Capturing Personal Health Data From Wearable Sensors*

Fabrice Camous, Dénall McCann and Mark Roantree
Interoperable Systems Group
Dublin City University, Ireland
fcamous,dmccann,mark @computing.dcu.ie

1. Introduction

Recently, there has been a significant growth in pervasive
computing and ubiquitous sensing which strives to develop
and deploy sensing technology all around us. We are also
seeing the emergence of applications such as environmen-
tal and personal health monitoring to leverage data from a
physical world.

Most of the developments in this area have been con-
cerned with either developing the sensing technologies, or
the infrastructure (middleware) to gather this data and the
issues which have been addressed include power consump-
tion on the devices, security of data transmission, network-
ing challenges in gathering and storing the data and fault
tolerance in the event of network and/or device failure [12].
Research is focusing on harvesting and managing data and
providing query capabilities.

1.1 Motivation and Contribution.

Monitoring devices are already used in Sport Science to
monitor athletes. Additionally, they are becoming increas-
ingly available to individuals who take a pro-active interest
in managing their own health. Most of the time, sport and
health monitoring devices are used with their own distinct
proprietary software. Consequently, the user has to man-
ually make sense of the data and integrate data from the
different sources. From our collaboration with Sport Scien-
tists, we believe that this is not taking place and data is lost
or stored in a form that is unusable. In this paper, we present
the HealthSense prototype for harvesting and integration of
physical data from wearable sensors. Our contribution is in
the automated enrichment of data from any sensor and inte-
gration and management of data to provide a query interface
for knowledge workers.

The paper is structured as follows: §2 describes our ar-
chitecture; §3 presents our experiments and reports on pro-

*The RSS SENSE project is funded by Enterprise Ireland Ref.
PC/2007/112.

S—
XML database

Query Layer

Integration
Processor

Semantic Layer

Delivery Layer

m &

@ \ @
=
Physical Layer E 2 o @ ®

Figure 1. System Architecture

cessing times; in §4 we discuss related work, and finally in
§5, we provide conclusions.

2. The HealthSense Architecture

In this section, we describe the HealthSense architecture
which provides the platform for transformation from phys-
ical sensor readings recorded in the physical world to digi-
tal information in XML databases, through processes of en-
richment and integration. There are 4 layers, representing
data in different formats, separated by the 3 processors that
transform them. We now describe the 3 processors in more
details.



2.1 Batching Processor

The role of the batching processor is to ensure that data
from multiple sensors that are used in the same activity are
grouped together. The processor also associates each activ-
ity with an identifier corresponding to the individual being
monitored. While there is little innovation in this proces-
sor, it is a necessary step to ensure data is harvested in the
correct manner.

2.2 Enrichment Processor

The role of the enrichment processor is to convert sen-
sor data to an XML format that contains the semantics to
describe each of the values generated by the sensor.

Sensor data files are written and designed to be read by
machines, and so there is a finite number of ways in which
the data can be represented (e.g. a simple list of values or a
csv file). The enrichment processor has defined a template
approach to enrichment by examining data generated from
a diverse set of sensor devices across environmental, food
monitoring and personal health domains.

Each sensor device has a small XML template file asso-
ciated with it. The enrichment processor combines the tem-
plate and the output from the device to create an XML doc-
ument that can be queried using the XPath query language.
If the system encounters a new sensor, all that is required
is the template file. The template describes the sensor’s
output in terms of its structure and the location of certain
key elements, such as start time and measurements, as well
as important data such as value delimiters. The output file
contains user, session and device ID information, followed
by sensor-specific information and, finally, a list of labeled
measurement values. Figure 2 shows files that contain en-
riched data from the bodymedia and heart rate sensors.

2.3 Integration Processor

It is often necessary for the domain expert who monitors
an activity to be interested in the combination of simultane-
ous measurements by various sensors. For example, medi-
cal staff may be alerted whenever the heart rate goes above a
certain level and whenever the skin temperature goes above
a certain level during the same session. In this paper, the
integration process merges individual sensor files accord-
ing to the temporal dimension. However, our prototype is
open to multi-dimensional integration and on-going work is
evaluating integration across different parameters (partici-
pant data, sensor types and sensor readings. In effect, by
integrating on time, we create a fast integration that is easy
to specify (as time is a parameter across all devices). Fig-
ure 3 shows a subset of the file generated by the integration
process.

<user>
<id>1</id>
<session>
<id>1</id>
<sensorData deviceID="bsd">
<startTime>1195226100000</startTime>
<measurement time = "1195226160000"
type="BodyMedia SenseWear Data">
<skin_temp_average original rate>30.126686096191406
</skin_temp_average original rate>
<energy_expenditure_per_minute>1.4301998615264893
</energy_expenditure_per_minute>
</measurement>
</sensorData>
</session>

</user>

<user>
<id>1</id>
<session>
<id>1</id>
<sensorData devicelD="hrm">
<startTime>1195226100010</startTime>
<measurement time="1195226130000" type="HRData">
<HRValue>91</HRValue>
</measurement>
<measurement time="1195226160000" type="HRData">
<HRValue>95</HRValue>
</measurement>
<measurement time="1195226190000" type="HRData">
<HRValue>97</HRValue>
</measurement>
</sensorData>
</session>
</user>

Figure 2. Bodymedia and HeartRate enriched
data

3 Experiments

The datasets used in this paper are a subset of a dataset
obtained from experiments running from October 2007
which simulate the health monitoring of a group of individ-
uals with biometric sensors. The group comprises 12 peo-
ple, aged 26 to 47, and includes an equal number of males
and females. Data is collected through USB connections
using the following sensors:

e Polar S625X™ heart-rate monitor. This consists of
a fabric band which fits around a person’s chest and
detects and logs their heart rate. It also includes a foot
pod that accurately captures speed/pace and the dis-
tance covered. We set the sensor to sample data every
5 (14h memory capacity) or 15 seconds (44h memory
capacity).

e BodyMedia SenseWear®. This sensor array is worn
around the upper arm and measures and logs the fol-
lowing: galvanic skin response, a measure of skin con-
ductivity which is affected by perspiration; skin tem-



Table 1. Description of the datasets

Dataset User Sensor Raw Enrichment Enrichment Integration Integration
Number D Files Size Times ms Size Times ms Size
1 1 1 Nike iPod (8KB) 28k 175.2 141.7k 32 133.6k
1 Polar (3KB)
1 BodyMedia (17KB)
2 12 1 Nike iPod (7k) 50k 307.8 261.7k 56.4 252.7k
3 Polar (7k)
1 BodyMedia (35k)
1 Blood Pressure (1k)
3 6 3 Polar (12k) 158k 529 943.5k 188 914.1k
1 BodyMedia (144k)
1 Blood Pressure (2k)
4 4 4 Nike iPod (34k) 266k 499.2 1.3M 289.2 1.3M
2 Polar (3k)
1 BodyMedia (227k)
1 Blood Pressure (2k)
5 9 3 Nike iPod (23k) 314k 756.4 1L.OM 417.4 1.8M
4 Polar (34k)
1 BodyMedia (250k)
1 Blood Pressure (7k)
6 7 8 Nike iPod (83k) 710k 1098.6 42M 845 4M
6 Polar (63k)
1 BodyMedia (561k)
1 Blood Pressure (3k)
7 7 2 Polar (32k) 1.37M 1334.6 7.5M 1239.2 7.3M
1 BodyMedia (1.36M)
1 Blood Pressure (3k)
8 1 2 Polar (44k) 11.09M 5392.6 67.4M 9946.8 63.7M
2 BodyMedia (11.04M)

Figure 3. Example of integrated data

<user>
<id>1</id>
<session>
<id>1</id>
<sensorData deviceID="bsd">
<startTime>1195226100000</startTime>
<measurement time="1195226130000">
<HRValue>91</HRValue>
</measurement>
<measurement time = "1195226160000">
<skin_temp_average_original rate>30.126686096191406
</skin_temp_average_original_rate>
<energy_expenditure_per_minute>1.4301998615264893
</energy_expenditure_per minute>
<HRValue>95</HRValue>
</measurement>
<measurement time="1195226190000">
<HRValue>97</HRValue>
</measurement>
</sensorData>
</session>
</user>

perature, which is linearly reflective of the body’s core
temperature activities; heat flux which is the rate of
heat being dissipated by the body; subject motion us-
ing an in-built accelerometer. We set the sensor to
collect data once every minute (research configuration,
34h memory capacity), or 12 times a minute (channel
configuration, 247h memory capacity).

Deluxe Wrist Blood Pressure Monitor HL168JC.
This device can store up to 90 blood pressure and pulse
readings.

iPod Nano 4G with Nike®+ IPod Sport kit. This
sensor includes a foot pod and a detector connected to
the IPod Nano. Distance covered during a walk or run
and caloric consumption are collected along with the
type of music listened to.

A total of 8 datasets corresponding to sessions (activity as-
sociated with several sensor files) from different users were
selected. Table 1 describes the content of each dataset. The
experiments were evaluated on a single workstation running
the Windows XP Pro operating system on 2.66GHz Intel
Core 2 Duo processors with 4 GB of RAM. The system was
implemented using the Java Virtual Machine 6.0.

3.1 Result and Analysis

When enriched into XML format, the sizes of the files
increase, on average, by a factor of just below 6. From
the data, this appears to be largely independent of the file
size, with the smallest file increasing by a factor of 5.45
and the largest increasing by a factor of 6.12. Furthermore,
we found that our generic approach (loading template files
rather than writing purpose-built drivers for every sensor de-
vice) did not cause a significant delay. For example, the
smallest dataset is available in less than 0.2 seconds.

From our study, the exact amount by which a file in-
creases when converted to XML is directly dependent on
the complexity of the schema of the output file, as well as
the size of the raw sensor data values. In general, times in-
creased in a linear fashion as file sizes increased. However,
at some point in file sizes (approx. 2MB), the enrichment
process becomes faster than the integration process. Indeed,
the enrichment process becomes more efficient when file
sizes are larger. Looking at dataset 2 in Table 3, the en-
richment process requires opening 6 sensor streams and 6
template files, and writing 6 new enriched files, a total of 18
file I/O operations. On the other hand, the integration pro-
cess opens the 6 input files and only a single file for output.
Thus, we discovered the enrichment process itself is faster
than the integration process, but this is hidden for small files



by the times for disk I/O.

Overall, the time to transform sensor data to a queryable
format is fast. For 11MB of sensor data, it requires a little
over 15 seconds to transform to a single XML document.

4 Related Research

The work described in this paper is by nature inter-
disciplinary and aims at building bridges between various
research communities (Sensors, ICT, Health/Medical Infor-
matics). In this section we first mention related work in se-
mantic enrichment. As we intend to include an XML stream
query Engine in the future, we also present the latest ap-
proaches to XML stream querying.

The use of data semantic enrichment for interoperability
can be found in the research literature[8, 13]. Nonetheless,
the enrichment is addressed in the context of a traditional
data management system. In contrast, we enrich data on-
the-fly to accommodate the new data stream management
system paradigm. In particular, our semantic enrichment
process is building on previous work[11].

Most XML stream query engines focus on efficiently
processing an XML stream with one or several queries,
expressed in an XML query language such as XPath or
XQuery, on a single machine or peer. AFilter[6], XFilter[1],
YFilter[7], XMLTK]2] and SFilter[10] address the scenario
of filtering a stream for multiple subscribers and are con-
cerned with the scalability to the number of subscribers.
On the other hand, XPA[4], xao([3], similarly to SPEX[5],
concentrate on the challenges of implementing key features
or remaining aspects of the XPath query language.

While there has been a considerable volume of work
on developing XML stream query engines, more effort is
needed to integrate XML stream filtering into a real-life in-
frastructure. Additionally, XML stream filtering needs to be
approach in a distributed environment in order to manage
scale and to improve query performance. In future work,
we will address the problem of distributing the filtering of
XML streams, similarly to [9].

5 Conclusions

In this paper, we described our framework for captur-
ing sensor data and transforming this data into a queryable
format by enriching and then integrating related sensor out-
puts. Sensor files were shown to grow 5 times in size after
enrichment, but despite this, even over 60MB of enriched
data is available for query in 15 seconds. This demonstrates
a close to real time database creation. Our current research
tackles two other issues: scalability and dynamic querying.
To manage an increasing volume of sensors, we introduced
a Peer-to-Peer system to manage scalability with multiple

sensor databases. Our current research also places query fil-
ters throughout the network to quickly identify sensor out-
put of interest to knowledge workers.

References

[1] M. Altinel and M. J. Franklin. Efficient Filtering of XML
Documents for Selective Dissemination of Information. In
Proceedings, pages 53—64. VDLB 2000, 2000.

[2] 1. Avila-Campillo, T. J. Green, A. Gupta, M. Onizukaz,
D. Raven, and D. Suciu. An XML Toolkit for Light-weight
XML Stream Processing. In Proceedings, Pittsburgh, PA,
October 2002. PLAN-X 2002.

[3] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fon-
toura, and V. Josifovski. Streaming XPath Processing with
Forward and Backward Axes. In Proceedings, pages 455—
466, Bangalore, India, March 2004. ICDE 2003.

[4] S. Bottcher and R. Steinmetz. Evaluating XPath Queries on
XML Data Streams. In Proceedings, pages 101-113, Glas-
gow, Scotland, July 2007. BNCOD 2007.

[5] F Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, and
M. Spannagel. The XML Stream Query Processor SPEX. In
Proceedings, pages 1120-1121, Tokyo, Japan, April 2005.
ICDE 2005.

[6] K. S. Candan, W. Hsiung, S. Chen, J. Tatemura, and
D. Agrawal. AFilter: Adaptable XML Filtering with Prefix-
Caching and Suffix-Clustering. In Proceedings, pages 559—
570, Seoul, Korea, September 2006. VLDB 2006.

[7] Y. Diao and M. J. Franklin. High-Performance XML Filter-
ing: An Overview of YFilter. Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering,
26(1):41-48, 2003.

[8] U. Hohenstein and V. Plesser. Semantic enrichment: A
first step to provide database interoperability. In Workshop
Fderierte Datenbanken, pages 3—17, Magdeburg, 1996.

[9] R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser.
StreamGlobe: Processing and Sharing Data Streams in Grid-
Based P2P Infrastructures. In Proceedings, volume 2, pages
1259-1262, Trondheim, Norway, 2005. The 31st VLDB
Conference.

[10] D. Lee, H. Shin, J. Kwon, W. Yang, and S. Lee. SFilter :
Schema based Filtering System for XML Streams. In Pro-
ceedings, Seoul, Korea, 2007. 2007 International Confer-
ence on Multimedia and Ubiquitous Engineering(MUE’07).

[11] N. Legeay, M. Roantree, G. Jones, N. O’Connor, and A. F.
Smeaton. Semi-Automatic Semantic Enrichment of Raw
Sensor Data, volume 4805, pages 13—14. Springer, Berlin /
Heidelberg, 2007.

[12] M. Stonebraker, U. Cetintemel, and S. Zdonik. The 8 Re-
quirements of Real-Time Stream Processing. In Proceed-
ings, Tokyo, Japan, April 2005. 21st International Confer-
ence on Data Engineering (ICDE’05).

[13] X. Su, S. Hakkarainen, and T. Brasethvik. Semantic en-
richment for improving systems interoperability. In SAC
'04: Proceedings of the 2004 ACM symposium on Applied
computing, pages 1634-1641, New York, NY, USA, 2004.
ACM.



