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Abstract

Workflow management in large-scale Grid environ-
ments is a very challenging task centralized manage-
ment systems are not able to cover sufficiently. There-
fore, we present our Workflow On-line Resource Man-
agement (WORM) architecture built on top of active
network technology. The approach integrates a peer-to-
peer like organized workflow management system with
existing or newly built management systems for the
resources building the Grid. In our approach, each
workflow is represented by a mobile autonomous entity
which uses the active network infrastructure to move
through the Grid, which is represented by an active
overlay network on top of existing network infrastruc-
ture. Thus, control of the workflow execution is handed
over to the autonomous code without requiring a cen-
tral system to be in charge of the computation and cope
with reservation, failures, etc. The WORM architec-
ture is presented together with a classification into the
taxonomy of workflow management systems.

1. Introduction

In this paper, we present a novel architecture for
workflow management in large-scale Grid environ-
ments. As the amount of workflow jobs increases within
the Grid the importance of providing sufficient sup-
port for these workflows rises, too. The Workflow On-
line Resource Management (WORM) approach pro-
vides such features needed to build advanced support
for workflows in next generation large-scale Grid envi-
ronments.

As a typical example for a complex workflow in a
Grid scenario, an application is depicted in Fig. 1. The
workflow processed in the distributed environment con-
sists of five sub-tasks which are executed one after an-
other in order to produce the final result, in this case
the visualization of the data. This includes network
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Figure 1. Example of a complex workflow us-
ing the Grid

transmissions as well as parallel computations on two
cluster computers.

Because, next generation Grid environments will
consist of large amounts of different resources rang-
ing from computing devices, such as parallel comput-
ers and network infrastructures, storage capacity, to
human resources, centralized control instances can be
hardly extended to support the large number of re-
quests all the workflow jobs generate. So the complex-
ity arising from extensive composed workflows consist-
ing of requests for the distributed and diverse resources
turns up to overstrain any centralized approaches [7].
Additionally the resources often belong to different do-
mains and organizations this effect is increased. The
WORM architecture is up to overcome the limitations
of centralized approaches.

The resources building the Grid usually provide
their own management environment. These environ-
ments range from operating systems to resource man-
agement systems for a couple of resources, such as
Globus [8] or the VRM [1]. As these resources are dis-
tributed within the Grid the WORM architecture has



to integrate theses management systems in a transpar-
ent and distributed manner.

To build a complex workflow different resources need
to be allocated and released accurately. For this the
WORM architecture provides a workflow control and
execution engine dealing with these tasks. So the
WORM itself can be seen as be situated on top of
the local management systems of all of the Grid re-
sources needed to run the workflow application. Using
the WORM architecture the user is now able to pass
the responsibility in workflow execution and control to
the Grid itself, independent from any single and cen-
tralized execution entity.

To have a reliable and extensible framework on
which the WORM architecture can be based on, the
active network technology (ANTS) [14] was chosen. So
the WORM approach can abstract from defining, im-
plementing, and deploying a complete new infrastruc-
ture to access all the different distributed resources.

The workflow application itself can be specified us-
ing different models and approaches. The WORM ar-
chitecture implies no limit to the expressiveness of the
workflow specification.

So, implementing automated, adaptive, and flexible
allocation of arbitrary resources in a distributed and
coordinated manner the WORM architecture abandon
any centralized logic.

After presenting former work related with Grid
workflow management and Active Networks, the ar-
chitecture of the WORM is described in Detail. In the
following section we use a taxonomy for Grid workflow
systems to classify the WORM. We conclude the pa-
per with an outlook on the future development of the
WORM architecture.

2. Related Work

Connecting different resources on several locations
to a Grid is widely researched. Most research work fo-
cuses on middleware to allow an unified access to these
resources and to manage single jobs for only one re-
source. Several architectures for Grid resource manage-
ment have been developed, e.g., the VRM architecture
[1] and the Globus toolkit [8].

Based on these results the composition of complex
workflows using services provided by Grid resources is
currently researched. At present there is not as much
work done as for simple Grid jobs.

To declare the composition of workflows a number
of description languages have been proposed. Some of
them are based on well known languages for behavior
modeling, like petri nets, e.g., used in the Fraunhofer
Resource Grid [9]. Another approach is used for the

Grid service flow language (GSFL) by adopting con-
cepts from the web service composition domain [10].

The GRAAP working group of the Global Grid Fo-
rum (GGF) works on a specification for modeling of
service level agreements [3]. The specification does not
provide any means to describe Grid workflows, but it
introduces techniques to define multiple Grid jobs in a
single agreement, which can be extended to a workflow
description.

The architectures proposed for Grid workflow han-
dling are usually composed of an user tool and the
workflow execution engine. In order to specify the
workflow, the user tool composes the sub-tasks. The
user tool also calls the execution engine which con-
trols the execution of the workflow within the Grid
[16, 9, 2]. In some architectures there are additional
layers to enhances the workflows, e.g., by splitting up
abstract tasks into concrete sub-workflows [9].

The workflow execution engine is usually realized
as a central instance that interacts with the Grid. In
some cases the used Grid resources exchange the input
and output data directly, but even then there is an ad-
ditional central instance coordinating the control flow
[10]. In the GridFlow architecture [2] multiple execu-
tion engines are used, but the control flow of a workflow
is always handled by the same system.

In [7] the performance of such centralized execution
engines has been compared with two models of distrib-
uted execution engines. As the simulations showed,
the performance advantages of the decentralized mod-
els are significant. Unfortunately the work was only
done using simulations, thus a specific architecture re-
alizing this distributed execution is missing.

Yu and Buyya proposed a taxonomy to compare
Grid workflow management systems [18]. In this pa-
per this taxonomy is used to analyze how the WORM
architecture could be classified using this taxonomy.
This classification can be used to compare the WORM
approach with other Grid workflow handler.

In [14] a introduction into the concept of active net-
works is given. In an active network the routers are
enhanced such that they can execute user-given code
in order to deploy new protocols easily. Even load bal-
ancing and error handling mechanisms can be installed
in such a way. While the active network was designed
to substitute the routing mechanisms, the nodes in the
active network can also modify the content and target
of bypassing packets. As it can be easily seen, such a
flexibility requires strong security mechanisms, too.

The Janos Node OS [15] provides an extension for
the router operating system as well as an execution en-
vironment for the active network code. As execution
environment works an extended Java Virtual Machine.



The Janos system contains a number of security mecha-
nisms, e.g., to limit the resource usage of a single appli-
cation and to decide which application handles which
packets. Other active networks frameworks are either
bundled deeper with the operating system kernel, e.g.,
Silk [12], or as loose as Janos, e.g., AMP [6], which runs
on top of various operating system.

3. WORM Architecture

Our approach relies heavy on the distributed real-
ization of all the tasks of the resource management. In
this way our WORM architecture differs from common
Grid architectures and workflow management systems.

These workflow management systems often depend
on centralized infrastructures with a single manage-
ment entity. The centralization of most of the tasks,
the management has to cover, leads to various dis-
advantages. Especially in large-scale Grid environ-
ments the range of different workflows requesting huge
amounts of various resources can generate excessive
load which will lead to unacceptable response time of
the central unit or even the overload of the central unit
itself. In cases of failures of the central entity all of the
workflow jobs handled will be affected and in the worst
case lost.

An alternative to these centralized architectures is to
use an architectural framework such as WORM which
is described in this paper. The architecture completely
distributes the management task, describing workflows
as mobile worm code where the job control follows the
workflow execution.

The Grid workflow execution environment consists
of the following components: Grid resources, in-
frastructure nodes (IN), which serve as gateways to
the resources, and the underlying active network in-
frastructure. The actual worm is represented by code
entities (WORM instance), running on the INs of the
workflow environment and moving across the resource
network.

3.1. Workflow Modeling

As described before, a workflow management system
is usually divided into two parts. The execution engine
and the user tools to define the workflow and to submit
it to the execution engine. In this paper the focus lies
only on the execution engine. For the specification of
the workflow we suggest to use existing tools. Actu-
ally most of the existing tools can be easily adopted to
cooperate with the WORM architecture. Nonetheless,
some properties of the possible workflows have to be
defined.

In our framework the resource management, i.e., the
WORM instance, decides where a subjob of the work-
flow will be executed. Therefore, there is no need to
specify the machine in the workflow. The workflow can
be also an acyclic graph, as long as an adequate mech-
anism to model conditions is implemented.

This conditions must be decidable using the return
code of the sub jobs. This limitation is needed, as the
worm will run on the machines dedicated to resource
management and so wont be able to do complex analy-
sis of the output data by itself. However, this analysis
can be defined as a separate sub-job such that it will
be done by dedicated compute resource and will not
disturb the resource management.

As the WORM framework does not only manage
compute resources, but also network bandwidth, the
data that has to be transfered from a preceding sub-
job to the following one must also be specified. Based
on this information the required bandwidth will be al-
located exclusively for this transmission if the network
supports such allocations.

3.2. WORM instances

WORM instances are pieces of code which define the
workflow execution process. Users encode the workflow
description, producing restricted Java code using the
interfaces of the IN.

As the code is executed in the restricted environment
of an IN the possible harm of user given code is reduced.
At the same time executable code serves as a powerful
workflow description language used by the workflow
execution engine.

There is no need to specify the workflow manually
as the code is more used as the internal representation
within the workflow execution environment. The build
process of this code may be supported by tools. So, a
workflow description, e.g. modeled in GSFL [11], can
be easily translated into worm code.

3.3. Infrastructure Nodes

The general architecture of an IN within the WORM
architecture is outlined in Fig. 2. The foundation of
an IN is an active network node, in our case using the
Janos Node OS [15] in conjunction with the Java-based
ANTS toolkit [17], upon which the workflow execution
environment is situated. Each IN is based on an active
network node, i.e., a node in a network which provides
an execution environment for mobile user-defined code.
Active network nodes already provide the needed func-
tionalities to receive, execute, and migrate code. In
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Figure 2. Architecture of an infrastructure
node (IN).

common active network environments, this code repre-
sent network packets, in our framework the code rep-
resent WORM instances. In addition, each IN exposes
interfaces required to process and control the actual
workflow jobs. This includes management functional-
ity, i.e., for allocation and execution of processes.

In order to facilitate the basic functionality for a
Grid workflow infrastructure, the INs must provide the
following services.

Service Discovery This is essential to identify avail-
able resources and their locations in the network
including information such as the IP address of
the resources and their type, e.g., cluster com-
puters. The whole service discovery infrastructure
can be implemented using peer-to-peer organiza-
tion mechanisms [13] or basing on standard Grid
middleware such as Globus MDS [5].

Management Interface The management interface
of a local resource needs to provide the required
functionality to allocate and access the requested
resources, and to perform the workflow job en-
coded in the WORM instance. The interface
also provides means for controlling a job running
on the Grid resource. This can be implemented
with standardized protocols [4] by either using the
resource’s management interface directly as de-
scribed in [1] or using the management interface
of the Grid middleware.

Migration Throughout the workflow processing, the
WORM instances – including the current status of
the workflow – must be migrated together with the
other workflow data, e.g., program code and input
data or results. In the active network setting, this
corresponds with routing a packet and therefore,

is already implemented in the active network in-
frastructure.

WORM instances determine each workflow sub-job,
search for suitable resources (service discovery), select
and allocate resources (management interface), and mi-
grate to the resource together with the workflow data
and programs. Each WORM instance performs all of
the management tasks completely on its own, e.g., us-
ing WSRF [4], and therefore contains the current status
of the workflow.
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Figure 3. WORM infrastructure: the active
network nodes (gray) built an overlay net-
work.

The advantages of using active network nodes for the
IN execution environment are many-fold. For instance,
active network architectures already provide a safe and
reliable execution environment for mobile user-written
code, preventing malicious code from harming the in-
frastructure and avoiding that too many resources
are consumed [15]. A network supporting bandwidth
management already needs such complex management
functionalities as they are possible using active net-
works. Therefore we assume, that a managed network
already incorporates active network technology or it
can be easily deployed there. Thus, it is not required
to implement a completely new infrastructure. In the
notion of active networks, the workflow code is defined
as a new network protocol and WORM instances are
treated as executable packets. The active network in-
frastructure builds an overlay network (see Fig. 3), con-
necting the entirety of Grid resources.

In Fig. 4, the setting on a single infrastructure node
is outlined. The active network nodes serve as gate-
ways to the actual resources, i.e., WORM instance
execution and workflow job execution are decoupled.
Job execution is remotely controlled by the WORM
instance. When the resource in question is network
bandwidth, the IN serves as gateway to the remaining
network infrastructure. In order to participate in an
existing Grid, a new Grid resource just has to set up a
new active network node on a gateway and publish its
service.
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The gateway is not necessarily always a router, but
can also be set up on the Grid resource itself, e.g., a
dedicated cluster node. An elegant feature of active
networks is that missing code, e.g., the management
functionality, is downloaded to the new node. In addi-
tion, functionality upgrades for INs can easily be dis-
tributed.

4. Classification

As described before, Yu and Buyya proposed in [18]
a taxonomy to compare Grid workflow management
systems. In this section this taxonomy is used to clas-
sify the WORM architecture presented in this paper.

4.1. Workflow Design

The taxonomy starts with the analysis of the work-
flow design. As the architecture covers the workflow
execution only, no concrete workflow design model is
given. But the requirements for possible workflow de-
sign tools and workflow languages will be presented.

The WORM architecture is designed to support
Non-DAG structures in the workflow. But in the cur-
rent implementation a feature of both DAG as well as
Non-DAG structure is not fully supported: Parallelism.
While it is possible for a single WORM instance to con-
trol more than one resource at once, it is not possible
to split the WORM instance. To implement the idea
of the control flow instances following the workflow ex-
ecution fully the splitting of worms into independent
”sub-worms” would be required.

The WORM instance is searching for matching re-
sources for each step of the workflow, thus it is possible
to submit an abstract workflow model. In each step
the concrete execution environment for this step will
selected by the WORM instance.

The workflow composition system is not part of our
architecture. If we would take into account the input
data needed to start a WORM instance, a user driven,

language based composition system would be used. In
the current state restricted Java code written by the
user is used as input, but in future a composition sys-
tem using a graph-based modeling language will sup-
port the user to generate this input.

Quality-of-Service aspects are also part of future
work, as it is not yet clear how to ensure the service
level with a control instance running on various systems
maintained by different organizations.

4.2. Information Retrieval

The retrieval of information will be performed on
demand. Only so called dynamic information is used.
The information will be provided either by already de-
ployed Grid information systems or by other infrastruc-
ture nodes on a peer-to-peer base.

4.3. Workflow Scheduling

The main feature of the proposed architecture is the
distribution of the workflow execution engine. There-
fore the scheduling is done distributed as well. The tax-
onomy describes a distributed scheduling architecture
as a system of individual schedulers forwarding jobs
to each other in case of overload. In contrast, in the
proposed architecture the scheduler takes into account
resources in other domains every time. Thus, it acts
in some kind like a centralized scheduler with global
knowledge, but it is a distributed approach as there is
a scheduling instance in each infrastructure node and
the scheduling of the tasks of the workflow are done by
a number of scheduler and not always by the same one.

Based on the current architecture the WORM in-
stance just searches for a resource to execute the next
step within the workflow. The WORM instance per-
forms only local decisions according to the notion of the
taxonomy. As the workflow model, which a WORM in-
stance is based on, is abstract the architecture uses a
dynamic, just-in-time planning.

4.4. Intermediate Data Movement

The concept of the WORM architecture was devel-
oped based on the idea of letting the data flow following
the workflow. In the proposed architecture the input
and output data is moved on a peer-to-peer base from
resource to resource. But even the user given config-
uration data moves in the same way the workflow is
executed, as it is part of the WORM instance.

In the notion of the taxonomy this means the data
movement is automatic and peer-to-peer based. Au-
tomatic data movement stands for start and control



of the data transfer is done by the workflow execution
engine.

5. Conclusion and Future Work

The WORM framework is designed to realize all
tasks of the workflow management in a distributed
manner. The instance responsible to control the alloca-
tion of resources, the transmission of needed data and
the execution of the sub-jobs is always situated near the
executing machine. Former simulations showed the su-
perior performance of such workflow execution engines,
while we present a concrete architecture to implement
the engine in such a way here. The presented frame-
work can be easily deployed in a network already us-
ing active network technology. In other scenarios each
computer can be turned into an active network node
and thus into a WORM infrastructure node. Using
the active network technology and the Janos Node OS
many established security and communication mech-
anisms can be utilized. To make the WORM archi-
tecture comparable with other workflow management
systems we used the taxonomy of Yu and Buyya to
classify our framework.

Future work will deal with the problem of executing
parallel parts of the workflow by splitting worms into
several instances and coordinating these instances. Be-
sides this issue, an interesting question is how quality-
of-service guarantees may be integrated into our frame-
work. In the current setup, only the allocation and
reservation of a single resource at a time is supported
which can be extended to cover guarantees for several
consecutive resources. This requires additional func-
tionality, such as distributed deadlock detection and re-
mote allocation. It may be unrealistic to provide guar-
antees for complete workflows, e.g., deadlines, since
this demands for allocation of any required resource
in advance which obstructs the distributed character
and self-organizing features of the WORM architecture.
However, less stringent constraints may be satisfied,
e.g., owners of worms might be notified of allocations
for a few stages in advance. This means, allocations
are made more than one step ahead.
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