT o (first Evaluator)

[arrive at Evaluator n od e]

evalu ate (Ans w ers)

acc eptSc ores ()

evaluat e()

Figure 7. Component interactions in evaluation
 and result compilation stage

 In the next section, we present some of the
implementation aspects of MADE.

4. M ADE: Implementation aspects

MADE has been implemented using Java as the
development language and Voyager ORB [9] as the MA
Framework. We chose Voyager mainly because it is a
generalized platform for distributed object computing and
allows easy integration of MAs with the rest of the
application components.

The prototyping was carried out on Pentium III, 450
MHz workstations (running either on Windows2000 or
Linux operating systems) on a campus network. Voyager
ORB was installed on all of these machines. We
simulated the set up for the examination process by using
different ports on each machine for the different services.

A summary of the MAs used in MADE is given in
table 4.

Table 4. Mobile Agents used in MADE

MA
Type

No of
Hops

Life-
Duration.

No. of
Instances

I tinerary

Install
Agent

1 to
no. of
paper-
setters

few
months
(paper
setting
duration)

1 to no. of
setters
(10s)

Static:
supplied by
Paper
Assembler

Fetch
Agent

min. =
no. of
paper-
setters

Few
seconds to
days

1 to no. of
setters
(10s)

Static
initially:
supplied by
Paper
Assembler;
Dynamic
subsequently

Courier
Agent

1 to no. of
exam
centers

Few
minutes

1 to no. of
centers
(100s)

Static:
supplied by
Paper
Assembler

Question
Agent

2
(to – fro
student)

1 to 4 hrs
(duration
of exam.)

No. of
students
(1000s)

Static:
supplied by
Distribution
Server

Answer
Agent

No. of
evaluators

1 hr - few
months
(duration
of evaln.)

No. of
students
(1000s)

Static
initially:
supplied by
Evaluation
Server;
Dynamic
subsequently

5. M obile Agent advantages in DE

Many of the advantages of MAs, cited in the literature
[8] are also applicable to MADE. For example, in MADE
almost all the MAs move to the node where the users are
situated. By being able to interact locally, users do not
become susceptible to varying network delays.

The following additional advantages are specific to

MADE:

• Dynamic content: MAs carry execution logic

along with data and can be used to present
dynamic content to the user. In MADE, MAs
enable graphical (multimedia) display of data to
the student and can carry specific tools such as
compilers etc.

• Hierarchical management: Control by a central
authority and remote management are prime
requirements in a distance evaluation application.
MAs use generic execution environments. In
MADE, we use this property to simplify the
infrastructure requirements at different nodes.
The managing nodes install most of the
application components remotely.

• Support for both push and pull modes: MAs can
be used to support both the push and pull modes
of information dissemination. In MADE, Courier
Agents are used to deliver (or push) question
papers just-in-time to the students. For
examination setting and workflow of answer
paper among various evaluators, a combination of
both the approaches, viz. push and pull, is used.

• Force-Fetch: Partial computations at remote sites
may sometimes need to be force-fetched. In
MADE, a Question Agent at a student node will
time-out after the designated examination
duration and return to the server. Similarly, Fetch
Agents forcibly bring the partial question papers
from the paper-setters after the designated time.

• Application layer multicasting: Content carrying
MAs can replicate themselves as and when
required. This enables application layer
multicasting. In MADE, only one copy of the
Question Paper is forwarded to each examination
center. These get replicated and forwarded to
various student nodes.

In the next section we discuss the applicability of MAs
to structure large scale distributed applications.

6. M A based structuring of large-scale
applications: lessons from M ADE

Many proposed MA applications, such as the areas of
e-commerce, information retrieval etc. [5] regard MA
mainly as a program that performs computations on
behalf of the user. We believe that MA approach need not
be restricted to this view and that MAs can be extremely
useful as an application structuring mechanism.

We feel that MAs may be particularly suitable for
structuring large scale distributed applications. We define
scale in terms of (i) the number of participating nodes, (ii)
the geographical spread of nodes, and (iii) the number of
application components.

Based on our experience, we list below some
structuring advantages gained by a MA based design.

MAs can be used to upgrade an application
dynamically. Functionality can be thus added to or
removed from the application at run-time. Dynamic
extensibility thus helps in automatic software / protocol
upgrades at run-time.

In MADE, this property is exploited during the paper-
setting stage (see figure 4). The Fetch Agent attaches a
GUI object to the paper-setter’s application. The paper-
setter is then able to manipulate this interface object
directly. After the interactions are over, the object is
detached from the application.

6.2. Independence from network disconnections

A MA based design can be used to provide support for
disconnected operations. Thus dependence on continuous
connectivity is reduced. Applications requiring processes
to work autonomously for large intervals of time, are good
candidates for MA solution.

In MADE, despite complex workflow, continuous
connectivity is not required. Message exchanges are
required mostly during agent transfers and rarely
otherwise. In fact, student terminals can be disconnected
from the network for the examination duration.

6.3. Application scalability

A MA based design partitions the application
functionality into a number of distributed autonomous
units. As a result the addition of more units does not
unduly affect the performance of the system.

 In MADE, the scalability of the application is required
against increase in the number of students, paper-setters,
evaluators and examination centers. Addition of these
new nodes mainly requires only updating the itineraries of

6.1. Dynamic extensibility

various agents. Since the MAs move to these nodes and
use the local resources, no part of the system is overly
loaded.

Any change in application architecture requires
components to be added to, relocated or replaced from the
system. MA based designs usually result in application
components which are autonomous and loosely coupled.
MAs themselves can move to various nodes and can be
placed where they are best utilized. Hence, restructuring
an application may become easier in the case of a MA
based design.

In MADE, for example, during the paper-setting
process, Install Agents are used to set up the paper-setting
infrastructure. A change in system architecture simply
involves supplying the new installation rules and
components to the Install Agents.

We believe that the above gains in structuring

applications arise mainly due to the “Mobile Agent based
design” and providing these advantages using traditional
client-server paradigms would be exceedingly unwieldy.

We also note that applications that are at present
suitable for MA based design are likely to belong to
closed environments, i.e., for which all the participating
hosts can be trusted. Applications in ‘open environments’
would first need to address additional security concerns.

7. Conclusions

We have built a MA based system for a large-scale
distributed application, viz. distance evaluation. We have
shown that the Mobile Agent approach is viable and has
several advantages for building future Internet
applications. Some key advantages of a MA based
structuring are: dynamic extensibility, independence from
network disconnections, scalability and ease of
restructuring.

Our further work is in the following directions:
(i) MADE Mobile Agents vary greatly in life spans,

instances and the number of nodes that they visit. There is
need for suitable techniques for proper control and
management of these different Mobile Agents.

(ii) Managing autonomous mobile components poses
many new challenges. Better methods of handling

autonomy and improving the overall system reliability
need to be studied and formulated.

(iii) Protection of agents (e.g. Answer Agents) from
malicious tampering will be a critical requirement when
we move from closed to open environments.

8. References

 [1] Chien Chou, “Constructing a Computer-Assisted
Testing and Evaluation System on the World Wide
Web-The CATES Experience” , in IEEE Transactions
on Education, Vol. 43, No 3, Pages 266-272, August
2000.

[2] Walworth, M., and Herrick, R. J., “The use of
computers for educational and testing purposes” ,
Proceedings Frontiers in Education Conference, Pages
510-513, 1991.

[3] Hazari, S. I., “Online Testing Methods for Web
Courses” , In Proceedings of the 14th Annual
Conference on Distance Teaching and Learning, Pages
155-157, November, 1998.

[4] J. White, “Mobile Agents” , in Software Agents, J.
Bradshaw (ed.), AAAI Press / The MIT Press, 1996.

[5] Alfonso Fuggetta, Gian Pietro Picco and Giovanni
Vigna, "Understanding Code Mobility", IEEE
Transactions on Software Engineering , vol. 24(5),
1998.

[6] Todd Papaioannou, “On Structuring of Distributed
Systems, The argument for mobility” , PhD Thesis,
Loughborough University, 2000.

[7] Neeran Karnik and Anand Tripathi, “Design Issues in
Mobile Agent Programming Systems” , IEEE
Concurrency, Pages 52-61, July-September 1998.

[8] Danny B. Lange, “Mobile Objects and Mobile Agents:
The Future of Distributed Computing” , in Proceedings
of The European Conference on Object-Oriented
Programming '98, 1998.

[9] G. Glass, "ObjectSpace Voyager Core Package
Technical Overview", Mobility: process, computers
and agents, Addison-Wesley, February 1999.

[10] Grady Booch, Ivar Jacobson, and James Rumbaugh.
The Unified Modeling Language User Guide. The
Addison-Wesley Object Technology Series, 1999.

6.4. Ease of restructur ing

