A two-level distributed architecture for efficient
Web content adaptation and delivery

Claudia Canali
University of Parma
claudia@weblab.ing.unimo.it

Riccardo Lancellotti

University of Modena and Reggio Emilia

lancellotti.riccardo@unimore.it

Abstract

The complexity of services provided through the Web is
continuously increasing as well as the variety of new de-
vices that are gaining access to the Internet. Tailoring Web
and multimedia resources to meet the user and client re-
quirements opens two main novel issues in the research area
of content delivery. The working set tends to increase sub-
stantially because multiple versions may be generated from
the same original resource. Moreover, the content adapta-
tion operations may be computationally expensive. In this
paper, we consider third-party infrastructures composed by
a geographically distributed system of intermediary and co-
operative nodes that provide fast content adaptation and
delivery of Web resources. We propose a novel distributed
architecture of intermediary nodes which are organized in
two levels. The front-end nodes in the first tier are thin edge
servers that locate the resources and forward the client re-
quests to the nodes in the second tier. These interior nodes
are fat servers that run the most expensive functions such as
content adaptation, resource caching and fetching. Through
real prototypes we compare the performance of the pro-
posed two-level architecture to that of alternative one-level
infrastructures where all nodes are fat peers providing the
entire set of functions.

1. Introduction

A new emerging trend of the Web evolution is the grow-
ing complexity of Web-based services and multimedia con-
tent and the contemporary diffusion of heterogeneous client
devices, such as handheld computers, personal digital as-
sistants (PDAs), mobile phones, and other pervasive com-
puting devices, characterized by diverse processing power,
storage, display, and connectivity capabilities. Hence, there

Vaeria Cardellini
University of Roma “Tor Vergata”
cardellini@ing.uniroma2.it

Michele Colgjanni
University of Modena and Reggio Emilia
colajanni@unimo.it

Philip S. Yu
IBM T.J. Watson Research Center
psyu@us.ibm.com

is an increasing demand for content adaptation and person-
alization services that enable on-the-fly transformation of
(possibly) complex Web content and its delivery to these di-
verse destination devices.

An approach that adds all adaptation and personaliza-
tion services to the content provider platform [7] remains a
valid solution when the popularity of the content provider
is medium-low. However, with the number of clients and
device profiles continuously increasing (hundreds of dif-
ferent device profiles already exist [13]), an infrastructure
that uses a geographically distributed system of intermedi-
ary nodes seems the most practicable solution among the
existing alternatives [1] to improve performance and scala-
bility. The distributed nodes of this intermediate infrastruc-
ture, that are interposed in the client-server path, shift the
load away from the origin servers of the content providers,
simplify their design, and reduce the user-perceived latency
when the adapted content can be served from a node closer
(i.e., better connected) than the origin server or when it is
possible to find an already adapted version of the requested
resource.

In this paper we consider an intermediary-based adapta-
tion architecture operated by an independent third party that
manages the adaptation and delivery process for the Web
resources of any provider. (The solution of an intermedi-
ary infrastructure operated directly by the content provider
or by a third-party company on behalf of its customer con-
tent providers can be easily implemented by the proposed
architecture. Indeed, the possibility of strict cooperation
between the content provider and the delivery infrastruc-
ture would even simplify many design and implementation
choices done in this paper.)

Any intermediary-based infrastructure has to provide
different functions. First, it has to intercept client request
and provide the response that fulfills adaptation require-
ments without the intervention of any visible component

for the user. Besides this gateway function, the other ser-
vices that the infrastructure may or must provide include lo-
cation, adaptation, fetching, and caching of Web resources
in both the original and adapted versions.

Any intermediate system can provide an efficient service
of adaptation and delivery through the Internet if it is able
to:

1. preserve the locality of the requests, because content
adaptation causes an augment of one order of magni-
tude of the Web resource set;

2. share the load among multiple nodes, because content
adaptation operations may be computationally expen-
sive.

In this paper we propose an intermediary-based archi-
tecture that address the previous goals in an original way.
It is based on a two-level distributed scheme, where the
the front-end level consists of thin edge servers, which are
closer to the users and provide light services (at most, gate-
way, location, and caching operations) from the computa-
tional point of view. The computationally expensive func-
tions are concentrated in fat interior nodes, which are typi-
cally located in the network core that is, in the Autonomous
Systems that have many peering points with other Au-
tonomous Systems and are well connected to the Internet
backbones. The details of the proposed architecture are de-
scribed in Section 2. For now, it is important to evidence
that the proposed architecture addresses the two main goals
that we have identified for achieving fast content adapta-
tion and efficient delivery services through a differentia-
tion of the nodes composing the infrastructure for adapta-
tion and delivery. The architecture preserves the access lo-
cality of the requests by using a content partitioning tech-
nique, so that each interior node is responsible for a sub-
set of original and adapted resources. As a consequence,
the maximization of request locality allows an aggressive
reuse of previously adapted resources and has a positive ef-
fect on the reduction of the global infrastructure load as it
reduces the amount of adaptation operations. Moreover, for
each client request a communication must occur only be-
tween a node at the edge and one at the interior level, so
there is no need of message exchanges among the nodes be-
longing to the same tier.

We implemented the proposed two-level architecture as
a working prototype to demonstrate that it is quite compat-
ible with the Web standards. The real test-beds allow us to
show the advantages of the two-level architecture over one-
level infrastructures. To the best of our knowledge, the pro-
posal is quite original. Other results about intermediate dis-
tributed architectures exist in the case of traditional proxy
caching and Content Distribution Networks (see [8] for a
complete survey on this topic). However, they have not ad-
dressed the main issues we are facing in this paper that is,
the computational costs of adaptation and the explosion of

the working set of the future Web. Other related work is dis-
cussed in Section 5.

The rest of this paper is organized as following. Sec-
tion 2 describes how the two-level content adaptation archi-
tecture organizes the server nodes and the Web content. Sec-
tion 3 outlines alternative one-level distributed architectures
for intermediate content adaptation. Section 4 presents the
experimental results on the performance of the two-level ar-
chitecture and other one-level schemes. Section 5 discusses
related work in the context of the intermediary-based ap-
proach for content adaptation. Section 6 concludes the pa-
per with some final remarks.

2. Two-level content adaptation architecture

In this section we describe the proposed two-level archi-
tecture. We first focus on the organization of the servers and
resources, and then on client request management. We also
outline the main advantages of this new architecture.

2.1. Server organization

Any distributed intermediary-based infrastructure for
content adaptation and delivery may or must provide sev-
eral functions.

Gateway: the infrastructure must intercept client re-
quests and provide the client with the response that fulfills
adaptation requirements without the intervention of any vis-
ible component for the user.

Location: the infrastructure must identify the remote
node(s) that may provide the requested service and/or have
a valid copy of the resource.

Adaptation: some node(s) must adapt, when necessary,
the original resource to the specific needs of the user, client
device and connection.

Fetch: the infrastructure must retrieve the original re-
source from the origin server, when a valid copy of the re-
quested resource is not found in the nodes of the intermedi-
ate infrastructure.

Cache: some node(s) must store original copies and
adapted versions of the requested resources.

The common choice of all previous proposals of inter-
mediate architectures for content adaptation and delivery is
oriented to fat edge nodes that provide all the previous func-
tions. Two traditional architectures are described in Section
3. Instead, the key idea of this paper is to propose a novel ar-
chitecture where there are two tiers of nodes that execute, at
least in the basic version, two distinct types of functions.

The first level consists of edge nodes that are located on
the borders of the Internet as described in Fig. 1. These edge
nodes are thin because they execute gateway and location
servers that are not expensive from the computational and
space point of view. In practice, the edge nodes receive the

client requests, identify the interior node that can serve each
request, and forward the request to that node.

The second level consists of interior nodes that are lo-
cated in the network core that is, they are in Autonomous
Systems of international providers that have a large hum-
ber of BGP peerings with other Autonomous Systems. The
interior nodes are fat because they provide the more com-
plex functions of adaptation, caching, and fetching. Only
these nodes can interact with the origin servers when the in-
termediate infrastructure is not able to fulfill the client re-
quest by means of previously cached Web resources.

Origin servers

A—o E-l

A)taﬂoﬂ
W fetch
cache

\E_I
E-l E

Edge nodes
gateway
location

g2 Clients

Figure 1. Two-level architecture for
intermediary-based adaptation and deliv-
ery.

2.2. Data organization

The explosion of the working set size caused by content
adaptation services is another issue that the two-level archi-
tecture addresses in an original way. To improve the cache
hit rate in a working set that can easily become one order of
magnitude larger than the set of the original resources, the
basic idea is to maximize the locality of the requests. The
two-level infrastructure achieves this result through a com-
bined strategy. First, it uses a hash-based resource partition
scheme, so that each interior node manages a different sub-
set of the global space of resources. Second, all the adapted
versions of the same original resource are kept in the same
interior node.

The mapping between a Web resource and an inte-
rior node is carried out through the hash function H(z).
H(z) takes as input a resource ID (e.g., the URL) and re-
turns a value £ = H(resourcelD), where k& € [1,...,n],
and n is the number of interior nodes. An example is
H (resourceID) = (MD5(resourcelD) mod n) + 1 that
uses the MD5 algorithm to distribute the resources uni-
formly across n nodes.

It is worth observing that the hash function is computed
only on the original resource without taking the object ver-

sion into account. Through this choice, we address in a sim-
ple way all lookup issues related to the need of preserving
access locality of the requests. Indeed, if multiple versions
of the same resource exist, they are stored on the same in-
terior node and we can avoid to look for Web resources in
other interior nodes.

2.3. Management of client requests

When an edge node receives a client request (step 1 in
Fig. 1), it extracts the resource ID and applies the hash func-
tion to identify the interior node that with some probability
holds a valid version of the requested resource (step 2). It
is interesting to note that there is no need for cooperative
lookup, because if the interior node receiving the request
from the edge node does not hold the requested content, no
other interior node does. Hence, any request to an interior
node has the three possible results. (The numbers between
brackets specify steps that are not always executed.)

Exact hit: if the cache of the contacted interior node con-
tains the exact version of the requested object, the resource
is immediately sent to the edge node (step 5 in Fig. 1).

Useful hit: if the cache contains a more detailed and
adaptable version of the requested object, it can be trans-
formed (step (4)) to meet the client request through a con-
tent adaptation process. After that, the interior node sends
the exact resource to the edge node (step 5).

Miss: the interior node must fetch the original resource
from the origin server (step (3)). If necessary, it adapts the
original resource (step (4)), and then sends it back to the
edge node (step 5).

The final delivery of the resource to the client (step 6) is
always carried out by the gateway server that is located on
the edge node.

The two-level architecture requires a twofold location
step because each client request must always reach an edge
server and then an interior node. Therefore, it is important to
analyze the sensitivity of this architecture to the network de-
lays among the nodes of the distributed architecture and the
origin servers. We will show in Section 4.2 that the higher
access locality achieved by the two-level architecture com-
pensates the twofold location step. For now, we find use-
ful to denote in Fig. 1 the classes of network links that we
will consider in our analysis.

Client-to-Edge node links (C-E in Fig. 1), con-
nect clients to edge nodes. Edge-to-Interior node links
(E-1 in Fig. 1) connect edge nodes to interior nodes.
They carry client requests from edge nodes to inte-
rior nodes and the exact resources in response to those re-
quests. As we assume that interior nodes are located in
well-connected Autonomous Systems, they can be possi-
bly far from the edge nodes, but with large bandwidth con-
nections with them. Interior-to-Origin server node

links (I-O in Fig. 1) connect the intermediate infrastruc-
ture to the origin servers.

2.4. Other benefits of the two-level architecture

We have outlined in Section 2.2 how the proposed
two-level architecture addresses both issues caused by
the growth of the working set size and by the computa-
tional requirements of content adaptation. Here, we discuss
other benefits related to the choices of this architecture, in-
cluding server management, data consistency, and privacy
issues.

Edge nodes are gateway servers and request redirectors
that receive all requests and deliver all content to the clients.
These operations may stress certain system resources (espe-
cially network resources and file descriptors), but they are
not CPU and memory intensive. Hence, a large number of
edge nodes can be easily spread around the Internet borders
(local ISP providers) because they do not require complex
software and powerful machines. On the other hand, interior
nodes execute network-, memory- and CPU-bound opera-
tions, such as caching, fetching, and adaptation, that require
more powerful platforms. For this reason we find conve-
nient to locate the interior nodes in well-connected and con-
trolled positions. The number of interior nodes may be even
one-two orders of magnitude less than that of edge nodes.
Strategic location of interior nodes in few well-connected
Autonomous Systems provides also the further advantage
of reducing response time variability.

It is also worth noting that adaptation often requires
transcoding operations guided by the type of client de-
vice and network connection, but in other cases resource
adaptation may be related to the user behavior and prefer-
ences. The important consequence is that personalization
functions introduce new security and privacy concerns on
stored data because they require additional information on
the user, such as user profiles or history of user behaviors.
Placing critical information only on the interior nodes that
are located in few controlled sites instead of spreading data
among several edge nodes allows us to address the issues
related to security in an easier way. Moreover, reducing the
replication of critical and volatile data (such as user profiles
on behaviors and preferences) helps in guaranteeing their
consistency. However, all these problems and related solu-
tions are beyond the scope of this paper, and in our experi-
ments we do not explore their performance.

3. Alternative intermediate architectures for
content adaptation

In a traditional one-level (flat) architecture for content
adaptation and delivery services, the nodes are all peers
and are typically placed at the edge of the content deliv-

ery chain. Flat architectures rely on fat edge nodes that pro-
vide all the functions that is, each node may execute gate-
way, location, cache, adaptation, and fetch servers.

An intermediate flat architecture consisting of a geo-
graphically distributed set of edge nodes may have two main
methods of operation. The difference is whether the nodes
cooperate or not in resource lookup, and how to cooperate
in the former case.

In the simpler architecture, denoted by No_Coop, the
edge nodes provide all functions for content adaptation,
caching, fetching and delivery, but they do not implement
cooperative schemes for location and caching of resources
in other peers. Hence, if no valid copy of the requested ob-
ject is found in the cache of the contacted edge node, this
node must fetch the original resource from the origin server,
if necessary, adapt that resource, and send it to the client. As
there is no attempt to cooperate for locating resources in re-
mote peers, exact and useful hits can only be local.

The alternative architectures implement some form of
cooperation among the edge nodes. In particular, the lo-
cation function allows the edge node to take advantage of
cache contents of peers. Different cooperation schemes are
available in flat architectures. The first idea is to investigate
whether the same previous approach of Web resource parti-
tioning could be apply or not to an intermediate flat archi-
tecture consisting of geographically distributed edge peers.
We exclude immediately this hypothesis for two main rea-
sons. First, partitioning the resources among a large num-
ber of edge nodes increases the variance of the system re-
sponse time, because a client request that cannot be satisfied
by the contacted edge node must be forwarded to a peer that
could be near or very far from the first node. In most in-
stances, it would become convenient to fetch the resource
from the origin server. Second, the addition/replacement
of an edge server would become a complex operation be-
cause it would require a complete redistribution of original
and adapted contents. (Partition schemes such as consistent
hashing [10] can reduce the effects of content redistribution,
but do not solve completely the problem.) Indeed, a similar
problem exists for the interior nodes of the two-level archi-
tecture, but in this paper we can neglect it because the in-
terior nodes are one-two orders of magnitude less than the
edge nodes, and they represent a quite stable set.

If we relax the requirement of resource space partition
and allow content to be replicated among the edge nodes,
the content location function becomes the peculiar element
for distinguishing the intermediate flat architectures. Node
cooperation may occur according to several schemes, such
as query- or summary-based lookup schemes. In previ-
ous studies the authors have compared multiple coopera-
tion schemes in flat architectures. In particular, in [2] they
show that a query-based cooperation achieves the best per-
formance thanks to the effectiveness of the resource loca-

tion algorithm. Due to space limits, in this paper we con-
sider only flat architectures that use a query-based cooper-
ation scheme, denoted by Flat. In Fig. 2 we give an ex-
ample of the operations of this system by taking into ac-
count one edge node that receives client requests from pos-
sibly heterogeneous devices. When the gateway server on
this node receives a request (step 1 in Fig. 2), it looks for
the requested resource in the server cache. If it does not
find a useful resource, it activates a cooperative lookup pro-
cess that is based on a query-based scheme, such as ICP. In
this case, the edge node sends a query message to each peer
(step (2)). (The solid lines represent HTTP connections, the
dashed lines denote query messages, and the brackets iden-
tify the steps that are not always executed.) A response from
a peer denotes a remote hit on a peer (step (3a)) from which
the resource must be explicitly fetched (step (3b)). When no
suitable resource is found in any peer, the edge node fetches
the resource from the origin server (step (4)).

The discovery process must cope with the possibility of
having different versions for the same resource. When an
exact version of the requested resource is not found in any
peer, an adaptation operation is required (step (5)). There-
fore, the caching semantic is more complex with respect to
the two-level architecture: a local lookup may result in a
miss, in a local exact hit or in a local useful hit; a remote
lookup may result in a miss, in a remote exact hit or in a re-
mote useful hit. Once an exact version of the requested ob-
ject is found or generated by the adaptation operations, the
gateway server on the edge node transfers the resource to
the client (step 6 in Fig. 2).

=H = .
Orlglnservers

(@ \ (3a) \ I Edge nodes
5 gateway

é

adaptation
fetch
cache

22 Clients

Figure 2. Flat architecture for intermediary-
based adaptation and delivery.

In Fig. 2 we also show the classes of network links that
we consider for the sensitivity analysis to the networks pa-
rameters carried out in Section 4.2. Besides client-to-edge
node links (C-E in Fig. 2) that connect clients to edge
nodes as in the two-level architecture, there are the follow-
ing links. Edge-to-Edge links (E-E in Fig. 2) interconnect
edge nodes and are used whenever some interaction among

the peers required; for example for cooperative lookup in
the case of local misses, and for resource retrieval in the
case of remote hits. Edge-to-Origin server links (E-O in
Fig. 2) connect the intermediate infrastructure to the origin
Servers.

4. Experimental results

The main goal of our experiments is to compare the per-
formance of the flat, two-level and non cooperative archi-
tectures. As performance indexes we consider the cache hit
rates (local, remote, global, exact, useful), and the response
time that represents the interval elapsed between the instant
in which the client sends a request to the edge node and the
instant in which the client receives the response.

A fair comparison between the architectures should be
based on the same total amount of CPU power and cache
capacity for the servers of the intermediate infrastructures
that provide caching, fetching, and adaptation functions.
However, we decided to be a little bit unfair with the pro-
posed two-level scheme to demonstrate its good perfor-
mance. Hence, for our experiments we set up an interme-
diate system consisting of 16 nodes for the flat architec-
ture and 14 interior nodes for the two-level architecture. As
the nodes have same CPU power, in the experimental re-
sults we should consider that the two-level architecture may
count on 12.5% less power for fetching and adaptation ser-
vices. In the flat scheme all nodes have sibling relationships
for cooperation.

In our experiments we set up the intermediary-based in-
frastructure consisting of servers that are equipped with our
prototypes and configured according to the previously pre-
sented schemes; the nodes are connected through a fast Eth-
ernet network (that provides E-E and E-I links, according
to Figs. 1 and 2). In the first set of experiments, the ori-
gin servers are placed in a remote location that is connected
with the nodes of the intermediate architecture through a ge-
ographic link (E-O or 1-O link) with 14 hops in between, a
mean round-trip time of 60 ms, and a bandwidth of 4 Mb/s.

The workload model aims at denoting a scenario where
the adaptation operations have a high computational cost.
As the trend of the Web is towards a growing demand for
non-textual resources, this workload can represent a situa-
tion with a high amount of large multimedia objects. In our
experiments we define six client profiles, where five require
some form of content adaptation. The service time for adap-
tation operations is equal to 270 ms and 1720 ms for the me-
dian and 90-percentile, respectively. The workload and the
client profiles are detailed in [2].

4.1. Cache hit rate and response time

In this section we analyze the performance of the two-
level architecture. Tab. 1 reports the cache hit rates, that are
divided in local, remote, exact, and useful. The last column
of this table shows the global cache hit rate, which is the
sum of the previous hit rates. We do not report the local
hits of the two-level architecture, because the edge nodes
act only as gateway servers and do not cache any resource.
For the No_Coop architecture, there are not remote hits be-
cause the lookup among the peers is not activated.

From the last column of Tab. 1 we observe that the global
hit rates differ significantly. As expected, the two-level ar-
chitecture achieves a global hit rate considerably higher
than that of the flat and No_Coop schemes. Its best cache
hit rates are due to the hash function that maximizes the
locality by avoiding intersections in the resource ID sub-
spaces and consequent presence of duplicated resources in
the servers. The same table indicates that cooperation can
increase the cache hit rate: the flat architecture takes advan-
tage of remote hits, thus increasing its global cache hit rate
with respect to the No_Coop scheme.

We observe an important difference between the flat and
two-level architectures. The percentages of exact and useful
hits for the flat architecture are similar, while the exact hits
of the two-level architecture are much higher than the use-
ful hits. This result confirms that the choices of partitioning
the resource ID space among the interior servers and keep-
ing all the existing versions of a resource on the same in-
terior nodes allows the two-level architecture to maximize
locality and to achieve the highest rates for the most pre-
cious (exact) cache hits.

On the other hand, the flat architecture has 15% of lo-
cal hits that can be immediately served, thus avoiding the
twofold step of the two-level architecture. Hence, to evalu-
ate the pros/cons of the three architectures it is not sufficient
to analyze only the cache hit rates.

L ocal Remote Global
Architecture | exact | useful exact useful
No_Coop 83% | 6.4% na na 14.7%
Flat 8.0% 7.0% 25.1% | 26.8% | 66.9%
Two-level n/a n‘a 60.2% | 21.0% | 81.2%

Table 1. Cache hit rates.

We now pass to consider the response time. Fig. 3 shows
the cumulative distribution of the response times for the
three architectures.

From this figure we can conclude that the performance
of the two-level scheme is clearly superior: about 80% of
the requests are served in less than 1.2 s by the two-level ar-
chitecture, while for the flat architecture this percentage is
below 60%. This figure also shows that the two-level infras-

Cumulative distribution

[Two-level -4
s Flat —@—
No_Coop -—-&---

0 1000 2000 3000 4000 5000
Response time [ms]

Figure 3. Cumulative distributions of re-
sponse times.

tructure is effective in reducing response time variance: for
the flat architecture the lookup process can be very fast (re-
quiring only a local cache lookup in the case of local hit),
but it can also be very time consuming especially in the case
of remote miss. As already pointed out in [4], a miss is de-
tected only when the last miss message has been received,
hence the system must wait for the slowest peer to respond
or for a timeout to expire.

We conclude that the higher cache hit rate (especially for
the exact hits that avoid adaptation) of the two-level archi-
tecture has a positive impact on the response time. More-
over, the two-level architecture serves misses in a faster
way with respect to the flat scheme that has to carry out an
unsuccessful cooperative lookup before detecting a global
miss.

4.2. Impact of the network costs

The most critical issue of the two-level architecture is
that the edge nodes must contact the interior nodes for each
client request, while the flat architecture needs a coopera-
tive lookup only in the case of local miss. Therefore, it is
important to evaluate under which network conditions the
two-level architecture guarantees the best performance. To
this purpose we analyze the sensitivity of the flat and two-
level architectures to the network delays among the nodes
of the intermediate infrastructures, and among the interme-
diary nodes and the origin servers. In this set of experiments
we do not consider the No_Coop scheme that the previous
section has demonstrated to be not competitive.

Since our experiments focus on the comparison of the in-
termediate architectures, the analysis of the last mile (that
is, C-E links in Figs. 1 and 2) is out the scope of this pa-
per, because is has the same impact on any organization of
the intermediate infrastructure.

We consider two network scenarios (intermediate and
server described in Tab. 2), where bandwidth limitation and

Connection Link bandwidth Link delay
intermediate server
Client-to-Edge (C-E) n/a n/a n/a
Edge-to-Edge (E-E) = Edge-to-Interior (E-I) 16 Mb/s 0-20ms 50 ms
Edge-to-Origin Server (E-O) = Interior-to-Origin Server (1-O) 2 Mbls 10 ms 20-100 ms

Table 2. Network scenarios.

delays have been emulated through a WAN emulator that
we implemented as a patch to the operating system ker-
nel on every node. Each connection between two nodes is
assumed as composed of a number of links varying from
1 to 5. For each link, network delays are modeled taking
into account the link bandwidth and the link delay. Band-
width is reported for every connection in the second col-
umn of Tab. 2. However, it is important to note that the con-
clusions on performance are not dependent on the reported
bandwidth values. A link delay modeled through a Pareto
distribution occurs for every packet. Columns 3 and 4 of
Tab. 2 show the mean link delay values for the two scenar-
ios.

The intermediate scenario is used to study the perfor-
mance sensitivity to network delays among the nodes of the
intermediate infrastructure (E-E and E-I links), while the
mean delays in E-O/I-O links are kept constant. The server
scenario is used to study the sensitivity to the delay in the
links connecting the intermediate infrastructure to the ori-
gin servers (E-O/I-O links), while the E-E and E-I delays
are fixed to 10 ms.

As a final remark, we observe that the assumption of hav-
ing equal delays on E-I and E-E links favors the flat archi-
tecture. Indeed, in a real scenario we expect E-I links (con-
necting edge nodes to the network core) to have a lower de-
lay than E-E links (connecting nodes on the network edge).

4000

3500 -

3000 -

2500 -

2000 -

1500

1000 ¥

500 -

90-percentile of response time [ms]

Flat —e—
Two-level —&—

0 5 10 15 20

0

Mean delay per E-E/E-I link [ms]

Figure 4. 90-percentile of response time for
increasing network delays.

Intermediate scenario. The first set of experiments fo-
cuses on the sensitivity of the delays on the E-E and E-I

links. The two-level architecture implies a twofold step for
the lookup of the resources because edge nodes have always
to contact the interior nodes for each request. Hence, we ex-
pect that higher delays in E-I links should have an impact
on response time. On the other hand, in the flat architec-
ture the edge nodes may serve directly client requests re-
sulting in local exact and useful hits.

Fig. 4 shows the 90-percentile of the system response
time as a function of increasing E-E and E-I delays. The
two-level architecture gets a response time lower than that
of the flat architecture for every value. However, as the net-
work delay increases, performance gain of the two-level ar-
chitecture over the flat architecture is reduced because the
network delay contribution to the response time, which is
common to both architectures, becomes more significant.

A disaggregated analysis of the contributions to the re-
sponse time (not reported for space limits) shows that the
local hits in the flat architecture are more than twice faster
than the hits in the two-level architecture. However, the cost
of the twofold step of the two-level scheme is highly com-
pensated when the flat architecture must activate a coopera-
tive lookup, which is both time and CPU consuming, espe-
cially for remote useful hits (and global misses).

Server scenario. In this set of experiments we focus on
the impact of delays to the origin servers. Connections to
the origin servers are used only in the case of global miss,
hence the global cache hit rate plays a fundamental role
here. Fig. 5 shows the 90-percentile of the response time
as a function of delays in the link from the intermediate in-
frastructure to the origin servers. The two-level architecture
provides best performance for every delay value. The moti-
vation should be clear: the higher cache hit rate of the two-
level architecture determines a lower number of fetch oper-
ations from the origin servers. As a consequence, the two-
level architecture is less sensitive to E-O/I-O delays than the
flat architecture.

5. Related work

In this section we review some recent research proposals
regarding content adaptation when the latter is carried out
by intermediary nodes enhanced with functions to adapt the
content on-the-fly and to cache it. Although some of the lat-
est studies on content distribution networks [9] focus on co-
ordination among resource-intensive applications over geo-

4000

3500 /
3000 | 1
L

2500 ;/A—/’A
2000 4 1

1500

1000 -

90-percentile of response time [ms]

500 -

Flat —e—
Two-level —&—

20 30 40 50 60 70 80 90 100
Mean E-O/I-O latency [ms]

0

Figure 5. 90-percentile of response time for
increasing delays to the origin servers.

graphically distributes systems, their results are not directly
applicable to the case of content adaptation.

The main research efforts have been devoted to the in-
vestigation of solutions that are similar to the No_Coop ar-
chitecture that is, a flat scheme in which the adaptation and
caching functions are provided on stand-alone not cooper-
ative servers. Some cooperative architecture have been re-
cently proposed by the authors [2], while fully distributed
P2P networks mainly focused for content personalization
have been considered in [11].

Other research efforts aimed to handle the variations in
client bandwidth and display capabilities [5, 6] without fo-
cusing on caching aspects, while considering object com-
pression techniques [6].

A limited number of recent results have also combined
both adaptation and caching to reduce the resource usage at
the edge server [3, 12]. However, all of them are limited to
the enhancement of a single server.

The main motivation that leaded us to study distributed
architectures for intermediate services of caching and adap-
tation is the limited scalability of a single intermediary-
based approach because of significant computational costs
of adaptation operations. Fox et al. [5] have addressed this
scalability issue through a cluster of locally distributed edge
servers. This approach may solve the CPU-resource con-
straint, but it tends to move the system bottleneck from
the node CPU to the Internet connection of the cluster. On
the other hand, the proposed two-level infrastructure is de-
signed to be distributed over a wide area Network, thus pre-
venting network bottlenecks.

6. Conclusions

In this paper we propose a novel distributed architec-
ture for efficient content adaptation and delivery of Web re-
sources. The architecture is based on a two-level organiza-
tion of the nodes where the edge nodes are simple gateways,

and the interior nodes, located in the network core, execute
the main services such as content adaptation, caching, and
fetching. We have evaluated through real prototypes the per-
formance of the two-level architecture against two flat ar-
chitectures: in the former, all nodes provide the same func-
tions and cooperate in content adaptation and delivery; in
the latter, the nodes do not cooperate. The entire set of ex-
periments, that have been reported only in part, allows us
to conclude that the two-level architecture outperforms the
other flat architectures for any considered network condi-
tion and cache size.

References

[1] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. De-
vice independence and the Web. |EEE Internet Computing,
6(5):81-86, Sept./Oct. 2002.

[2] C. Canali, V. Cardellini, M. Colajanni, R. Lancellotti, and
P. S. Yu. Cooperative architectures and algorithms for dis-
covery and transcoding of multi-version content. In Proc. of
8th Int’'l Workshop on Web Content Caching and Distribu-
tion, Sept./Oct. 2003.

[3] C.-Y. Chang and M.-S. Chen. On exploring aggregate ef-
fect for efficient cache replacement in transcoding proxies.
IEEE Trans. on Parallel and Distributed Systems, 14:611-
624, June 2003.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: A scalable wide-area Web cache sharing protocol.
IEEE/ACM Trans. on Networking, 8(3):281-293, June 2000.

[5] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-based scalable network services. In
Proc. of 16th ACM SOSP, pages 78-91, Oct. 1997.

[6] R.Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and
J. Rubas. Dynamic adaptation in an image transcoding proxy
for mobile Web browsing. I1EEE Personal Communications,
5(6):8-17, Dec. 1998.

[7] R. Mohan, J. R. Smith, and C.-S. Li. Adapting multimedia
Internet content for universal access. |EEE Trans. on Multi-
media, 1(1):104-114, Mar. 1999.

[8] M. Rabinovich and O. Spatscheck. Web Caching and Repli-
cation. Addison Wesley, 2002.

[9] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on
the edge: A platform for replicating internet applications. In
Proc. of 8th Int’'l Workshop on Web Content and Distribu-
tion, Hawthorne, NY, Sept. 2003.

[10] K. Ross. Hash-routing for collections of shared Web caches.
IEEE Network, 11(6):37-44, Nov./Dec. 1997.

[11] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: a peer-
to-peer caching system. In Proc. of PDPTAQ3, Las Vegas,
NV, June 2003.

[12] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy. PTC:
Proxies that transcode and cache in heterogeneous Web
client environments. World Wide Web, 7(1):7-28, Jan./Mar.
2004.

[13] G. Singh. Guest editor’s introduction: Content repurposing.
IEEE Multimedia, 11(1):20-21, Mar. 2004.

