Astronomical Data Analysis Software and Systems XIIT
ASP Conference Series, Vol. 314, 2004
F. Ochsenbein, M. Allen, and D. Egret, eds.

A Prototype toward Japanese Virtual Observatory (JVO)

Masatoshi OHISHI, Yoshihiko MIZUMOTO, Naoki YASUDA!, Yuji
SHIRASAKI, Masahiro TANAKA, Satoshi HONDA

National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka,
Tokyo 181-8588, Japan

Yoshifumi MASUNAGA?
Ochanomizu University, 2-1-1, Otsuka, Bunkyo, Tokyo 112-8610, Japan

Ken MIURA?, Hirokuni MONZEN, Kenji KAWARAI, Yasuhide
ISHIHARA, Yasushi YAMAGUCHI and Hiroshi YANAKA

Fujitsu Ltd., 1-9-3, Nakase, Mihama, Chiba 261-8588, Japan

Abstract. We developed the first prototype toward a Japanese Virtual
Observatory (JVO) by using the Globus Tool Kit 2 (GTK2). We found
that the system worked as we had expected, including the functionality
of JVO Query Language. However, it took a very long to initiate each
Grid process. Thus we replaced the GTK2 with a tool distributed by
NSF Middleware Initiative, and shortened the polling interval of the job-
manager from 30 seconds to 3 seconds. As a result, the serious problem
was partially resolved, and the elapsed time for a query reduced to about
half of the previous one.

1. Introduction

The National Astronomical Observatory of Japan (NAOJ) operates the Subaru
telescope in Hawaii and large radio telescopes in Nobeyama. All the observed
data are digitally archived and are accessible via internet. The radio telescopes
of Nobeyama produce about 1 TByte per year, and the Subaru telescope outputs
about 20 TBytes per year. Because astronomical objects radiate electromagnetic
waves in a wide frequency range, it has been recognized that multi-wavelength
analyses are essential to understand the physical and chemical behavior of galax-
ies, stars, planets and so on.

JVO is designed to provide seamless access to federated databases and data
analyses systems for astronomers by utilizing the state-of-the-art GRID tech-

nstitute for Cosmic Ray Research, University of Tokyo
2National Astronomical Observatory of Japan

3National Institute of Informatics

296
(© Copyright 2004 Astronomical Society of the Pacific. All rights reserved.

A Prototype toward Japanese Virtual Observatory (JVO) 297

JVO Prototype System Architecture Redhat Linux 2Mass
, DataBase
- - b Ether ——— JVO Service
Jvo Solaris8 (Possible at Linux)
Controller| = = -
UDDI Registory / Servlet Engine UDDI Maintenance Tool —
Java2SE 14 Java2SE 14 Globus Toolkit (Server)
S—
i . o al JVO Service SQL
JVO Client @ Applet / e " ?regiter A
Netscape Communicator et |2 - Jdalete
Javaz Plugin T
3 Find pervice ===
V0 Client @ Request 2 - - ey -
§ et) EimREim JVO Controller] DB Service < DB Service
| [ava re: 7
(‘ L Java2SE 14 | PostgreSQL (DBMS) ’
Morirmg L], 3V Server " ——
e / SupCam
2 get & parse GSDL , 2z-band
2pre condition check 7 al TR
? execute Service R B
edhat Linux
, ?post condition cm:): DataBase
< JVO Service
5 execute Service @ get 6SDL &sbL
Slfexecufe Service ' @)| esor
h Check status by GridFTF
| ©lfspawn Service |~
|\¥_—“ @ Get 6SDL N 5
———\\ by GridF TP, \\ L[20 service (inoge)

’
- — 12y - ” /
l\\ JVO Service N ':JVO Service (X match)
SUBARU S
—_—7 —
DataBasel | [[\ Globus Toollt (server) oy o oo

v (select) library

(® spawn Service

VO Service VO Service
(image) (X match)

Globus
Toolkit

VO Service sQL
(count) library

+
L
fissue SQL

DB Servic

/
5

L_copy imate dato
by 6ridFTP

The following free software is included by globus toolkit.

[Free software [1n House Software 2 OpenSSL (Secure Socket Library)
2OpenLDAP (LDAP Server)
[commercial Software [Function 2wi-F1pd (F1p server)

Figure 1. Architecture of JVO prototype. Note that the prototype
has not been connected to other VOs yet.

nology through the 10 Gbps SuperSINET (http://www.sinet.ad.jp/english/)
which was installed in 2002. The basic concept and a new query language to
access to the distributed databases, JVO Query Language, are already described
by Mizumoto et al. (2003).

This paper describes in detail the implementation and assessment of the
first prototype toward JVO.

2. Implementation of the JVO Prototype

We implemented the first prototype in a closed subnet in NAQOJ. The architec-
ture of the JVO prototype is shown in Figure 1. We adopted the Globus Toolkit
2 for the prototype. However we also take into account the Web service concept
which is included in the OGSA.

Here we describe how the prototype works. First of all, researchers provide
the JVO with simple instructions, described by using JVOQL, how they want to
perform their ” Virtual Observation” through the JVO portal. The JVO portal
interprets them and generates a ”work-flow” by consulting the UDDI servers to
find where available JVO services are registered.

Based on the work-flow, built-in or user-defined services are called sequen-
tially by the JVO controller. Prior to command execution the JVO controller

298 Ohishi et al.

issues a ”pre-condition check” to make dynamic assignment of distributed re-
sources according to their availabilities. When one step of the work flow is
finished, the result is examined by ” post-condition check” to determine whether
the step finished successfully or not. If the step finished successfully, the JVO
controller generates the next step(s) of the work flow and executes them. If the
step finished unsuccessfully, the JVO controller searches for an alternative server
which provides the same service, and executes the same step on that server, if
available. Successful execution results of the work flow are transferred from re-
mote servers to the JVO controller through GridF'TP, and are presented to the
researchers by the JVO client.

It is a very important service in the JVO to cross-match (X-match) query
results from multiple wavelength data. Each query is sent from the JVO con-
troller to an appropriate database server. Then the smallest query result is
GridFTPed from the server to another server with the next smallest result. The
recipient server is asked to run its X-match engine, and the result is further
GridFTPed to a server with the third smallest query result. The final result is
GridFTPed to the JVO controller.

3. Assessment of the Prototype

We used several JVOQLs to assess this prototype. Table 1 contains each step
of the work flow and elapsed time for each step.

Table 1. A sample of work flow and elapsed time

Step # Host Command Elapsed Time
0 mizu-g JVOQLparser.sh 17127
0.0 mizu-g jvo-query.sh 17 157
0.1 minazuki-g jvo-query.sh 1’ 09”
0.2 mizu-g Scheduler.sh 1’ 147
0.2.0 mizu-g jvo-query.sh 17 157
0.2.1 minazuki-g post-xmatch.sh 17 33”
0.2.2 mizu-g jvo-query.sh 17 21”7
0.2.3 minazuki-g jvo-query.sh 2 26”7

Table 1 contains several commands described as shell scripts: JVOQL-
parser.sh reads input JVOQL script and parses into individual queries in SQL;
jvo-query.sh issues individual queries to database servers, counts up database
records hit, and cuts images out from image databases; Scheduler.sh collects
count results and determines the order to request database servers query results
and image data; and post-xmatch.sh kicks off the cross-match engine. These
commands were submitted by using the GRAM service of the Globus Tool Kit
2. As we expected, all steps were generated automatically, and we could get
results successfully.

We examined the robustness of our prototype by forcing the system to issue
a command, at step 0.2.2, which would fail at one server but succeed at another
server. At first the issued command to the "wrong” server failed, but then
the system reissued the same command to the "right” server through dynamic
generation of the work flow.

A Prototype toward Japanese Virtual Observatory (JVO) 299

However we found the elapsed times were too long for all steps. We knew
that an elapsed time for each command was less than a few seconds when it was
issued in a non-globus environment. It should be noted that the final step, 0.2.3,
corresponds to cutting out images and needs a very long CPU time even in a
non-globus environment. Such very long elapsed times seemed to be due to the
authentication process and the ”globus-job-run” command of the Globus Tool
Kit 2. It is well known that the authentication process takes nearly 10 seconds
and the ”"globus-job-run” command takes long during its initial hand-shaking
procedure before issuing a "real command”. Since JVO is a pseudo-real-time
system, it was crucial to shorten such large overhead in each process.

4. Improvement of the Prototype

We introduced the NSF Middleware Initiative (NMI)! to accelerate the slow
authentication process in the Globus Tool Kit 2, because NMI provides a binary
module for the authentication. Then we analyzed the source code of the ” globus-
job-run”, and found that the polling interval was fixed to 30 seconds. Therefore
we modified the polling interval to 3 seconds, and recompiled the tool kit. As
the result the elapsed times in Table 1 were shortened by more than a factor of
2. For example the elapsed time for step 0 became 20 - 25 seconds. Although we
succeeded to accelerate all steps in our prototype, the elapsed times are much
longer compared with those for cases in non-globus environment. Thus it is
necessary to investigate further, for example, the source code of the tool kit to
make our system to run much faster.

5. Summary

We constructed the first version of the JVO prototype based on GTK2, and con-
firmed that the JVOQL has sufficient functionality to access federated databases.
We found that the prototype worked as we had expected, however, it took a very
long to initiate each Grid process. Thus we replaced the GTK2 with a tool dis-
tributed by NSF Middleware Initiative, and shortened the polling interval of
the job-manager from 30 seconds to 3 seconds. As a result, the serious problem
was partially resolved, and the elapsed time for a query became less than half
compared with the previous one.

Acknowledgments. This research was supported by Grant-in-aid ” Infor-
mation Science” carried out by the MEXT (14019092 and 15017289).

References

Mizumoto, Y., et al. 2003, in ASP Conf. Ser., Vol. 295, ADASS XII, ed. H. E.
Payne, R. I. Jedrzejewski, & R. N. Hook (San Francisco: ASP), 96.

'"http://www.nsf-middleware.org/

