
Dynamic Load Balancing for Cluster-based Publish/Subscribe System

Hojjat Jafarpour, Sharad Mehrotra and Nalini Venkatasubramanian
Department of Computer Science
University of California, Irvine

{hjafarpo, sharad, nalini}@ics.uci.edu

Abstract

In this paper we present load balancing techniques for
Cluster-based pub/sub framework that include both static
and dynamic load balancing. The static load balancing is
done through a multi-cluster architecture for broker over-
lay network which is based on subscription distribution
knowledge in the event space. The dynamic load balanc-
ing, on the other hand, is achieved through exploiting mul-
tiple inter-cluster and intra-cluster connections to dynam-
ically distribute publication and subscription forwarding
load among brokers during run time. Our experimental
results show that the proposed load balancing techniques
effectively prevent overloaded brokers without having sig-
nificant effect on content dissemination efficiency.

1. Introduction

Content-based publish/subscribe (pub/sub) is a content
distribution paradigm where a message is routed based on
its content rather than specific destination address attached
to it [1, 2, 3]. Subscribers specify their interest in certain
events and will be notified afterward if a published event
matches their interest. By decoupling communication par-
ties, pub/sub service provides anonymity and asynchrony
which makes it an attractive communication infrastructure
for many applications. For scalability reasons, a large-scale,
content-based pub/sub systems is often implemented as a
distributed service network where a set of dedicated bro-
ker servers form an overlay network. Clients connect to
one of these brokers and publish or subscribe through that
broker. When a broker receives a subscription from one of
its clients, it acts on behalf of the client and forwards the
subscription in the broker overlay. Similarly, when a bro-
ker receives an event from its client it forwards the event
through the broker overlay to the brokers that have match-
ing subscriptions. These brokers then deliver the event to
their interested clients.

Different architectures for organizing the dedicated bro-

ker servers in an overlay network have been proposed in
the literature. Most of the existing pub/sub systems ei-
ther organize broker servers in an acyclic graph structure
[7, 9] or a structured overlay network based on distributed
hash table [12, 11]. We refer to the former approach as the
Tree-basedpub/sub and latter one asDHT-basedpub/sub.
Cluster-based pub/sub is a new architecture for content-
based pub/sub that is not only resilient to broker failures,but
also provides fast content dissemination and load balancing
among brokers [4]. It organizes event brokers in clusters
where each broker is connected to all brokers in the cluster
it belongs to and at least one broker in every other clus-
ter. Subscription propagation is limited to clusters result-
ing in reduced subscription dissemination and storage load.
Event dissemination is done in two phases. An event first is
disseminated among clusters. Then, it is matched with sub-
scriptions in each cluster and is delivered to the brokers with
matching subscriptions. Cluster-based pub/sub also pro-
vides fault tolerance in case of broker failures through mul-
tiple connections between clusters and subscription replica-
tion in clusters. It speeds up event dissemination by reduc-
ing the number of brokers(hops) an event travels to reach
to its subscribers and parallelizing content matching oper-
ation. It scales to high publication and subscription load
by distributing publication and subscription load among all
brokers.

In this paper, we propose load balancing strategies
to uniformly distribute the publication dissemination load
among brokers and prevent overloaded brokers which may
result in broker failures. We present a static load balanc-
ing strategy based on a multi-cluster architecture which re-
duces broker load by exploiting the subscription distribution
knowledge. In multi-cluster strategy, the popular sections of
the event space use the overlay with smaller clusters while
unpopular sections of the event space use the overlay with
larger clusters. We also present dynamic load balancing
strategies which distribute publication dissemination load
by offloading the load from overloaded brokers to under-
loaded broker in run time. Our experimental results show
that the load balancing in Cluster-based pub/sub is signif-



icantly better than the existing Tree-based and DHT-based
systems. Our results also shows that even if the dissem-
ination load is very skewed, the proposed load balancing
techniques efficiently distribute the load among brokers and
prevent overloaded brokers.

The rest of the paper is organized as follows. In the next
section we present a brief overview of the Cluster-based
pub/sub system. Section 3 represents our load balancing
strategies including the multi-cluster architecture and dy-
namic load balancing algorithms. Our experimental results
are presented in Section 4 followed by review of related
work in Section 5. Section 6 concludes the paper.

2 Cluster-based Publish/Subscribe System

In this section we present a brief overview of cluster-
based pub/sub framework. For an in depth description of the
cluster-based pub/sub we refer the reader to [4]. We assume
the system consists of a set of dedicated broker servers,
B={B1,..., Bn} where brokers communicate through reli-
able TCP links and have unique identification numbers.
The cluster-based pub/sub partitions brokers into clusters
where each broker belongs to one cluster. Brokers in a
cluster maintain connections with one another and can di-
rectly communicate. Besides the brokers in its cluster, each
broker also maintains connections with at least one broker
in every other cluster which forms aring. A ring con-
sists of a set of brokers, one from each cluster. A broker
Bi usesClusterBrokerListi andRingBrokerListto keep the
list of brokers in its cluster and ring respectively. Since
each broker can be in only one cluster, it has only one
ClusterBrokerListi. On the other hand, a broker can have
one or moreRingBrokerListmeaning that it can be part of
multiple rings. Finally,Bi stores subscriptions and sub-
scribers from its clients inLocalSubscriptionListi and all
subscriptions and their subscriber brokers in the same clus-
ter in ClusterSubscriptionListi. Detailed information about
the number of clusters and cluster size and forming the clus-
ter network is provided in [4]. Figure 2 illustrates a sample
system with nine brokers forming three clusters with three
rings.

2.1 Subscription Dissemination

A client sends its subscriptions which contain its ranges
of interest to its corresponding broker. When a brokerBi

receives a subscription from its client, it first looks into
LocalSubscriptionListi to see if the subscription is covered
by previous subscriptions it has received from its clients.If
the subscription is covered, the broker just adds it to the
LocalSubscriptionListi. Otherwise, after adding the sub-
scription to itsLocalSubscriptionList, the broker dissemi-
nates the subscription among all other brokers in the same

Figure 1. Sample system with 9 brokers par-
titioned into 3 clusters.

cluster. Each brokerBj in the cluster after receiving the
subscription, first looks into itsClusterSubscriptionListand
removes all subscriptions fromBi that are covered by the
new subscription. Then it adds the new subscription from
Bi to its ClusterSubscriptionList. The motivation in using
covering relation among subscriptions is to reduce the num-
ber of stored subscriptions in brokers by removing covered
subscriptions from same subscriber [6].

2.2 Event Dissemination Algorithm

The event dissemination is done in two phases. The
first phase isRingdissemination where a published event is
broadcast among all clusters through the publisher broker’s
ring. In the second phase, which isClusterdissemination
phase, the event is matched to subscriptions in each cluster
and is delivered to the brokers with matching subscription.
The formal representation of the dissemination algorithm is
depicted in Algorithm 1.

Algorithm 1 Event Dissemination Algorithm
1: Bpub← The publisher broker
2: PubRing← The publisher broker’s ring
3: Ring Phase:
4: for all Bi ∈ PubRingdo
5: Bpub sends the content to Bi
6: end for
7: Cluster Phase:
8: for all Bi ∈ PubRingdo
9: Bi matches the content with subscriptions in its cluster

10: Bi sends the content to the matched brokers in its cluster
11: end for

3 Load Balancing in Cluster-based Pub/Sub

In this section we define different components of broker
load in Cluster-based pub/sub and present our static and dy-
namic load balancing techniques for Cluster-based pub/sub
framework. But before discussing the details of our pro-
posed load balancing techniques, it is worh to note that



even without load balancing capability, the Cluster-based
pub/sub outperforms tree-based and DHT-based pub/sub
frameworks in reducing and also distributing the dissemina-
tion load among brokers. We present the experiment results
validating this claim in Section 4.

3.1 Broker Load Components

Since the computation load resulting from content
matching heavily depends on content format, in this pa-
per we focus on broker network load. The broker network
load results from two sources. Part of broker load results
from publications and subscriptions of its clients which we
call client load. The other part of the load, which we call
forwarding load, results from forwarding publications and
subscriptions from other brokers in rings or clusters. Since
clients connect to closest broker, we assume client load can-
not be transferred to other brokers. Therefore, in this section
we focus on balancing forwarding load among brokers. The
forwarding load of a broker consists of three components.
The ring publish loadresulted from publication broadcast
in ring(s) that the broker belongs to, thecluster publish
load resulted from forwarding publications to brokers with
matching subscriptions in the same cluster and finally the
cluster subscription loadwhich results from receiving sub-
scriptions from other brokers in the same cluster. Each of
the forwarding load components is composed of send and
receive loads where the send part is due to forwarding pub-
lications or subscriptions and the receive part results from
receiving publications and subscriptions.

3.2 Load Balancing Through Multi-
cluster Architecture

The load balancing through multi-cluster architecture is
a static load balancing technique which is based on the re-
lationship between the number of clusters and the content
dissemination and subscription maintenance load. In our
initial clustering approach, we assumed we have just one
clustering. However, if some statistical information about
subscriptions and publications such as their distributionis
available, the broker clustering process can be done more
intelligently to reduce subscription maintenance load and
speed up content dissemination. In most of the pub/sub
systems, user interest distribution follows Zipf or uniform
models[5]. In uniform distribution, all parts of event space
are equal in probability of having subscription and publica-
tion. However, in Zipf distribution of subscriptions, some
parts of the event space are more popular and there are
more subscriptions for events falling in these parts. On
the other hand, there are less popular parts of event space
where there are fewer subscriptions for events falling in
these parts. Therefore, if we have different clustering for

each of these parts in event space, we can achieve better
distribution of subscription maintenance load. This means
that the number of clusters and cluster sizes will be differ-
ent for each of event space parts based on their popular-
ity and brokers use the corresponding clusters based on the
event space part a publication or subscription falls into. We
propose a clustering rule for forming clusters based on the
distribution of user interest on event space. In this method
the content space is partitioned based on the distribution of
subscriptions and for each partition one clustering is used.

Clustering Rule:The number of clusters for a content
space partition is directly related to the popularity of that
partition. The more subscription in the partition, the more
number of clusters for that partition’s clustering.

Assuming the number of publications and subscriptions
for matching ratior arep ands respectively, we can achieve
the total network traffic form clusters in the system using
equation (1).

Overal Network Traffic(r) =

p[(m − 1) + r(n − m)] + s(
n

m
− 1)

Based on this equation to achieve minimum network
traffic, the number of clusters,m, must be

√

s
p(1−r)n.

Therefore, if a part of event space is more popular, there
will be more subscriptions in the system for that and also
the matching ratio will be larger. This results in bigger value
for m and consequently, larger number of clusters. On the
other hand, if a part of event space is less popular, it means
that there is fewer subscriptions and also the matching ra-
tio is smaller. Thus for achieving less network traffic, the
number of clusters must be small.

Let us explain the rationale behind the multi-cluster ar-
chitecture through the following example. Assume we par-
tition content space into three partitions{P0, P1, P2} where
P0 is the most popular partition with large number of sub-
scriptions from majority of brokers andP2 is the least pop-
ular partition with small number of subscriptions from a
small fraction of brokers. By assigning more number of
clusters forP0 the size of clusters become smaller. Since
each broker just maintains subscriptions from brokers in its
own cluster, the smaller cluster size results in smaller num-
ber of subscriptions to maintain for each cluster which re-
sults in less subscription storage and faster content match-
ing. Also since most of brokers have subscribed to events in
this partition, ring dissemination phase does not have con-
siderable adversary effect. This is because of higher prob-
ability of having subscriber in all clusters which justifies
broadcasting publications to all of clusters in ring. On the
other hand, by having fewer clusters forP2, despite clus-
ter sizes become larger and each broker should maintain
subscriptions from larger number of brokers, the subscrip-



tion maintenance load does not increase significantly since
fewer brokers subscribe for content in partitionP2. Fewer
number of clusters, on the other hand, results in faster dis-
semination because in ring dissemination phase event is
broadcast among fewer brokers which is faster and in clus-
ter dissemination phase just interested brokers receive con-
tent.

3.3 Dynamic Load Balancing

In this section we propose strategies for load balancing
in a Cluster-based pub/sub system that can be employed dy-
namically during content distribution process. Our dynamic
load balancing strategies focus on balancing all components
on forwarding load in the broker overlay network. Depend-
ing on factors such as broker’s processing power, message
queue size and broker’s bandwidth each broker can handle
certain amount of messages in a time unit. We assume the
maximum messaging rate that a broker can handle isR. We
say a broker is overloaded when the rate of messages it re-
ceives, processes or sends is higher than a certain threshold.
Here we assume the threshold is0.9R. A broker calls load
balancing process when its load reaches the threshold. The
load balancing module then tries to offload the extra load to
other brokers in the system. This is done by offloading one
or more load components in the broker. We also assume
that when a broker is overloaded, it does not accept incom-
ing ring content. The load components that can be offloaded
in a broker includering publish load, cluster publish load
andcluster subscription load.

Balancing ring publish load: When a broker is over-
loaded, the first step it takes to reduce the load is by calling
ring publish load balancing module. In this case, if the bro-
ker is publishing content, the ring publish load balancing
module reduces the broker’s load by offloading the extra
ring dissemination load to other brokers in its cluster that
have underloaded rings. Brokers in the same cluster can ex-
change their current load by piggybacking on disseminated
content. This information can help an overloaded broker to
find the appropriate underloaded broker for offloading. The
overloaded broker also can find the proper broker for load
offloading by querying the brokers in the same cluster to
discover if they can take over some ring dissemination load.
After finding the underloaded broker, a portion of the pub-
lishing load is sent to this broker to be disseminated. The re-
ceiving broker treats these incoming content as the content
that is published by itself and initiates ring dissemination
phase.

It is also possible that some of the brokers in the ring be-
come overloaded and do not accept the incoming ring pub-
lications. In this case, the publishing broker finds an under-
loaded broker in its cluster as described above and forwards
the publications to the clusters of the overloaded brokers

through the underloaded broker. Note that the ring dissemi-
nation load for a publication is split with the selected under-
loaded broker. The ring publish load balancing is depicted
in the first phase of the publication dissemination algorithm
in Algorithm 2.

Algorithm 2 Event Dissemination Algorithm
1: Bpub← The publisher broker
2: PubRing← The publisher broker’s ring
3: Ring Phase:
4: if Bpub ’s ring is overloadedthen
5: Bpub finds brokerBk in its cluster with an underloaded ring
6: Bpub forwards the publication toBk

7: for all Bi ∈Bk ’s ring do
8: if Bi is overloadedthen
9: Bk finds B̄k in Bk ’s cluster and deliver content

10: to Bi ’s cluster through B̄k ’s ring
11: else
12: Bk sends the content to Bi
13: end if
14: end for
15: else
16: for all Bi ∈ PubRingdo
17: if Bi is overloadedthen
18: Bk finds B̄k in Bk ’s cluster and deliver content
19: to Bi ’s cluster through B̄k ’s ring
20: else
21: Bpub sends the content to Bi
22: end if
23: end for
24: end if
25: Cluster Phase
26: for all Bi ∈ PubRingdo
27: if Bi is overloadedthen
28: Bi finds Bj ∈ Bi ’s cluster that is underloaded
29: Bi forwards the publication to Bj
30: Bj matches the content with subscriptions in its cluster
31: Bj sends the content to the matched brokers in its cluster
32: else
33: Bi matches the content with subscriptions in its cluster
34: Bi sends the content to the matched brokers in its cluster
35: end if

36: end for

Balancing cluster publish load: Cluster publish load
results from matching publication with cluster subscriptions
and forwarding it to brokers with matching subscriptions
in the cluster. When cluster publish load for a brokerBi

changes its state into overloaded, the broker starts looking
for another broker in the cluster that can accept the extra
load.Bi queries brokers in its cluster by sending a load bal-
ancing request to each of them. When a brokerBj receives
the load balancing request and can handle part ofBi’s ex-
tra load, it replies with an ACCEPT message along with
the amount of load it can accommodate. WhenBi receives
ACCEPT message fromBj , it forwards portion of its clus-
ter publish load to this broker andBj treats these publica-
tions as its own cluster publications and matches and dis-
seminates them among brokers. The cluster publish load
balancing is depicted in the second phase of the publication
dissemination algorithm in Algorithm 2.

Balancing cluster subscription load: Compared to
publication dissemination load, we assume that the sub-
scription generation rate in system is considerably smaller.
If a broker’s cluster subscription load makes it overloaded,



the broker notifies subscriber broker(s). The subscriber bro-
kers then stop subscription dissemination for a randomly
selected period of time and then resume dissemination of
subscription in the cluster. During this random period, the
overloaded broker forwards the publications that it has re-
ceived from its ring(s) to randomly selected brokers in its
cluster and these brokers perform content matching and dis-
semination among matching brokers in the cluster. When
the overloaded broker can accept the new subscriptions af-
ter the time period pasts, it notifies the subscribing brokers
to send their new subscriptions to this broker again.

4 Evaluation

In this section we present our experimental methodology
and simulation results for evaluating our proposed load bal-
ancing techniques in Cluster-based pub/sub system.

System setup: To evaluate our algorithms we developed
a message level, event-based simulator. Since the focus of
this paper is content dissemination among brokers, we per-
formed our simulations only for the broker overlay.

Data model: One of the main challenges in evaluat-
ing pub/sub systems is lack of real-world application data.
However, previous work shows that in most applications
events and subscriptions follow Zipf or uniform distribu-
tions [5]. For comprehensiveness, we did our experiments
with both of these distributions. We useMatching Ratio
as our main parameter [13]. Matching ratio is the frac-
tion of the brokers that have matching subscriptions for an
event. Using wide variety of matching ratios in our simu-
lations, the results can be interpreted for both Zipf and uni-
form distributions. High and low matching ratio implies
Zipf distribution where some events are very popular and
have many subscribers while other events are very selective
and a small fraction of brokers have subscribers for these
events. Average matching ratio implies uniform distribution
where the probability of subscription is almost equal for all
events. Since we do not concentrate on content matching
techniques in this paper, we ignore the overhead of content
matching in our simulations and use a simple presentation
of content.

The simulations were done with a broker network con-
sisting of 100 brokers. For multi-cluster architecture the
brokers partitioned brokers into 5, 10 and 20 clusters. For
dynamic load balancing we partitioned the brokers into 10
cluster each with 10 brokers. Due to space limitation, we
only present two sets of our experimental results in this
paper. We first compare load distribution in Cluster-based
pub/sub with representative implementations of Tree-based
and DHT-based pub/sub system. We then provide our ex-
perimental results for evaluating the effect of the proposed
load balancing techniques in the Cluster-based pub/sub sys-
tem.

Custer-based pub/sub vs. Tree-based and DHT-based
pub/sub: The first set of our experimental results represent
the comparison of multi-cluster and single cluster Cluster-
based pub/sub with two other common pub/sub broker over-
lay architectures, Tree-based and DHT-based. The simula-
tion is based on the number of events that is handled by a
broker in one time unit and the publications and subscrip-
tions are uniformly distributed among brokers. Figure 2
presents the dissemination load distribution for three dif-
ferent matching ratios. As it is depicted, the Tree-based
pub/sub performs the worst in case of load distribution. In
all the represented matching ratios, there are several bro-
kers with very high amount of load, while there are other
brokers with very small amount of load. This can be justi-
fied based on the tree structure of the broker overlay where
any publication from one side of the tree that has matching
subscription in the other side of the tree must pass through
the brokers in the middle. These brokers may end up with
processing almost all the publications which results in high
dissemination load on them. On the other hand, brokers in
the edge of the overlay do not participate in publication for-
warding very often which results in very small load. The
DHT-based system performs slightly better that the Tree-
based one, however, in all cases our Cluster-based systems,
multi-cluster and single-cluster, disseminate the load more
uniformly among brokers and avoid highly overloaded bro-
kers. This results from breaking up the forwarding load
among different rings which not only results in smaller
amount of dissemination load but also limits the forward-
ing load of each publication in its publisher’s ring.

Another notable fact in the results is the benefit of using
multi-cluster architecture. As it can be seen, when the num-
ber of clusters is small, the load distribution also is more
uniform which is because of smaller dissemination load re-
sulting from smaller number of clusters. This clearly shows
the benefit of using multi-cluster architecture where the sub-
scription distribution in the event space is available.

Dynamic load balancing: The second set of results
we present here is the evaluation of the proposed dynamic
load balancing algorithms. In order to represent the signif-
icance of the dynamic load balancing techniques, we com-
pare the Cluster-based pub/sub with and without load bal-
ancing. Similar to the previous experiments subscription
distribution among brokers is uniform, however, the publi-
cation distribution follows Zipf distribution where a small
number of brokers publish majority of publications. The
experiments are based on the 100 publication in one time
unit and we set the broker load threshold to 150 messages
per time unit. The broker load in our experiments consists
of input and output message traffics that a broker handles.
Figure 3 depicts the load distribution in Cluster-based archi-
tecture with and without load balancing for three different
matching ratios, 25%, 50% and 75%. The results clrearly



Figure 2. Event dissemination load distribution for 10%, 50% and 70% matching ratio

Figure 3. Event dissemination load distribution for 25%, 50% and 75% matching ratio. The X and Y
axes represent the load range and the number of brokers, respectively.

show that when the publication distribution among brokers
follows Zipf distribution, the Cluster-based pub/sub without
load balancing results in uneven distribution of dissemina-
tion load. This is because of concentration of disseminia-
tion load on a small portion of rings in the overlay which
results higher dissemination load on the brokers on these
nodes while the other brokers in the other rings remain un-
deroaded. On the other hand, in Cluster-based pub/sub with
dynamic load balancing, the rings with higher load off load
portion of the load on the other ring with smaller load which
results in more uniform distribution of load among brokers.
Consider the graph for 25% matching ratio in figure 3. As
it can be seen, in pub/sub with dynamic load balancing, al-
most 90% or brokers have a load in [200,250) and there is
no broker with higher load. However, in the same situation,
if the load balancing techniques are not employed, the load
distribution is very skewed and more than 75% of brokers
have a load in [50,100) while around 10% of brokers have
a load higher than 250 and in fact there is one broker with
load more than 350. The same results is achieved for other
matching ratios which justifies the benefit of using our dy-
namic load balancing techniques in efficiently distributing
the load among brokers and preventing overloaded brokers
as much as possible.

5 Related Work

Most of content-based pub/sub systems that use Tree-
based content routing including [7, 3], do not provide any
load balancing mechanism. Cheung and Jacobsen in [10]
proposed a dynamic load balancing scheme for content-
based pub/sub system where brokers are organized in a hier-
archical (Tree-based) structure. Brokers with more than one
neighboring broker are referred to as cluster-head brokers,
while brokers with only one neighbor are referred to as edge
brokers. Publishers connect to cluster-head brokers, while
subscribers are connected to edge brokers. The proposed
scheme allows for two levels of load balancing: local-level
where edge brokers within the same cluster load balance
with each other; and global-level where edge brokers from
two different clusters load balance with each other. The
main drawback of this scheme is may migrate subscriptions
from one broker to another which not only is an extra load
on brokers, but also does not preserve subscription locality.
Unlike Cluster-based pub/sub architecture which provides
transparent fault tolerance, it is not clear how the hierarchi-
cal (Tree-based) architecture overcomes the broker failures.

As a DHT-based pub/sub framework, Meghdoot pro-
posed an interesting load balancing scheme [12]. In Megh-
doot the content space is partitioned among brokers and
each broker is responsible for one of the partitions. The sub-
scriptions are routed to and stored in the corresponding bro-



kers for their partitions. Each publication is also routed to
the broker responsible for the partition that the publication
falls in. This broker is referred to as Rendezvous Point. Af-
ter receiving the publication, the Rendezvous Point matches
the publication with the subscriptions and routes the pub-
lication to the brokers with matching subscriptions. The
overloaded brokers can offload part of their load by dividing
their partition into two section and transmit the responsibil-
ity of one section along with the corresponding subscrip-
tions to another underloaded broker. However, this may re-
quire retransmission of subscriptions which results in extra
load.

Shuffle is another DHT-based pub/sub framework that
provides load balancing [15]. Unlike Meghdoot, in Shuffle
subscriptions are stored in all brokers in the path from the
subscribing broker to the Rendezvous Point. An overloaded
broker exploits the replication of subscriptions and desig-
nate an underloaded broker in its children list in the dis-
semination tree to take the responsibility of content match-
ing and forwarding to the subscribers in its subtree. This
scheme relies on the fact that the path for forwarding publi-
cation is the reverse path of subscription dissemination that
may not be accurate if there are failures in the broker net-
work.

6 Conclusions

We propose load balancing strategies to prevent over-
loaded brokers in a Cluster-based pub/sub system by dis-
tributing the publication dissemination load among brokers.
Our proposed techniques include a static load balancing us-
ing a multi-cluster architecture to reduces broker load by
exploiting the subscription distribution knowledge. We also
proposed dynamic load balancing strategies that can offload
the load from overloaded brokers to underloaded broker in
run time. We validate the effectiveness of the proposed
strategies through evtensive simulations. Our experimen-
tal results show that not only the load balancing in Cluster-
based pub/sub is significantly better than the existing Tree-
based and DHT-based systems but the proposed load bal-
ancing techniques also efficiently distribute the load among
brokers and prevent overloaded brokers even if the dissem-
ination load is very skewed.

References

[1] Patrick Th. Eugster , Pascal A. Felber , Rachid Guer-
raoui , Anne-Marie Kermarrec,The many faces of
publish/subscribe, ACM Computing Surveys, v.35
n.2, p.114-131, June 2003.

[2] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, A. Vir-
gillito, On the Modelling of Publish/Subscribe Com-
munication Systems, Concurrency and Computation:

Practice and Experiences, Volume 7, issue 12, pages
1471-1495, John Wiley and Sons.

[3] A. Carzaniga, M. Rutherford and A. Wolf,A Routing
Scheme for Content-Based Networking., IEEE INFO-
COM 2004.

[4] H. Jafarpour, S. Mehrotra and N. Venkatasubra-
manian, A Fast and Robust Content-based Pub-
lish/Subscribe Architecture., IEEE NCA 2008.

[5] A. Riabov, Z. Liu, J. Wolf, P. Yu and L.Zhang ,
Clustering Algorithms for Content-based Publication-
Subscription Systems., IEEE ICDCS 2002.

[6] H. Jafarpour, B. Hore, S. Mehrotra and N. Venkata-
subramanian,Subscription Subsumption Evaluation
for Content-based Publish/Subscribe Systems., Mid-
dleware 2008.

[7] A. Carzaniga, D.S. Rosenblum and A. Wolf,Design
and Evaluation of a Wide-Area Event Notification Ser-
vice., ACM Trans. on Computer Systems, (19)3, Aug
2001.

[8] A. Carzaniga and A. L. Wolf, Forwarding in a
Content-Based Network., ACM SIGCOMM 2003.

[9] G. Li, S. Hou, H. A. Jacobsen,A Unified Approach to
Routing, Covering and Merging in Publish/Subscribe
Systems Based on Modified Binary Decision Dia-
grams., ICDCS 2005.

[10] A. K. Y. Cheung and H. A. Jacobsen,Dynamic
Load Balancing in Distributed Content-Based Pub-
lish/Subscribe., Middleware 2006.

[11] R. Baldoni, C. Marchetti, A. Virgillito, R. Viten-
berg, Content-Based Publish-Subscribe over Struc-
tured Overlay Networks., ICDCS 2005.

[12] A. Gupta, O. Sahin, D. Agrawal, A. El Abbadi,Megh-
doot: Content-Based Publish/Subscribe over P2P
Networks., Middleware 2004.

[13] F. Cao, J. Pal Singh,MEDYM: Match-Early with Dy-
namic Multicast for Content-Based Publish-Subscribe
Networks., Middleware 2005.

[14] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N.
Venkatasubramanian, S. Mehrotra,CREW: A Gossip-
based Flash-Dissemination System., IEEE ICDCS
2006.

[15] H. Zhang, S. Ganguly, S. Bhatnagar, R. Izmailov
and A. Sharma,Optimal Load Balancing in Pub-
lish/Subscribe Broker Networks, IEEE ICC 2008.


